## SUPPLEMENTARY INFORMATION AVAILABLE

Syntheses and Single Crystal X-Ray Diffraction Studies of Acyclic and Macrocyclic Azadithiolate (NS2) Complexes of (Arene)ruthenium(II). Thiolate-alkylation, Base-Promoted Hydroalkylation and Protonation Reactions.

Richard Y. C. Shin, Geok Kheng Tan, Lip Lin Koh and Lai Yoong Goh\* Department of Chemistry, National University of Singapore, Kent Ridge, Singapore 119260 E-mail: <u>chmgohly@nus.edu.sg</u>. Fax: (+65) 6779 1691

| T anna T a Tana T                                                           | JIICCHOIL HIN                                    | IN T SUIDCONDIT                                        |                                                              |                                |                                                                   |
|-----------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------|--------------------------------|-------------------------------------------------------------------|
| complexes                                                                   | (2)                                              | (3)                                                    | (5)                                                          | (9)                            | (1)                                                               |
| formula                                                                     | $C_{18}H_{30}N_2RuS_2$                           | $C_{19}H_{34}F_{12}N_2O_2P_2RuS_2$                     | $C_{22}H_{41}F_{12}N_3O_4P_2RuS_2$                           | $C_{19}H_{36}F_6IN_2O_2PRuS_2$ | C <sub>19</sub> H <sub>32</sub> F <sub>6</sub> NPRuS <sub>2</sub> |
| $M_r$                                                                       | 439.63                                           | 777.61                                                 | 866.71                                                       | 761.56                         | 584.62                                                            |
| temp, K                                                                     | 223(2)                                           | 223(2)                                                 | 223(2)                                                       | 223(2)                         | 293(2)                                                            |
| cryst color and habit                                                       | red, cuboid                                      | yellow, needle                                         | yellow, orthorhombic                                         | yellow, orthorhombic           | red, orthorhombic                                                 |
| cryst size, mm <sup>3</sup>                                                 | $0.30\times0.26\times0.12$                       | $0.14 \times 0.12 \times 0.10$                         | $0.50\times0.40\times0.24$                                   | $0.38 \times 0.10 \times 0.04$ | $0.20\times0.18\times0.08$                                        |
| cryst system                                                                | Orthorhombic                                     | Orthorhombic                                           | Triclinic                                                    | Orthorhombic                   | Orthorhombic                                                      |
| space group                                                                 | P2(1)2(1)2(1)                                    | Pna2(1)                                                | P-1                                                          | Pbca                           | Pbca                                                              |
| $a,  m \AA$                                                                 | 9.7421(7)                                        | 17.7539(11)                                            | 10.1429(5)                                                   | 16.9370(10)                    | 10.0476(5)                                                        |
| b, Å                                                                        | 11.9068(8)                                       | 11.8517(8)                                             | 10.6403(5)                                                   | 16.8727(10)                    | 18.5151(9)                                                        |
| <i>c</i> , Å                                                                | 16.4702(11)                                      | 13.7702(9)                                             | 16.5359(8)                                                   | 19.7224(12)                    | 24.9301(12)                                                       |
| $\alpha$ , deg                                                              | 90                                               | 90                                                     | 108.2100(10)                                                 | 90                             | 90                                                                |
| eta, deg                                                                    | 06                                               | 90                                                     | 98.1320(10)                                                  | 90                             | 90                                                                |
| $\chi$ deg                                                                  | 90                                               | 06                                                     | 93.9630(10)                                                  | 90                             | 90                                                                |
| $V, Å^3$                                                                    | 1910.5(2)                                        | 2897.4(3)                                              | 1665.96(14)                                                  | 5636.1(6)                      | 4637.8(4)                                                         |
| Ζ                                                                           | 4                                                | 4                                                      | 2                                                            | 8                              | 8                                                                 |
| density, g cm <sup>-3</sup>                                                 | 1.528                                            | 1.783                                                  | 1.728                                                        | 1.795                          | 1.675                                                             |
| abs. coeff, mm <sup>-1</sup>                                                | 1.040                                            | 0.895                                                  | 0.793                                                        | 1.916                          | 0.980                                                             |
| F(000)                                                                      | 912                                              | 1568                                                   | 880                                                          | 3024                           | 2384                                                              |
| $\theta$ range for data collection                                          | 2.11 to 30.05                                    | 2.07 to 27.49                                          | 2.03 to 27.50                                                | 1.99 to 25.00                  | 1.63 to 27.50                                                     |
|                                                                             | -13<=h<=12,                                      | -22<=h<=23,                                            | -13<=h<=13,                                                  | -20<=h<=15,                    | -13<=h<=9,                                                        |
| index ranges                                                                | -16<=k<=16,                                      | -15<=k<=15,                                            | -13<=k<=13,                                                  | -19<=k<=20,                    | -13<=k<=23,                                                       |
|                                                                             | -19<=1<=22                                       | -17<=12                                                | -21<=1<=21                                                   | -23<=l<=23                     | -32<=l<=29                                                        |
| no. of reflns collected                                                     | 15629                                            | 19349                                                  | 21453                                                        | 30654                          | 31086                                                             |
| indep reflns                                                                | 5402                                             | 5086                                                   | 7632                                                         | 4948                           | 5321                                                              |
| max. and min. transmission                                                  | 0.863713                                         | 0.9158                                                 | 0.8324                                                       | 0.9273                         | 0.9257                                                            |
|                                                                             | and 0.00222                                      | and 0.8849                                             | and 0.6924                                                   | and 0.229 /                    | and 0.8281                                                        |
| no. of data/restraints/params                                               | 5402 / 0 / 219                                   | 5086 / 653 / 354<br>P1 - 0.0475                        | 7632 / 694 / 604                                             | 4948 / 18 / 320                | 5321/0/405 B1 $-0.0402$                                           |
| final <i>R</i> indices $[I > 2\sigma(I)]^{a,b}$                             | wR2 = 0.0377                                     | WI = 0.0473, $WR2 = 0.1294$                            | wR2 = 0.0322, $wR2 = 0.0885$                                 | wR2 = 0.0003, $wR2 = 0.1151$   | WI = 0.0493, $WR2 = 0.0992$                                       |
|                                                                             | R1 = 0.0408,                                     | R1 = 0.0515,                                           | R1 = 0.0337,                                                 | R1 = 0.0774,                   | R1 = 0.0611,                                                      |
| K indices (all data)                                                        | wR2 = 0.0859                                     | wR2 = 0.1330                                           | wR2 = 0.0897                                                 | wR2 = 0.1221                   | wR2 = 0.1033                                                      |
| goodness-of-fit on $F^2$ <sup>c</sup>                                       | 1.080                                            | 1.038                                                  | 1.035                                                        | 1.138                          | 1.197                                                             |
| large diff peak and hole, e $Å^{-3}$                                        | 0.894 and -0.688                                 | 0.838 and -0.548                                       | 0.629 and -0.592                                             | 0.809 and -1.230               | 1.037 and -1.098                                                  |
| <sup>a</sup> $R = (\Sigma  F_0  -  F_c )\Sigma  F_0 $ . <sup>b</sup> $wR_c$ | $f=[(\Sigma \omega   F_{ m o}  -  F_{ m c} )^2/$ | $\Sigma \omega  F_0 ^2 ]^{1/2}$ . <sup>c</sup> GoF = [ | $[(\Sigma \omega   F_{ m o}  -  F_{ m c} )^2/(N_{ m obs}-N)$ | $p_{\text{param}}$             |                                                                   |
|                                                                             |                                                  |                                                        |                                                              |                                |                                                                   |

