SUPPLEMENTARY INFORMATION AVAILABLE

Syntheses and Single Crystal X-Ray Diffraction Studies of Acyclic and Macrocyclic Azadithiolate (NS2) Complexes of (Arene)ruthenium(II). Thiolate-alkylation, Base-Promoted Hydroalkylation and Protonation Reactions.

Richard Y. C. Shin, Geok Kheng Tan, Lip Lin Koh and Lai Yoong Goh*
Department of Chemistry, National University of Singapore, Kent Ridge, Singapore 119260
E-mail: chmgohly@nus.edu.sg. Fax: (+65) 67791691
Table S1. Data Collection and Processing Parameters

complexes	(2)	(3)	(5)	(6)	(7)
formula	$\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{RuS}_{2}$	$\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{~F}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{RuS}_{2}$	$\mathrm{C}_{22} \mathrm{H}_{41} \mathrm{~F}_{12} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{RuS}_{2}$	$\mathrm{C}_{19} \mathrm{H}_{36} \mathrm{~F}_{6} \mathrm{IN}_{2} \mathrm{O}_{2} \mathrm{PRuS}_{2}$	$\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{~F}_{6} \mathrm{NPRuS}_{2}$
M_{r}	439.63	777.61	866.71	761.56	584.62
temp, K	223(2)	223(2)	223(2)	223(2)	293(2)
cryst color and habit	red, cuboid	yellow, needle	yellow, orthorhombic	yellow, orthorhombic	red, orthorhombic
cryst size, mm^{3}	$0.30 \times 0.26 \times 0.12$	$0.14 \times 0.12 \times 0.10$	$0.50 \times 0.40 \times 0.24$	$0.38 \times 0.10 \times 0.04$	$0.20 \times 0.18 \times 0.08$
cryst system	Orthorhombic	Orthorhombic	Triclinic	Orthorhombic	Orthorhombic
space group	P2(1)2(1)2(1)	Pna2(1)	P-1	Pb ca	Pbca
a, \AA	9.7421 (7)	17.7539(11)	10.1429(5)	16.9370(10)	10.0476(5)
b, ̊	11.9068(8)	11.8517(8)	10.6403(5)	16.8727(10)	18.5151(9)
c, \AA	16.4702(11)	13.7702(9)	16.5359(8)	19.7224(12)	24.9301(12)
α, deg	90	90	108.2100(10)	90	90
β, deg	90	90	98.1320(10)	90	90
γ, deg	90	90	93.9630(10)	90	90
V, \AA^{3}	1910.5(2)	2897.4(3)	1665.96(14)	5636.1(6)	4637.8(4)
Z	4	4	2	8	8
density, $\mathrm{g} \mathrm{cm}^{-3}$	1.528	1.783	1.728	1.795	1.675
abs. coeff, mm^{-1}	1.040	0.895	0.793	1.916	0.980
$F(000)$	912	1568	880	3024	2384
θ range for data collection	2.11 to 30.05	2.07 to 27.49	2.03 to 27.50	1.99 to 25.00	1.63 to 27.50
index ranges	$\begin{aligned} & -13<=\mathrm{h}<=12, \\ & -16<=\mathrm{k}<=16, \\ & -19<=\mathrm{l}<=22 \end{aligned}$	$\begin{aligned} & -22<=\mathrm{h}<=23, \\ & -15<=\mathrm{k}<=15, \\ & -17<=\mathrm{l}<=12 \end{aligned}$	$\begin{aligned} & -13<=\mathrm{h}<=13, \\ & -13<=\mathrm{k}<=13, \\ & -21<=\mathrm{l}<=21 \end{aligned}$	$\begin{aligned} & -20<=\mathrm{h}<=15, \\ & -19<=\mathrm{k}<=20, \\ & -23<=1<=23 \end{aligned}$	$\begin{aligned} & -13<=\mathrm{h}<=9, \\ & -13<=\mathrm{k}<=23, \\ & -32<=1<=29 \end{aligned}$
no. of reflns collected	15629	19349	21453	30654	31086
indep reflns	5402	5086	7632	4948	5321
max. and min. transmission	$\begin{aligned} & 0.863713 \\ & \text { and } 0.665252 \end{aligned}$	$\begin{aligned} & 0.9158 \\ & \text { and } 0.8849 \end{aligned}$	$\begin{aligned} & 0.8324 \\ & \text { and } 0.6924 \end{aligned}$	$\begin{aligned} & 0.9273 \\ & \text { and } 0.5297 \end{aligned}$	$\begin{aligned} & 0.9257 \\ & \text { and } 0.8281 \end{aligned}$
no. of data/restraints/params	5402 / 0 / 219	5086 / 653 / 354	7632 / 694 / 604	4948 / 18 / 320	5321 / 0 / 405
final R indices $[I>2 \sigma(I)]^{\text {a,b }}$	$\begin{aligned} & \mathrm{R} 1=0.0377, \\ & \mathrm{wR} 2=0.0845 \end{aligned}$	$\begin{aligned} & \mathrm{R} 1=0.0475 \\ & \mathrm{wR} 2=0.1294 \end{aligned}$	$\begin{aligned} & \mathrm{R} 1=0.0322, \\ & \mathrm{wR} 2=0.0885 \end{aligned}$	$\begin{aligned} & \mathrm{R} 1=0.0583 \\ & \mathrm{wR} 2=0.1151 \end{aligned}$	$\begin{aligned} & \mathrm{R} 1=0.0493 \\ & \mathrm{wR} 2=0.0992 \end{aligned}$
R indices (all data)	$\begin{aligned} & \mathrm{R} 1=0.0408 \\ & \mathrm{wR} 2=0.0859 \end{aligned}$	$\begin{aligned} & R 1=0.0515, \\ & w R 2=0.1330 \end{aligned}$	$\begin{aligned} & \mathrm{R} 1=0.0337, \\ & \mathrm{wR} 2=0.0897 \end{aligned}$	$\begin{aligned} & \mathrm{R} 1=0.0774, \\ & \mathrm{wR} 2=0.1221 \end{aligned}$	$\begin{aligned} & \mathrm{R} 1=0.0611, \\ & \mathrm{wR} 2=0.1033 \end{aligned}$
goodness-of-fit on F^{2} c	1.080	1.038	1.035	1.138	1.197
large diff peak and hole, e \AA^{-3}	0.894 and -0.688	0.838 and -0.548	0.629 and -0.592	0.809 and -1.230	1.037 and -1.098

[^0]Table S1 (contd). Data Collection and Processing Parameters

complexes	(8)	(9)	(10)	(11)	(12)

$\mathrm{C}_{22} \mathrm{H}_{37} \mathrm{BrF}_{6} \mathrm{~N}_{1} \mathrm{PRuS}_{2}\left\{1.83\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right\} \quad \mathrm{C}_{20} \mathrm{H}_{34} \mathrm{~F}_{6} \mathrm{NPRuS}_{2} \quad \mathrm{C}_{18} \mathrm{H}_{30} \mathrm{~F}_{6} \mathrm{NPRuS}_{2} \quad \mathrm{C}_{18.50} \mathrm{H}_{31.50} \mathrm{~F}_{6} \mathrm{~N}_{1.50} \mathrm{OPRuS}_{2} \quad \mathrm{C}_{20} \mathrm{H}_{33.50} \mathrm{~F}_{6} \mathrm{~N}_{1.50} \mathrm{PRuS}_{2}$
$\begin{array}{lllll}\mathrm{C}_{22} \mathrm{H}_{37} \mathrm{BrF}_{6} \mathrm{~N}_{1} \mathrm{PRuS}_{2}\left\{1.83\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right\} & \mathrm{C}_{20} \mathrm{H}_{34} \mathrm{~F}_{6} \mathrm{NPRuS}_{2} & \mathrm{C}_{18} \mathrm{H}_{30} \mathrm{~F}_{6} \mathrm{NPRuS}_{2} & \mathrm{C}_{18.50} \mathrm{H}_{31.50} \mathrm{~F}_{6} \mathrm{~N}_{1.50} \mathrm{OPRuS}_{2} & \mathrm{C}_{20} \mathrm{H}_{33.50} \mathrm{~F}_{6} \mathrm{~N}_{1.50} \mathrm{PRuS}_{2} \\ 779.85 & 598.64 & 570.59 & 601.11 & 605.14\end{array}$
223(2) 223(2)
orange, orthorhombic $0.30 \times 0.18 \times 0.14$
Monoclinic
$\mathrm{P} 2(1) / \mathrm{c}$ 21.1216(11)
(9) L09S'ZI (0I)0ZE8' 10 I 90
$4773.4(4)$
8
1.684
0.956
1.13 to 25.00 $-21<=\mathrm{h}<=21$,
$-25<=\mathrm{k}<=25$,
$-14<=1<=14$ 27372
8382
0.8778 and 0.7625 $8382 / 2 / 599$
$R 1=0.0558$, $68 \mathrm{IL} 0=$ = y^{N} 승 $\mathrm{wR} 2=0.1309$ 1.092
0.919
0.919 and -653