Table S1. Data Collection and Processing Parameters

2

| complexes                                | (8)                                          | (6)                        | (10)                           | (11)                                   | (12)                               |
|------------------------------------------|----------------------------------------------|----------------------------|--------------------------------|----------------------------------------|------------------------------------|
| formula                                  | $C_{22}H_{37}BrF_6N_1PRuS_2\{1.83(CH_3CN)\}$ | $C_{20}H_{34}F_6NPRuS_2$   | $C_{18}H_{30}F_6NPRuS_2$       | $C_{18.50}H_{31.50}F_6N_{1.50}OPRuS_2$ | $C_{20}H_{33.50}F_6N_{1.50}PRuS_2$ |
| $M_r$                                    | 779.85                                       | 598.64                     | 570.59                         | 601.11                                 | 605.14                             |
| temp, K                                  | 223(2)                                       | 223(2)                     | 223(2)                         | 223(2)                                 | 223(2)                             |
| cryst color and habit                    | yellow, hexagonal                            | red, orthorhombic          | red, cuboid                    | orange, orthorhombic                   | orange, orthorhombic               |
| cryst size, mm <sup>3</sup>              | $0.36 \times 0.20 \times 0.10$               | $0.20\times0.14\times0.12$ | $0.46 \times 0.36 \times 0.22$ | $0.15\times0.12\times0.10$             | $0.30 \times 0.18 \times 0.14$     |
| cryst system                             | Hexagonal                                    | Monoclinic                 | Monoclinic                     | Monoclinic                             | Monoclinic                         |
| space group                              | P6(3)/m                                      | P2(1)/c                    | P2(1)/n                        | P2(1)/c                                | P2(1)/c                            |
| $a,  m \AA$                              | 16.7659(5)                                   | 8.9741(5)                  | 12.3846(7)                     | 17.947(3)                              | 18.3830(9)                         |
| b, Å                                     | 16.7659(5)                                   | 16.8112(9)                 | 13.8429(7)                     | 21.283(4)                              | 21.1216(11)                        |
| <i>c</i> , Å                             | 45.705(3)                                    | 15.8708(8)                 | 13.7618(8)                     | 12.559(2)                              | 12.5607(6)                         |
| <i>a</i> , deg                           | 06                                           | 06                         | 90                             | 90                                     | 06                                 |
| eta, deg                                 | 06                                           | 92.5870(10)                | 107.0470(10)                   | 102.396(4)                             | 101.8320(10)                       |
| $\chi$ deg                               | 120                                          | 90                         | 90                             | 90                                     | 06                                 |
| $V, Å^3$                                 | 11126.3(8)                                   | 2391.9(2)                  | 2255.6(2)                      | 4685.5(14)                             | 4773.4(4)                          |
| Z                                        | 12                                           | 4                          | 4                              | 8                                      | 8                                  |
| density, g cm <sup>-3</sup>              | 1.795                                        | 1.662                      | 1.680                          | 1.704                                  | 1.684                              |
| abs. coeff, mm <sup>-1</sup>             | 1.704                                        | 0.952                      | 1.005                          | 0.976                                  | 0.956                              |
| F(000)                                   | 4744                                         | 1224                       | 1160                           | 2448                                   | 2472                               |
| $\theta$ range for data collection       | 1.66 to 24.00                                | 1.77 to 27.50              | 1.95 to 30.01                  | 1.50 to 25.00                          | 1.13 to 25.00                      |
|                                          | -17<=h<=19,                                  | -11<=h<=7,                 | -14<=h<=17,                    | -21<=h<=10,                            | -21<=h<=21,                        |
| index ranges                             | -19<=k<=17,                                  | -21<=k<=21,                | -13<=k<=19,                    | -25<=k<=25,                            | -25<=k<=25,                        |
|                                          | -46<=I<=52                                   | -20<=1<=20                 | -18<=1<=19                     | -14<=14                                | -14<=14                            |
| no. of reflns collected                  | 59241                                        | 16640                      | 18088                          | 25908                                  | 27372                              |
| indep reflns                             | 5914                                         | 5492                       | 6408                           | 8258                                   | 8382                               |
| max and min transmission                 | 0.8481                                       | 0.8943                     | 0.8091                         | 0.9087                                 | 0.8778                             |
|                                          | and 0.5790                                   | and 0.8324                 | and 0.6549                     | and 0.8674                             | and 0.7625                         |
| no. of data/restraints/params            | 5914 / 102 / 373                             | 5492 / 13 / 314            | 6408 / 357 / 326               | 8258 / 771 / 616                       | 8382 / 2 / 599                     |
| final R indices $[I > 2\alpha(D)]^{a,b}$ | R1 = 0.1325,                                 | R1 = 0.0399,               | R1 = 0.0367,                   | R1 = 0.0737,                           | R1 = 0.0558,                       |
|                                          | WK2 = 0.3183                                 | WK2 = 0.0950               | WKZ = 0.0904                   | WKZ = 0.1424                           | WK2 = 0.1189                       |
| R indices (all data)                     | wR2 = 0.1037, $wR2 = 0.3342$                 | wR2 = 0.1000               | WI = 0.0437, $WR2 = 0.0944$    | M1 = 0.1230, $WR2 = 0.1585$            | wR2 = 0.0739, wR2 = 0.1309         |
| goodness-of-fit on $F^2$ <sup>c</sup>    | 1.102                                        | 1.042                      | 1.043                          | 1.059                                  | 1.092                              |
| large diff peak and hole, e $Å^{-3}$     | 2.360 and -1.613                             | 0.909 and -403             | 0.926 and -0.310               | 1.416 and -1.052                       | 0.919 and -653                     |

 $\mathfrak{c}$ 

# Table S2. IR spectral data<sup>a</sup>

| <u>Complex</u> | $\underline{v} (cm^{-1})$                                                                                                                                                                                    |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2              | 3160 s (N–H), 3007 w, 2960 msh, 2903 s, 2848 msh, 1442 s, 1384 s, 1286 w, 1268 w, 1237m, 1217 w, 1189 w, 1104 s, 1068 s, 1018 s, 956 s, 908 m, 794 m, 675 w, 651 w, 551 w.                                   |
| 3              | 3294 m (N–H), 3232 m, 3059 m, 2964 m, 2934 m, 2879 m, 1459 s, 1419 s, 1396 m, 1288 m, 1255 m, 1222 w, 1124 m, 1073 m, 1014 m, 975 m, 847 vs ( $PF_6$ ), 741 m, 558 s ( $PF_6$ ).                             |
| 4              | 3291 m (N–H), 2988 broad m, 1458 m, 1420 m, 1395 m, 1290 w, 1214 w, 1105 w, 1071 m, 1027 w, 970 w, 845 vs (PF <sub>6</sub> ), 740 w, 653 w, 558 s (PF <sub>6</sub> ).                                        |
| 5              | 3291 m (N–H), 2935 w, 2875 w, 1449 m, 1416 m, 1393 m, 1290 m, 1253 w, 1229 w, 1209 w, 1145 w, 1108 w, 1070 m, 1013 m, 965 m, 845 vs (PF <sub>6</sub> ), 740 m, 656 w, 558 s (PF <sub>6</sub> ).              |
| 6              | 3655 m, 3577 m, 3307 w (N–H), 3096 m, 2995 w, 2923 w, 1452 m, 1396 m, 1321 w, 1291 w, 1223 w, 1116 w, 1073 m, 1026 m, 995 m, 958 m, 842 vs ( $PF_6$ ), 740 w, 558 s ( $PF_6$ ).                              |
| 7              | 3291 m (N–H), 3084 w, 2979 w, 2919 w, 2868 w, 1449 m, 1412 m, 1389 m, 1292 w, 1242 w, 1220 w, 1098 w, 1069 w, 1008 w, 968 w, 920 w, 845 vs (PF <sub>6</sub> ), 739 w, 669 w, 558 s (PF <sub>6</sub> ).       |
| 8              | 3036 w, 2934 w, 2878 w, 2800 w, 1452 w, 1393 w, 1296 vw, 1125 w, 1070 w, 1018 w, 960 w, 930 w, 843 s (PF <sub>6</sub> ), 739 w, 557 m (PF <sub>6</sub> ).                                                    |
| 9              | 3292 m (N–H), 2973 w, 2929 m, 2869 w, 1447 m, 1390 m, 1290 w, 1220 w, 1138 w, 1069 m, 1013 m, 967 m, 926 m, 841 vs ( $PF_6$ ), 739 m, 558 s ( $PF_6$ ).                                                      |
| 10             | 3308 m (N–H), 2923 w, 2869 w, 1450 m, 1389 m, 1298 w, 1260 w, 1212 w, 1068 m, 1021 m, 966 m, 840 vs (PF <sub>6</sub> ), 774 w, 740 w, 609 w, 558 s (PF <sub>6</sub> ).                                       |
| 11             | 3309 m (N–H), 2952 msh, 2937 m, 2891 wsh, 1448 m, 1388 m, 1329 w, 1301 w, 1244 w, 1216 w, 1093 w, 1055 m, 1043 m, 978 w, 914 msh, 836 vvs (PF <sub>6</sub> ), 765 w, 740 w, 681 w, 558 s (PF <sub>6</sub> ). |

3309 w (N–H), 2964 wsh, 2928 m, 2888 wsh, 1451 m, 1393 m, 1300 w, 1248 w, 1212 w, 1140 w, 1069 w, 1015 w, 978 w, 842 vs (PF<sub>6</sub>), 763 w, 675 w, 558 s (PF<sub>6</sub>).

<sup>a</sup> KBr pellet

| <b>Fable S3.</b> | Selected Bond Lengths (Å) and Angle | s (deg) of | complexes |
|------------------|-------------------------------------|------------|-----------|

| complex                                                                                                                                           | 3          | $\mathbf{A}^{\#}$ | 5         | $\mathbf{B}^{\#\#}$ |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------|-----------|---------------------|--|--|--|
|                                                                                                                                                   |            |                   |           |                     |  |  |  |
| Ru(1)-S(1)                                                                                                                                        | 2.327(2)   | 2.323(2)          | 2.3401(6) | 2.3341(13)          |  |  |  |
| Ru(1)-S(2)                                                                                                                                        | 2.3175(16) | 2.320(2)          | 2.3320(6) | 2.3151(13)          |  |  |  |
| Ru(1)-N(1)                                                                                                                                        | 2.153(6)   | 2.329(2)          | 2.158(2)  | 2.3410(13)          |  |  |  |
|                                                                                                                                                   |            |                   |           |                     |  |  |  |
| S(1)-Ru(1)-S(2)                                                                                                                                   | 87.21(7)   | 87.28(9)          | 99.08(2)  | 98.47(5)            |  |  |  |
| S(1)-Ru(1)-N(1)                                                                                                                                   | 82.9(2)    | 87.05(9)          | 82.77(6)  | 86.89(5)            |  |  |  |
| S(2)-Ru(1)-N(1)                                                                                                                                   | 83.62(18)  | 86.75(9)          | 83.72(6)  | 85.45(5)            |  |  |  |
| <sup>#</sup> <b>A</b> = 9S3 analogue of <b>3</b> , i.e. $[(HMB)Ru(9S3)]^{2+.1}$ <sup>##</sup> <b>B</b> = 11S3 analogue of <b>5</b> . <sup>1</sup> |            |                   |           |                     |  |  |  |