Table S2. IR spectral data ${ }^{\text {a }}$

$\underline{\text { Complex }} \underline{v\left(\mathrm{~cm}^{-1}\right)}$

2

3

4

5

6

7

8

9

10
$3294 \mathrm{~m}(\mathrm{~N}-\mathrm{H}), 3232 \mathrm{~m}, 3059 \mathrm{~m}, 2964 \mathrm{~m}, 2934 \mathrm{~m}, 2879 \mathrm{~m}, 1459 \mathrm{~s}, 1419$ s, $1396 \mathrm{~m}, 1288 \mathrm{~m}, 1255 \mathrm{~m}, 1222 \mathrm{w}, 1124 \mathrm{~m}, 1073 \mathrm{~m}, 1014 \mathrm{~m}, 975 \mathrm{~m}$, 847 vs $\left(\mathrm{PF}_{6}\right), 741 \mathrm{~m}, 558 \mathrm{~s}\left(\mathrm{PF}_{6}\right)$.
$3291 \mathrm{~m}(\mathrm{~N}-\mathrm{H}), 2988$ broad m, $1458 \mathrm{~m}, 1420 \mathrm{~m}, 1395 \mathrm{~m}, 1290 \mathrm{w}, 1214 \mathrm{w}$, $1105 \mathrm{w}, 1071 \mathrm{~m}, 1027 \mathrm{w}, 970 \mathrm{w}, 845 \mathrm{vs}\left(\mathrm{PF}_{6}\right), 740 \mathrm{w}, 653 \mathrm{w}, 558 \mathrm{~s}\left(\mathrm{PF}_{6}\right)$.
$3291 \mathrm{~m}(\mathrm{~N}-\mathrm{H}), 2935 \mathrm{w}, 2875 \mathrm{w}, 1449 \mathrm{~m}, 1416 \mathrm{~m}, 1393 \mathrm{~m}, 1290 \mathrm{~m}, 1253$ w, 1229 w, 1209 w, 1145 w, 1108 w, $1070 \mathrm{~m}, 1013 \mathrm{~m}, 965 \mathrm{~m}, 845 \mathrm{vs}$ (PF_{6}), $740 \mathrm{~m}, 656 \mathrm{w}, 558 \mathrm{~s}\left(\mathrm{PF}_{6}\right)$.

3655 m, 3577 m, 3307 w (N-H), 3096 m, 2995 w, 2923 w, 1452 m, 1396 $\mathrm{m}, 1321 \mathrm{w}, 1291 \mathrm{w}, 1223 \mathrm{w}, 1116 \mathrm{w}, 1073 \mathrm{~m}, 1026 \mathrm{~m}, 995 \mathrm{~m}, 958 \mathrm{~m}, 842$ vs (PF_{6}), $740 \mathrm{w}, 558 \mathrm{~s}\left(\mathrm{PF}_{6}\right)$.
$3291 \mathrm{~m}(\mathrm{~N}-\mathrm{H}), 3084 \mathrm{w}, 2979 \mathrm{w}, 2919 \mathrm{w}, 2868 \mathrm{w}, 1449 \mathrm{~m}, 1412 \mathrm{~m}, 1389$ m, $1292 \mathrm{w}, 1242 \mathrm{w}, 1220 \mathrm{w}, 1098 \mathrm{w}, 1069 \mathrm{w}, 1008 \mathrm{w}, 968 \mathrm{w}, 920 \mathrm{w}, 845$ vs $\left(\mathrm{PF}_{6}\right), 739 \mathrm{w}, 669 \mathrm{w}, 558 \mathrm{~s}\left(\mathrm{PF}_{6}\right)$.