Table S4. Selected Bond Lengths (Å) and Angles (deg) of complexes

| $1^{1}$    | 2                                                                                                                                                              | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11                                                    |                                                       | 12                                                     |                                                       |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|
|            |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | a #                                                   | b #                                                   | a #                                                    | b #                                                   |
| 2.3807(10) | 2.3786(9)                                                                                                                                                      | 2.3480(17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.385(2)                                              | 2.387(2)                                              | 2.3817(15)                                             | 2.3880(15)                                            |
| 2.3851(10) | 2.3844(9)                                                                                                                                                      | 2.3394(19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.343(2)                                              | 2.333(2)                                              | 2.3270(16)                                             | 2.3303(16)                                            |
| 2.3396(10) | 2.161(3)                                                                                                                                                       | 2.147(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.160(7)                                              | 2.151(7)                                              | 2.141(5)                                               | 2.148(4)                                              |
| -          | -                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.833(11)                                             | 1.803(9)                                              | 1.873(8)                                               | 1.826(7)                                              |
| -          | -                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.478(15)                                             | 1.525(13)                                             | 1.489(10)                                              | 1.490(9)                                              |
| -          | -                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.573(13)                                             | 1.544(12)                                             | -                                                      | -                                                     |
| -          | -                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.522(12)                                             | 1.517(11)                                             | -                                                      | -                                                     |
| -          | -                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                     | -                                                     | 1.513(9)                                               | 1.546(8)                                              |
| -          | -                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                     | -                                                     | 1.523(8)                                               | 1.513(8)                                              |
|            |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                       |                                                       |                                                        |                                                       |
| 92.18(4)   | 89.87(4)                                                                                                                                                       | 102.93(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 84.39(10)                                             | 85.00(8)                                              | 84.26(6)                                               | 83.89(6)                                              |
| 85.18(4)   | 82.11(9)                                                                                                                                                       | 82.85(18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 82.6(2)                                               | 82.1(2)                                               | 82.85(16)                                              | 83.26(13)                                             |
| 85.41(4)   | 83.55(9)                                                                                                                                                       | 82.67(18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 84.1(2)                                               | 84.1(2)                                               | 83.84(16)                                              | 84.06(14)                                             |
|            | <b>1</b> <sup>1</sup><br>2.3807(10)<br>2.3851(10)<br>2.3396(10)<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | $\begin{array}{c ccccc} 1^1 & 2 \\ \hline 2.3807(10) & 2.3786(9) \\ 2.3851(10) & 2.3844(9) \\ 2.3396(10) & 2.161(3) \\ \hline & & & \\ - & & & \\ - & & & \\ - & & & \\ - & & & \\ - & & & \\ - & & & \\ - & & & \\ - & & & \\ - & & & \\ - & & & \\ - & & & \\ - & & & \\ - & & & \\ - & & & \\ - & & & \\ - & & & \\ - & & & \\ - & & & \\ - & & & \\ - & & & \\ - & & & \\ - & & & \\ - & & & \\ - & & & \\ - & & & \\ - & & & \\ - & & & \\ - & & & \\ - & & & \\ - & & & \\ - & & & \\ - & & & \\ - & & & \\ - & & & \\ - & & & \\ - & & & \\ - & & & \\ - & & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & &$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

 $\mathbf{a}^{*}$  and **b** are two independent molecules in the unit cell.

| Table 55. Se    | letteu Doll | u Lengins (A) an   | iu Aligies ( | ueg) of comple   | асэ               |
|-----------------|-------------|--------------------|--------------|------------------|-------------------|
| complex         | 10          | 7                  | 8            | 9                | $\mathbf{C}^{\#}$ |
|                 |             |                    |              |                  |                   |
| Ru(1)-S(1)      | 2.3708(7)   | 2.3809(9)          | 2.343(6)     | 2.3777(8)        | 2.374(2)          |
| Ru(1)-S(2)      | 2.3500(7)   | 2.3303(10)         | 2.353(5)     | 2.3345(8)        | 2.346(2)          |
| Ru(1) - N(1)    | 2.154(2)    | 2.145(3)           | 2.174(15)    | 2.156(3)         | 2.320(2)          |
| S(1)-C(1)       | 1.825(3)    | 1.819(5)           | 1.80(2)      | 1.843(4)         | 1.86(2)           |
| S(1) - C(5)     | -           | -                  | 1.862(19)    | -                | -                 |
| S(2) - C(3)     | -           | -                  | 1.82(2)      | -                | -                 |
| S(2) - C(4)     | -           | 1.805(5)           | -            | 1.822(5)         | -                 |
| S(2) - C(5)     | 1.756(4)    | 1.818(5)           | -            | 1.828(4)         | 1.77(1)           |
| S(2)–C(8)       | -           | -                  | 1.829(19)    | -                | -                 |
| C(5) - C(6)     | 1.304(6)    | 1.461(9)/1.578(19) | 1.49(3)      | 1.507(6)         | 1.25(1)           |
| C(6) - C(7)     | -           | 1.270(15)          | 1.26(4)      | 1.499(7)         | -                 |
| C(7) - C(8)     | -           | -                  | -            | 1.296(8)/1.25(2) | -                 |
| C(8)–C(9)       | -           | -                  | 1.45(3)      | -                | -                 |
| C(9)–C(10)      | -           | -                  | 1.31(4)      | -                | -                 |
|                 |             |                    |              |                  |                   |
| S(1)-Ru(1)-S(2) | 91.04(3)    | 95.27(4)           | 104.39(19)   | 94.10(3)         | 90.04(7)          |
| S(1)-Ru(1)-N(1) | 81.40(7)    | 80.27(9)           | 84.4(5)      | 82.23(8)         | 85.17(7)          |
| S(2)-Ru(1)-N(1) | 82.44(7)    | 83.98(9)           | 82.0(5)      | 82.98(8)         | 85.93(7)          |
| Ru(1)-S(2)-C(5) | 109.86(15)  | 115.81(19)         | 121.4(8)##   | 116.06(14)       | 112.3(4)          |
| Ru(1)-S(1)-C(1) | 101.26(11)  | 101.94(15)         | 98.7(8)      | 94.70(15)        | 103.2(6)          |
| Ru(1)-S(1)-C(5) | -           | -                  | 119.2(8)     | -                | -                 |
| Ru(1)-S(2)-C(3) | -           | -                  | 102.7(7)     | -                | -                 |
| Ru(1)-S(2)-C(4) | 98.70(11)   | 98.18(16)          | -            | 102.56(16)       | 104.3(3)          |
| Ru(1)-S(2)-C(8) | -           | -                  | 121.4(8)     | -                | -                 |
| # 0 (02)        | 1 6.10      | 20 ## c            |              |                  |                   |

Table S5. Selected Bond Lengths (Å) and Angles (deg) of complexes

 ${}^{\#}\mathbf{C} = {}^{`}\mathbf{S3'}$  analogue of **10**.<sup>20</sup>  ${}^{\#\#}$  for Ru(1)–S(2)–C(8)

Figure S1. ORTEP plots for the molecular structures of (a) **2** and (b) **3** dication. Thermal ellipsoids are drawn to 50 % probability level. Hydrogen atoms are omitted for clarity.



Figure S2. ORTEP plots for the molecular structures of (a) dicationic bis(SMe) complex **6**, and monocationic (b) S-allyl complex **7** and (c) S-vinyl complex **10**. Thermal ellipsoids are drawn to 50 % probability level. Hydrogen atoms are omitted for clarity.

(a)

(b)





(c)



Figure S3: <sup>1</sup>H NMR spectra of **10** in CD<sub>3</sub>CN before and after protonation (a) vinylic region and (b) "aliphatic Region"



Figure S4: <sup>1</sup>H-NMR spectra of **7** in CD<sub>3</sub>CN before and after protonation



Protonation of **7** initiated an immediate disappearance of its arene Me resonance ( $\delta$  2.07), which was replaced by a new Me resonance at  $\delta$  2.12, a slight shift in resonances assigned to the vinylic protons, i.e. the 14-line multiplet for S...*CH*= to  $\delta$  5.90–5.76, and the 4-line mutiplet to  $\delta$  5.39–5.32 (unres dd  $\equiv$  apparent d, *J* = 11.4 Hz, =*CH*<sub>2</sub>),  $\delta$  5.33 (unres dd  $\equiv$  apparent d, *J* = 4.1 Hz, =*CH*<sub>2</sub>); multiplets for SCH<sub>2</sub>/HNCH<sub>2</sub>'s are significantly different in chemical shifts and coupling fine structure from those for **7**, and are found at  $\delta$  3.47–3.28 (symm 8-line, 2H),  $\delta$  2.90 – 2.76 (overlapping quartets, 1H),  $\delta$  2.76–2.45 (unsymm, 6H),  $\delta$  2.41–2.34 (unsymm, 1H) and  $\delta$  1.43–1.27 (unsymm, 1H); the S–H resonance is obscured under these multiplets and could not be definitively identified from amongst the component peaks.

### Figure S5: <sup>1</sup>H-NMR spectra of **9** in CD<sub>3</sub>CN before and after protonation



Instantaneous changes were observed in the <sup>1</sup>H NMR spectrum of **9** upon protonation, viz. the immediate replacement of its arene Me resonance ( $\delta$  2.07) with a new Me resonance at  $\delta$  2.17 and a shift of  $\delta$ (NH) from 5.24 to 5.92. The new vinylic proton resonance possesses a very similar coupling pattern to that in **9**, but is shifted to  $\delta$  5.85 (10-line m  $\equiv$  tdd (*J* 17.2, 10.4, 6.4 Hz), 1H, SCH<sub>2</sub>CH<sub>2</sub>CH=) and 5.22 (quartet-like  $\equiv$  partially res. tdd (*J* = 18.1, ca. 2, 1.6 Hz), 1H, *CHH*=CHCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>S), 5.17 (quartet-like tdd, (*J* = 10.8, ca.2, 1.2 Hz), 1H, *CHH*=CHCH<sub>2</sub>CH<sub>2</sub>S); the multiplets belonging to the SCH<sub>2</sub>/HNCH<sub>2</sub>'s are significantly different in coupling patterns, being found as highly unsymmetrical sets in the range  $\delta$  2.81–2.59 (10H) and  $\delta$  2 57–2.31 (3H).

#### **Experimental Section**

**General procedures.** Standard procedures were as described in a previous paper.<sup>1</sup> The compound  $[(HMB)RuCl_2]_2^2$  and the ligand  $HN(CH_2CH_2SH)_2^3$  were prepared as reported in the literature. Other reagents were obtained commercially.

- Shin, R. Y. C.; Bennett, M. A.; Goh, L. Y.; Chen, W.; Hockless, D. C. R.; Leong, W. K.; Mashima, K.; Willis, A. C. *Inorg. Chem.* 2003, *42*, 96.
- Bennett, M. A.; Huang, T.-N.; Matheson, T. W.; Smith, A. K. Inorg. Synth. 1982, 21, 74.
- 3. Rima, G.; Satgé, J.; Fatome, M.; Laval, J. D.; Sentenac-Roumanou, H.; Lion, C.; Lazraq, M. Eur. J. Med. Chem. 1991, 26, 291.

**Reactions of 2 with haloalkanes.** *With dibromoalkanes.* Complex [(HMB)Ru{η<sup>3</sup>-S(CH<sub>2</sub>)<sub>2</sub>NH(CH<sub>2</sub>)<sub>2</sub>S(CH<sub>2</sub>)<sub>3</sub>](PF<sub>6</sub>)<sub>2</sub> (**4**) was similarly obtained as yellow crystalline plates (42 mg, 76% yield) from the reaction of **2** (30 mg, 0.075 mmol) with Br(CH<sub>2</sub>)<sub>3</sub>Br (75 µL, 0.74 mmol). <sup>1</sup>H NMR (δ, CD<sub>3</sub>CN): N*H*: 6.02 (br s, 1H); SC*H*<sub>2</sub> + HNC*H*<sub>2</sub>: 2.97–2.61 (28-line m, 12H), 2.41–2.27 (13-line m, 1H), 1.89–1.77 (12-line m, 1H); C<sub>6</sub>*Me*<sub>6</sub>: 2.18 (s, 18H). <sup>13</sup>C NMR (δ, CD<sub>3</sub>CN): *C*<sub>6</sub>Me<sub>6</sub>: 103.6; HNCH<sub>2</sub>: 54.4; SCH<sub>2</sub>: 36.1, 29.5, 24.6; C<sub>6</sub>Me<sub>6</sub>: 15.6. IR (v cm<sup>-1</sup>, KBr): 3291 m (N–H), 845 vs and 558 s (PF<sub>6</sub>). FAB<sup>+</sup> MS: *m/z* 586 [M – PF<sub>6</sub>]<sup>+</sup>, 440 [M – 2PF<sub>6</sub> – 1]<sup>+</sup>, 366 [M – 2PF<sub>6</sub> – S(CH<sub>2</sub>)<sub>2</sub>NH]<sup>+</sup>, 335 [M – 2PF<sub>6</sub> – S<sub>2</sub>(CH<sub>2</sub>)<sub>2</sub>NH + 1]<sup>+</sup>. FAB<sup>-</sup> MS: *m/z* 145. Anal. Found: C, 31.2; H, 4.5; N, 2.3; P, 7.9; S, 9.1. Calcd for C<sub>19</sub>H<sub>33</sub>F<sub>12</sub>NP<sub>2</sub>RuS<sub>2</sub>: C, 31.2; H, 4.6; N, 1.9; P, 8.5; S, 8.8.