3036 w, 2934 w, 2878 w, 2800 w, 1452 w, 1393 w, 1296 vw, 1125 w, 1070 w, 1018 w, 960 w, 930 w, 843 s ($\left.\mathrm{PF}_{6}\right)$, 739 w, 557 m ($\left.\mathrm{PF}_{6}\right)$.

3292 m (N-H), 2973 w, $2929 \mathrm{~m}, 2869 \mathrm{w}, 1447 \mathrm{~m}, 1390 \mathrm{~m}, 1290 \mathrm{w}, 1220$ w, $1138 \mathrm{w}, 1069 \mathrm{~m}, 1013 \mathrm{~m}, 967 \mathrm{~m}, 926 \mathrm{~m}, 841 \mathrm{vs}\left(\mathrm{PF}_{6}\right), 739 \mathrm{~m}, 558 \mathrm{~s}$ $\left(\mathrm{PF}_{6}\right)$.
$3308 \mathrm{~m}(\mathrm{~N}-\mathrm{H}), 2923 \mathrm{w}, 2869 \mathrm{w}, 1450 \mathrm{~m}, 1389 \mathrm{~m}, 1298 \mathrm{w}, 1260 \mathrm{w}, 1212$ w, $1068 \mathrm{~m}, 1021 \mathrm{~m}, 966 \mathrm{~m}, 840 \mathrm{vs}\left(\mathrm{PF}_{6}\right), 774 \mathrm{w}, 740 \mathrm{w}, 609 \mathrm{w}, 558 \mathrm{~s}$ (PF_{6}).
$3309 \mathrm{~m}(\mathrm{~N}-\mathrm{H}), 2952 \mathrm{msh}, 2937 \mathrm{~m}, 2891 \mathrm{wsh}, 1448 \mathrm{~m}, 1388 \mathrm{~m}, 1329 \mathrm{w}$, $1301 \mathrm{w}, 1244 \mathrm{w}, 1216 \mathrm{w}, 1093 \mathrm{w}, 1055 \mathrm{~m}, 1043 \mathrm{~m}, 978 \mathrm{w}, 914 \mathrm{msh}, 836$ vvs $\left(\mathrm{PF}_{6}\right), 765 \mathrm{w}, 740 \mathrm{w}, 681 \mathrm{w}, 558 \mathrm{~s}\left(\mathrm{PF}_{6}\right)$. $1248 \mathrm{w}, 1212 \mathrm{w}, 1140 \mathrm{w}, 1069 \mathrm{w}, 1015 \mathrm{w}, 978 \mathrm{w}, 842 \mathrm{vs}\left(\mathrm{PF}_{6}\right), 763 \mathrm{w}$, $675 \mathrm{w}, 558 \mathrm{~s}\left(\mathrm{PF}_{6}\right)$.
${ }^{a} \mathrm{KBr}$ pellet

Table S3. Selected Bond Lengths ((\AA) and Angles (deg) of complexes

complex	$\mathbf{3}$	$\mathbf{A}^{\#}$	$\mathbf{5}$	$\mathbf{B}^{\# \#}$
$\mathrm{Ru}(1)-\mathrm{S}(1)$	$2.327(2)$	$2.323(2)$	$2.3401(6)$	$2.3341(13)$
$\mathrm{Ru}(1)-\mathrm{S}(2)$	$2.3175(16)$	$2.320(2)$	$2.3320(6)$	$2.3151(13)$
$\mathrm{Ru}(1)-\mathrm{N}(1)$	$2.153(6)$	$2.329(2)$	$2.158(2)$	$2.3410(13)$
$\mathrm{S}(1)-\mathrm{Ru}(1)-\mathrm{S}(2)$	$87.21(7)$	$87.28(9)$	$99.08(2)$	$98.47(5)$
$\mathrm{S}(1)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$82.9(2)$	$87.05(9)$	$82.77(6)$	$86.89(5)$
$\mathrm{S}(2)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$83.62(18)$	$86.75(9)$	$83.72(6)$	$85.45(5)$

${ }^{\#} \mathbf{A}=9 \mathrm{~S} 3$ analogue of $\mathbf{3}$, i.e. $[(\mathrm{HMB}) \mathrm{Ru}(9 \mathrm{~S} 3)]^{2+} .{ }^{\mathrm{Im}} \mathbf{B}=11 \mathrm{~S} 3$ analogue of $\mathbf{5} .{ }^{1}$

Table S4. Selected Bond Lengths (\AA) and Angles (deg) of complexes

complex	$\mathbf{1}^{1}$	$\mathbf{2}$	$\mathbf{6}$	$\mathbf{1 1}$		$\mathbf{1 2}$	$\mathbf{b}^{\text {\# }}$
				$\mathbf{a}^{\text {\# }}$	$\mathbf{b}^{\text {\# }}$	$\mathbf{a}^{\text {\# }}$	
$\operatorname{Ru}(1)-\mathrm{S}(1)$	$2.3807(10)$	$2.3786(9)$	$2.3480(17)$	$2.385(2)$	$2.387(2)$	$2.3817(15)$	$2.3880(15)$
$\operatorname{Ru}(1)-\mathrm{S}(2)$	$2.3851(10)$	$2.3844(9)$	$2.3394(19)$	$2.343(2)$	$2.333(2)$	$2.3270(16)$	$2.3303(16)$
$\operatorname{Ru}(1)-\mathrm{N}(1)$	$2.3396(10)$	$2.161(3)$	$2.147(6)$	$2.160(7)$	$2.151(7)$	$2.141(5)$	$2.148(4)$
$\mathrm{S}(2)-\mathrm{C}(5)$	-	-	-	$1.833(11)$	$1.803(9)$	$1.873(8)$	$1.826(7)$
$\mathrm{C}(5)-\mathrm{C}(6)$	-	-	-	$1.478(15)$	$1.525(13)$	$1.489(10)$	$1.490(9)$
$\mathrm{C}(6)-\mathrm{C}(13)$	-	-	-	$1.573(13)$	$1.544(12)$	-	-
$\mathrm{C}(13)-\mathrm{C}(7)$	-	-	-	$1.522(12)$	$1.517(11)$	-	-
$\mathrm{C}(6)-\mathrm{C}(14)$	-	-	-	-	-	$1.513(9)$	$1.546(8)$
$\mathrm{C}(14)-\mathrm{C}(8)$	-	-	-	-	-	$1.523(8)$	$1.513(8)$
$\mathrm{S}(1)-\mathrm{Ru}(1)-\mathrm{S}(2)$	$92.18(4)$	$89.87(4)$	$102.93(6)$	$84.39(10)$	$85.00(8)$	$84.26(6)$	$83.89(6)$
$\mathrm{S}(1)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$85.18(4)$	$82.11(9)$	$82.85(18)$	$82.6(2)$	$82.1(2)$	$82.85(16)$	$83.26(13)$
$\mathrm{S}(2)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$85.41(4)$	$83.55(9)$	$82.67(18)$	$84.1(2)$	$84.1(2)$	$83.84(16)$	$84.06(14)$

${ }^{\#} \mathbf{a}$ and \mathbf{b} are two independent molecules in the unit cell.