Complex [(HMB)Ru{ $\eta^3$ -S(CH<sub>2</sub>)<sub>2</sub>NH(CH<sub>2</sub>)<sub>2</sub>S(CH<sub>2</sub>)<sub>4</sub>}](PF<sub>6</sub>)<sub>2</sub> (**5**) was also obtained as yellow crystalline plates (29 mg, 78% yield) from the reaction of **2** (20 mg, 0.050 mmol) with Br(CH<sub>2</sub>)<sub>4</sub>Br (40 µL, 0.33 mmol). <sup>1</sup>H NMR ( $\delta$ , CD<sub>3</sub>CN): NH: 5.99 (br s, 1H); SCH<sub>2</sub> + HNCH<sub>2</sub>: 3.31–3.24 (4-line m, 2H), 2.78 (m, 8H), 2.37–2.26 (5-line m, 2H), 2.05 (c.unres.m, 2H), 1.45 (c.unres.m, 2H); C<sub>6</sub>Me<sub>6</sub>: 2.16 (s, 18H). <sup>13</sup>C NMR ( $\delta$ , CD<sub>3</sub>CN): C<sub>6</sub>Me<sub>6</sub>: 103.1; HNCH<sub>2</sub>: 52.1; SCH<sub>2</sub>: 38.4, 33.3, 25.0; C<sub>6</sub>Me<sub>6</sub>: 15.6. IR (v cm<sup>-1</sup>, KBr): 3291 m (N–H), 845 vs and 558 s (PF<sub>6</sub>). FAB<sup>+</sup> MS: *m*/*z* 600 [M – PF<sub>6</sub>]<sup>+</sup>, 454 [M – 2PF<sub>6</sub> – 1]<sup>+</sup>, 366 [M – 2PF<sub>6</sub> – S(CH<sub>2</sub>)<sub>3</sub>NH]<sup>+</sup>. FAB<sup>-</sup> MS: *m*/*z* 145. Anal. Found: C, 31.8; H, 4.8; N, 2.7; P, 8.0; S, 8.9. Calcd for C<sub>20</sub>H<sub>35</sub>F<sub>12</sub>NP<sub>2</sub>RuS<sub>2</sub>: C, 32.3; H, 4.7; N, 1.9; P, 8.3; S, 8.6.

With iodomethane. Into a stirred solution of **2** (18 mg, 0.045 mmol) in MeOH (10 mL) was injected MeI (28  $\mu$ L, 0.45 mmol). The solution was stirred for 48 h, resulting in a gradual color change from red to yellow. Metathesis with NH<sub>4</sub>PF<sub>6</sub> (40 mg, 0.24 mmol) led to precipitation of the product as yellow solids together with NH<sub>4</sub>I. Filtration and subsequent workup yielded yellow crystalline solids of [(HMB)Ru{ $\eta^3$ -NH(CH<sub>2</sub>CH<sub>2</sub>SMe)<sub>2</sub>}](I.PF<sub>6</sub>) (**6**) (20 mg, 63% yield) from CH<sub>3</sub>NO<sub>2</sub>-ether after 24 h at -30 °C. <sup>1</sup>H NMR ( $\delta$ , CD<sub>3</sub>CN): NH: 6.51 (br s, 1H); SCH<sub>2</sub> + HNCH<sub>2</sub>: 2.92–2.71 (m, 6H), 2.65–2.57 (unres m, 2H); SCH<sub>3</sub>: 2.33 (s, 6H); C<sub>6</sub>Me<sub>6</sub>: 2.19 (s, 18H). <sup>13</sup>C NMR ( $\delta$ , CD<sub>3</sub>CN): C<sub>6</sub>Me<sub>6</sub>: 103.0; HNCH<sub>2</sub>: 52.9; SCH<sub>2</sub>: 38.1; SCH<sub>3</sub>: 21.2; C<sub>6</sub>Me<sub>6</sub>: 16.1. IR (v cm<sup>-1</sup>, KBr): 3307 w (N–H), 842 vs and 558 s (PF<sub>6</sub>). FAB<sup>+</sup> MS: *m*/*z* 574 [M – I]<sup>+</sup>, 556 [M – PF<sub>6</sub>]<sup>+</sup>, 428 [M – I – PF<sub>6</sub> – H]<sup>+</sup>, 414 [M – I – PF<sub>6</sub> – CH<sub>3</sub>]<sup>+</sup>. FAB<sup>-</sup> MS: *m*/*z* 145. Anal. Found: C, 30.6; H, 5.0; N, 2.0; S, 9.0. Calcd for C<sub>18</sub>H<sub>33</sub>F<sub>6</sub>INPRuS<sub>2</sub>: C, 30.9; H, 4.8; N, 2.0; S, 9.2.

#### Reactions of 2 with bromoalkenes.

With excess allyl bromide. Into a stirred solution of 2 (30 mg, 0.075 mmol) in MeOH (8 mL) was injected  $CH_2$ =CHCH<sub>2</sub>Br (34  $\mu$ L, 0.40 mmol). The solution gradually changed from red to yellow over a period of 12 h. Metathesis with  $NH_4PF_6$  (50 mg, 0.30 mmol) followed by the usual workup procedures gave a yellow oil (48 mg), which after trituration with THF (8 mL) to extract out a minor uncharacterizable yellow component, was found to possess a <sup>1</sup>H NMR of mainly  $[(HMB)Ru{\eta^3}$ spectrum indicating the presence  $NH((CH_2)_2SCH_2CH=CH_2)_2$  (Br.PF<sub>6</sub>) (8) (ca. 90% yield), together with trace amounts of two other arene-containing impurity complex which also carried a S-allylic substituent. This was very difficult to purify and crystallize. After several attempts some yellow crystalline plates of (8) (8 mg, 16% yield) were successfully obtained from a  $CH_3CN$ -ether solution after 3 days at -30 °C. <sup>1</sup>H NMR (δ, CD<sub>3</sub>CN): NH: 7.92 (br s, 1H); SCH<sub>2</sub>CH=: 6.03–5.90 (symm 14line m, 2H); =CHH<sub>trans</sub>: 5.50 (d, J = 16.9 Hz, 2H); =CHH<sub>cis</sub>: 5.42 (d, J = 10.1 Hz, 2H); SCH<sub>2</sub> + HNCH<sub>2</sub>: 3.40–3.33 (4-line m, 2H), 3.26–3.19 (4-line m, 2H), 2.93–2.83 (unres m, 2H), 2.77–2.63 (unres m, 6H); C<sub>6</sub>Me<sub>6</sub>: 2.24 (s, 18H). <sup>13</sup>C NMR (δ, CD<sub>3</sub>CN): CH=: 130.8; =CH<sub>2</sub>: 123.4; C<sub>6</sub>Me<sub>6</sub>: 103.3; HNCH<sub>2</sub>: 52.9; SCH<sub>2</sub>: 41.2, 35.0; C<sub>6</sub>Me<sub>6</sub>: 15.8. IR (v cm<sup>-1</sup>, KBr): 843 vs and 557 s (PF<sub>6</sub>). FAB<sup>+</sup> MS: m/z 626 [M – Br]<sup>+</sup>, 562 [M – PF<sub>6</sub>]<sup>+</sup>, 480 [M – Br – PF<sub>6</sub> – H]<sup>+</sup>, 440  $[M - Br - PF_6 - CH_2CH = CH_2]^+$ , 399  $[M - Br - PF_6 - (CH_2CH = CH_2)_2]^+$ . FAB<sup>-</sup> MS: m/z 145. Anal. Found: C, 37.4; H, 5.4; N, 2.2; S, 9.1. Calcd for C<sub>22</sub>H<sub>37</sub>BrF<sub>6</sub>NPRuS<sub>2</sub>: C, 37.5; H, 5.3; N, 2.0; S, 9.1.