Table S5. Selected Bond Lengths (\AA) and Angles (deg) of complexes

complex	10	7	8	9	$\mathrm{C}^{\text {\# }}$
$\mathrm{Ru}(1)-\mathrm{S}(1)$	2.3708(7)	2.3809(9)	2.343(6)	2.3777(8)	2.374(2)
$\mathrm{Ru}(1)-\mathrm{S}(2)$	2.3500 (7)	$2.3303(10)$	$2.353(5)$	2.3345(8)	2.346(2)
$\mathrm{Ru}(1)-\mathrm{N}(1)$	2.154(2)	2.145(3)	2.174(15)	$2.156(3)$	2.320(2)
$\mathrm{S}(1)-\mathrm{C}(1)$	1.825(3)	1.819(5)	1.80(2)	1.843(4)	1.86(2)
$\mathrm{S}(1)-\mathrm{C}(5)$	-	-	1.862(19)	-	-
$\mathrm{S}(2)-\mathrm{C}(3)$	-	-	1.82(2)	-	-
S(2)-C(4)	-	1.805(5)	-	1.822(5)	-
$\mathrm{S}(2)-\mathrm{C}(5)$	1.756(4)	1.818(5)	-	1.828(4)	1.77(1)
$\mathrm{S}(2)-\mathrm{C}(8)$	-	-	1.829(19)	-	-
$\mathrm{C}(5)-\mathrm{C}(6)$	1.304(6)	1.461(9)/1.578(19)	1.49(3)	1.507(6)	1.25(1)
$\mathrm{C}(6)-\mathrm{C}(7)$	-	1.270(15)	1.26(4)	1.499(7)	-
$\mathrm{C}(7)-\mathrm{C}(8)$	-	-	-	1.296(8)/1.25(2)	-
$\mathrm{C}(8)-\mathrm{C}(9)$	-	-	1.45(3)	-	-
$\mathrm{C}(9)-\mathrm{C}(10)$	-	-	1.31(4)	-	-
$\mathrm{S}(1)-\mathrm{Ru}(1)-\mathrm{S}(2)$	91.04(3)	95.27(4)	104.39(19)	94.10(3)	90.04(7)
$\mathrm{S}(1)-\mathrm{Ru}(1)-\mathrm{N}(1)$	81.40(7)	80.27(9)	84.4(5)	82.23(8)	85.17(7)
$\mathrm{S}(2)-\mathrm{Ru}(1)-\mathrm{N}(1)$	82.44(7)	83.98(9)	82.0(5)	82.98(8)	85.93(7)
$\mathrm{Ru}(1)-\mathrm{S}(2)-\mathrm{C}(5)$	109.86(15)	115.81(19)	$121.4(8)^{\text {\#\# }}$	116.06(14)	112.3(4)
$\mathrm{Ru}(1)-\mathrm{S}(1)-\mathrm{C}(1)$	101.26(11)	101.94(15)	98.7(8)	94.70(15)	103.2(6)
$\mathrm{Ru}(1)-\mathrm{S}(1)-\mathrm{C}(5)$	-	-	119.2(8)	-	-
$\mathrm{Ru}(1)-\mathrm{S}(2)-\mathrm{C}(3)$	-	-	102.7(7)	-	-
$\mathrm{Ru}(1)-\mathrm{S}(2)-\mathrm{C}(4)$	98.70(11)	98.18(16)	-	102.56(16)	104.3(3)
$\mathrm{Ru}(1)-\mathrm{S}(2)-\mathrm{C}(8)$	-	-	121.4(8)	-	-

Figure S1. ORTEP plots for the molecular structures of (a) 2 and (b) 3 dication. Thermal ellipsoids are drawn to 50% probability level. Hydrogen atoms are omitted for clarity.

Figure S2. ORTEP plots for the molecular structures of (a) dicationic bis(SMe) complex 6, and monocationic (b) S-allyl complex 7 and (c) S-vinyl complex 10. Thermal ellipsoids are drawn to 50% probability level. Hydrogen atoms are omitted for clarity.
(a)

(b)

(c)

Figure S3: ${ }^{1} \mathrm{H}$ NMR spectra of 10 in $\mathrm{CD}_{3} \mathrm{CN}$ before and after protonation (a) vinylic region and (b) "aliphatic
(b) " aliphatic region"

Figure S4: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $\mathbf{7}$ in $\mathrm{CD}_{3} \mathrm{CN}$ before and after protonation

Protonation of 7 initiated an immediate disappearance of its arene Me resonance (δ 2.07), which was replaced by a new Me resonance at $\delta 2.12$, a slight shift in resonances assigned to the vinylic protons, i.e. the 14 -line multiplet for $\mathrm{S} \ldots \mathrm{CH}=$ to $\delta 5.90-5.76$, and the 4-line mutiplet to $\delta 5.39-5.32$ (unres dd \equiv apparent d, $J=11.4 \mathrm{~Hz},=\mathrm{CH}_{2}$), $\delta 5.33$ (unres dd \equiv apparent d, $J=4.1 \mathrm{~Hz},=\mathrm{CH}_{2}$); multiplets for $\mathrm{SCH}_{2} / \mathrm{HNCH}_{2}$'s are significantly different in chemical shifts and coupling fine structure from those for 7 , and are found at $\delta 3.47-3.28$ (symm 8-line, 2 H), $\delta 2.90-2.76$ (overlapping quartets, 1 H), $\delta 2.76-2.45$ (unsymm, 6 H), δ 2.41-2.34 (unsymm, 1 H) and $\delta 1.43-1.27$ (unsymm, 1 H); the $\mathrm{S}-\mathrm{H}$ resonance is obscured under these multiplets and could not be definitively identified from amongst the component peaks.