With 4-bromobutene. Into a stirred solution of **2** (100 mg, 0.25 mmol) in MeOH (15 mL) was injected CH<sub>2</sub>=CH(CH<sub>2</sub>)<sub>2</sub>Br (38 µL, 0.37 mmol). The solution was stirred for 2 h and then evacuated to dryness to remove excess 4-bromobutene. The red residue was redissolved in MeOH and NH<sub>4</sub>PF<sub>6</sub> (200 mg, 1.22 mmol) added. After stirring for 30 min, the solution was evacuated to dryness and the product extracted with CH<sub>3</sub>CN (3 × 3 mL). The red extracts were passed through a disk of alumina (Act III, 1.5 cm) giving two red bands. The first band gave deep red crystals of [(HMB)Ru{ $\eta^3$ -S(CH<sub>2</sub>)<sub>2</sub>NH(CH<sub>2</sub>)<sub>2</sub>S(CH<sub>2</sub>)<sub>2</sub>CH=CH<sub>2</sub>}]PF<sub>6</sub> (**9**) (105 mg, 82% yield based on reacted **2**) upon recrystallization in ether for 1 day at -30 °C. The second fraction gave red crystals of the starting substrate **2** (14 mg, 0.035 mmol, 14% recovery) upon recrystallization with ether. For **9**: <sup>1</sup>H NMR ( $\delta$ , CD<sub>3</sub>CN): S(CH<sub>2</sub>)<sub>2</sub>CH=: 5.83 (10-line m = tdd (*J* = 16.9, 10.4, 6.4 Hz), 1H); N*H*: 5.24 (s br, 1H); CH*H*<sub>trans</sub>=CH(CH<sub>2</sub>)<sub>2</sub>S: 5.07

(quartet-like tdd, (J = 10.8, ca.2, 1.2 Hz), 1H); SC $H_2$  + HNC $H_2$ : 3.09–3.00 (symm 6-line m, 1H), 2.95–2.88 (symm 7-line m, 1H), 2.73–2.61 (unsymm 10-line m, 1H), 2.59–2.42 (unsymm 12-line m, 6H), 2.29–2.16 (unsymm 10-line m, 3H); C<sub>6</sub> $Me_6$ : 2.07 (s, 18H). <sup>13</sup>C NMR ( $\delta$ , CD<sub>3</sub>CN): CH=: 136.5; =CH<sub>2</sub>: 117.0; C<sub>6</sub>Me<sub>6</sub>: 97.9; HNCH<sub>2</sub>: 60.5, 50.4; SCH<sub>2</sub> and SCH<sub>2</sub>CH<sub>2</sub>: 38.2, 32.3, 31.7, 26.7; C<sub>6</sub> $Me_6$ : 15.4. IR (v cm<sup>-1</sup>, KBr): 3292 m (N–H), 841 vs and 558 s (PF<sub>6</sub>). FAB<sup>+</sup> MS: m/z 454 [M – PF<sub>6</sub>]<sup>+</sup>, 399 [M – PF<sub>6</sub> – (CH<sub>2</sub>)<sub>2</sub>CH=CH<sub>2</sub>]<sup>+</sup>, 352 [M – PF<sub>6</sub> – (CH<sub>2</sub>)<sub>2</sub>CH=CH<sub>2</sub> – SCH<sub>2</sub> – H]<sup>+</sup>. FAB<sup>-</sup> MS: m/z 145. Anal. Found: C, 40.3; H, 5.9; N, 2.8; S, 11.0. Calcd for C<sub>20</sub>H<sub>34</sub>F<sub>6</sub>NPRuS<sub>2</sub>: C, 40.1; H, 5.7; N, 2.3; S, 10.7.

#### **Reactions with base.**

Reaction of 3 with one mol equivalent of KOH. A solution of 3 (25 mg, 0.035 mmol) in CH<sub>3</sub>CN (5 mL) was stirred with solid KOH (2 mg, 0.036 mmol) for 1 h resulting in a color change from pale yellow to reddish orange. The product suspension was filtered through a disk of Celite and the filtrate concentrated to ca. 3 mL and ether added. Yellow crystalline plates of 3 (5 mg, 20%) were recovered on cooling to -30 °C for 12 h. Addition of more  $[(HMB)Ru\{n^3$ ether to the red mother liquor gave red crystals of  $S(CH_2)_2NH(CH_2)_2SCH=CH_2$ ]PF<sub>6</sub> (10) (10 mg, 63% yield based on reacted 3) after 2 days at -30 °C.