Figure S5: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $\mathbf{9}$ in $\mathrm{CD}_{3} \mathrm{CN}$ before and after protonation

Instantaneous changes were observed in the ${ }^{1} \mathrm{H}$ NMR spectrum of 9 upon protonation, viz. the immediate replacement of its arene Me resonance ($\delta 2.07$) with a new Me resonance at $\delta 2.17$ and a shift of $\delta(\mathrm{NH})$ from 5.24 to 5.92 . The new vinylic proton resonance possesses a very similar coupling pattern to that in $\mathbf{9}$, but is shifted to $\delta 5.85$ (10 -line $\mathrm{m} \equiv \operatorname{tdd}(J 17.2$, $10.4,6.4 \mathrm{~Hz}$), $1 \mathrm{H}, \mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{CH}=$) and 5.22 (quartet-like \equiv partially res. tdd ($J=18.1$, ca. 2 , 1.6 Hz), $1 \mathrm{H}, \mathrm{CHH}=\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{~S}$), 5.17 (quartet-like tdd, $(J=10.8$, ca. $2,1.2 \mathrm{~Hz}$) 1 H , $\mathrm{CHH}=\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{~S}$); the multiplets belonging to the $\mathrm{SCH}_{2} / \mathrm{HNCH}_{2}$'s are significantly different in coupling patterns, being found as highly unsymmetrical sets in the range $\delta 2.81$ $2.59(10 \mathrm{H})$ and $\delta 257-2.31(3 \mathrm{H})$.

Experimental Section

General procedures. Standard procedures were as described in a previous paper. ${ }^{1}$ The compound $\left[(\mathrm{HMB}) \mathrm{RuCl}_{2}\right]_{2}{ }^{2}$ and the ligand $\mathrm{HN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SH}\right)_{2}{ }^{3}$ were prepared as reported in the literature. Other reagents were obtained commercially.

1. Shin, R. Y. C.; Bennett, M. A.; Goh, L. Y.; Chen, W.; Hockless, D. C. R.; Leong, W. K.; Mashima, K.; Willis, A. C. Inorg. Chem. 2003, 42, 96.
2. Bennett, M. A.; Huang, T.-N.; Matheson, T. W.; Smith, A. K. Inorg. Synth. 1982, 21, 74.
3. Rima, G.; Satgé, J.; Fatome, M.; Laval, J. D.; Sentenac-Roumanou, H.; Lion, C.; Lazraq, M. Eur. J. Med. Chem. 1991, 26, 291.