*Reaction of* **3** *with excess KOH or KOBu*<sup>*t*</sup>. Into a solution of **3** (16 mg, 0.022 mmol) in CH<sub>3</sub>CN (3 mL) was added KOH (5 mg, 0.089 mmol) (or KOBu<sup>*t*</sup> 8 mg, 0.036 mmol) and the solution was stirred for 3 h or 1 h (for KOBu<sup>*t*</sup>), resulting in a color change from pale yellow through reddish orange to orange. The solution was filtered through a disk of Celite (1.5 cm), and the filtrate concentrated to ca. 2 mL. Addition of ether gave orange needle-shaped crystals of [Ru{ $\eta^6:\eta^3-C_6Me_5(CH_2)_3S(CH_2)_2NH(CH_2)_2S$ }]PF<sub>6</sub> (**11**) (12 mg, 99% yield) after 2 days at -30 °C. <sup>1</sup>H NMR ( $\delta$ , CD<sub>2</sub>Cl<sub>2</sub>): N*H*: 5.23 (br s, 1H); SC*H*<sub>2</sub> + HNC*H*<sub>2</sub>: 3.01–2.94 (12-line m, 1H), 2.85–2.72 (12-line m, 2H), 2.70–2.59 (unsymm m, 6H), 2.57–2.46 (7-line m, 1H), 2.44–2.36 (8-line m, 1H), 2.31–2.23 (13-line m, 1H), 2.12–2.07 (m, partly obscured by the C<sub>6</sub>*Me*<sub>5</sub> peak, 1H); 2.04–1.97 (m, also partly obscured by the C<sub>6</sub>*Me*<sub>5</sub>: 100.1 (overlapping peaks), 97.4, 96.7, 96.3, 87.5; HNCH<sub>2</sub>: 63.5, 54.7; SCH<sub>2</sub>: 38.7, 31.8, 27.9, 27.4, 24.3; C<sub>6</sub>*Me*<sub>5</sub>: 16.9, 16.0 and 15.6 (overlapping s), 14.8. IR v (cm<sup>-1</sup>, KBr): 3309 m (N–H), 836 vvs and 558 s (PF<sub>6</sub>). FAB<sup>+</sup> MS: *m/z* 426 [M – PF<sub>6</sub>]<sup>+</sup>, 379 [M – PF<sub>6</sub> – SNH]<sup>+</sup>, 323 [M – PF<sub>6</sub> –

S(CH<sub>2</sub>)<sub>4</sub>NH]<sup>+</sup>. FAB<sup>-</sup> MS: *m*/*z* 145. Anal. Found: C, 37.6; H, 5.2; N, 2.5; S, 11.2. Calcd for C<sub>18</sub>H<sub>30</sub>F<sub>6</sub>NPRuS<sub>2</sub>: C, 37.9; H, 5.3; N, 2.5; S, 11.2.

Similar treatment of **4** and **5** with KOH in  $CD_3CN$  caused a color change to orange, accompanied by disappearance of the NH proton resonance in the <sup>1</sup>H NMR spectrum and significant decrease in resolution of all the peaks which are also slightly upfield-shifted. An attempt to isolate the product from the reaction of **4** led to recovery of the starting complex.

*Reaction of* **7** *with KOH.* Into a stirred solution of **7** (21 mg, 0.036 mmol) in CH<sub>3</sub>CN (5 mL) was added KOH (2 mg, 0.036 mmol). The solution immediately changed from red to dark blue and gradually to orange over 15 h. A <sup>1</sup>H NMR spectrum of this intermediate dark blue species showed broad peaks and an isolation attempt proved futile as the species was obviously undergoing further transformation. The final orange solution was filtered and the filtrate was passed through a disk of alumina (1.5 cm, ACT III), and eluted out with CH<sub>3</sub>CN. From the orange eluate was obtained an oil residue. Recrystallization in THF-ether gave orange crystalline solids of [Ru{ $\eta^6:\eta^3-C_6Me_5CH_2CH(Me)CH_2S(CH_2)_2NH(CH_2)_2S$ }]PF<sub>6</sub> (**12**) (16 mg, 76 %) after 1 day at –30 °C.

**Protonation with HPF**<sub>6</sub>: Into a CD<sub>3</sub>CN (0.5 mL) solution of **7** (5 mg, 0.0086 mmol) in an NMR tube, cooled to 0°C, was injected 1.5 mol equivalents of dilute HPF<sub>6</sub> (200  $\mu$ L, 0.068 M prepared by diluting 60% HPF<sub>6</sub> in CD<sub>3</sub>CN). An immediate color change from reddish orange to pale orange was observed. The <sup>1</sup>H NMR spectra of the solution were monitored at intervals (10, 60, 180 min, daily up to 4 days). Similar protonation studies were done on complexes **9** (5 mg and 150  $\mu$ L of the above diluted HPF<sub>6</sub>) and **10** (4 mg and 150  $\mu$ L of the above diluted HPF<sub>6</sub>).

Attempts were made to isolate the protonated products of **7** and **9**. However, upon workup by concentration and addition of hexane or ether, the products readily reverted to the original complexes.

Crystal Structure Determinations. The crystals were mounted on glass fibers. X-ray data were collected on a Bruker AXS SMART APEX CCD diffractometer, using Mo-K<sub>a</sub> radiation ( $\lambda = 0.71073$  Å) at 223 K. The program SMART<sup>4</sup> was used for collecting the intensity data, indexing and determination of lattice parameters, SAINT<sup>4</sup> was used for integration of the intensity of reflections and scaling, SADABS<sup>5</sup> was used for absorption correction and SHELXTL<sup>6</sup> for space group and structure determination and least-squares refinements against  $F^2$ . The structures were solved by direct methods to locate the heavy atoms, followed by difference maps for the light, non-hydrogen atoms. The hydrogens were placed in calculated positions. Fluorine atoms of the  $PF_6^-$  anions of 3, 5, 10 and 11 were disordered. The ethylene carbons (C6 and C7) in 7, the propyl group and the two bridging - $C_2H_4$ - groups in 9 were disordered. In one of the cations of 12 the carbon C5 is disordered into two positions of 70% and 30% occupancy. There is one nitromethane molecule present per asymmetric unit, as space filling solvent in complexes 3, 6 and 11, and two such solvent molecules in 5. Similarly there is one acetonitrile molecule per asymmetric unit in complexes 2 and 12. The quality of X-ray data for complex 8 was bad (high Rint of 0.1649), due to the poor quality of the crystal, resulting from rapid loss of lattice acetonitrile from which it was crystallized under diffusion of ether. Hence data collection was difficult and the set of data used was the best that was obtained. The final R1 and wR2 values were relatively high. However, despite the poor R values, the structure of the cation could be confirmed. After the atoms of the cation and anion were located, there were residual peaks in some of the voids. These were fitted with acetonitrile molecules, one of which was given a one-third occupancy (resulting in 1.83 CH<sub>3</sub>CN in the formula). Crystal data collection and processing parameters are given in Table S1.

- 4. SMART & SAINT Software Reference manuals, version 5.0, Bruker AXS Inc., Madison, WI, **1998**.
- Sheldrick, G.M. SADABS software for empirical absorption correction; University of Göttingen: Germany, 2000.
- 6. SHELXTL Reference Manual, version 5.1, Bruker AXS Inc., Madison, WI, **1998**.