Reactions of 2 with haloalkanes. With dibromoalkanes. Complex $\left[(H M B) R u\left\{\eta^{3}\right.\right.$ $\mathrm{S}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~S}_{\left.\left.\left(\mathrm{CH}_{2}\right)_{3}\right\}\right]\left(\mathrm{PF}_{6}\right)_{2}(4) \text { was similarly obtained as yellow crystalline plates (42 }}$ $\mathrm{mg}, 76 \%$ yield) from the reaction of $2(30 \mathrm{mg}, 0.075 \mathrm{mmol})$ with $\operatorname{Br}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Br}(75 \mu \mathrm{~L}, 0.74$ mmol). ${ }^{1} \mathrm{H}$ NMR ($\delta, \mathrm{CD}_{3} \mathrm{CN}$): $\mathrm{NH}: 6.02$ (br s, 1 H); $\mathrm{SCH}_{2}+\mathrm{HNCH}_{2}: 2.97-2.61$ (28-line m, 12 H), 2.41-2.27 (13-line m, 1H), 1.89-1.77 (12-line m, 1H); C ${ }_{6} \mathrm{Me}_{6}: 2.18$ ($\left.\mathrm{s}, 18 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\delta, \mathrm{CD}_{3} \mathrm{CN}\right): C_{6} \mathrm{Me}_{6}: 103.6 ; \mathrm{HNCH}_{2}: 54.4 ; \mathrm{SCH}_{2}: 36.1,29.5,24.6 ; \mathrm{C}_{6} M e_{6}: 15.6$. IR $\left(\mathrm{v} \mathrm{cm}^{-1}\right.$, $\mathrm{KBr}): 3291 \mathrm{~m}(\mathrm{~N}-\mathrm{H}), 845$ vs and $558 \mathrm{~s}\left(\mathrm{PF}_{6}\right) . \mathrm{FAB}^{+} \mathrm{MS}: m / z 586\left[\mathrm{M}-\mathrm{PF}_{6}\right]^{+}, 440\left[\mathrm{M}-2 \mathrm{PF}_{6}\right.$ $-1]^{+}, 366\left[\mathrm{M}-2 \mathrm{PF}_{6}-\mathrm{S}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NH}\right]^{+}, 335\left[\mathrm{M}-2 \mathrm{PF}_{6}-\mathrm{S}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NH}+1\right]^{+} . \mathrm{FAB}{ }^{-} \mathrm{MS}: m / z$ 145. Anal. Found: C, 31.2; H, 4.5; N, 2.3; P, 7.9; S, 9.1. Calcd for $\mathrm{C}_{19} \mathrm{H}_{33} \mathrm{~F}_{12} \mathrm{NP}_{2} \mathrm{RuS}_{2}$: C, 31.2; H, 4.6; N, 1.9; P, 8.5; S, 8.8.

Complex [(HMB)Ru\{ $\left.\left.\eta^{3}-\mathrm{S}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~S}\left(\mathrm{CH}_{2}\right)_{4}\right\}\right]\left(\mathrm{PF}_{6}\right)_{2}(5)$ was also obtained as yellow crystalline plates ($29 \mathrm{mg}, 78 \%$ yield) from the reaction of $2(20 \mathrm{mg}, 0.050 \mathrm{mmol}$) with $\operatorname{Br}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{Br}(40 \mu \mathrm{~L}, 0.33 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR ($\delta, \mathrm{CD}_{3} \mathrm{CN}$): $\mathrm{NH}: 5.99$ (br s, 1 H); $\mathrm{SCH}_{2}+$ $\mathrm{HNCH}_{2}: 3.31-3.24$ (4-line m, 2H), 2.78 (m, 8H), 2.37-2.26 (5-line m, 2 H), 2.05 (c.unres.m, 2 H), 1.45 (c.unres.m, 2 H); $\mathrm{C}_{6} \mathrm{Me}_{6}: 2.16$ (s, 18 H). ${ }^{13} \mathrm{C}$ NMR ($\delta, \mathrm{CD}_{3} \mathrm{CN}$): $C_{6} \mathrm{Me}_{6}: 103.1$; $\mathrm{HNCH}_{2}: 52.1 ; \mathrm{SCH}_{2}: 38.4,33.3,25.0 ; \mathrm{C}_{6} \mathrm{Me}_{6}: 15.6$. IR $\left(\mathrm{v} \mathrm{cm}^{-1}, \mathrm{KBr}\right): 3291 \mathrm{~m}(\mathrm{~N}-\mathrm{H}), 845 \mathrm{vs}$ and $558 \mathrm{~s}\left(\mathrm{PF}_{6}\right) . \mathrm{FAB}^{+} \mathrm{MS}: m / z 600\left[\mathrm{M}-\mathrm{PF}_{6}\right]^{+}, 454\left[\mathrm{M}-2 \mathrm{PF}_{6}-1\right]^{+}, 366\left[\mathrm{M}-2 \mathrm{PF}_{6}-\right.$ $\left.\mathrm{S}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NH}\right]^{+}$. FAB^{-}MS: m / z 145. Anal. Found: C, 31.8; H, 4.8; N, 2.7; P, 8.0; S, 8.9. Calcd for $\mathrm{C}_{20} \mathrm{H}_{35} \mathrm{~F}_{12} \mathrm{NP}_{2} \mathrm{RuS}_{2}$: C, 32.3; H, 4.7; N, 1.9; P, 8.3; S, 8.6.

With iodomethane. Into a stirred solution of $2(18 \mathrm{mg}, 0.045 \mathrm{mmol})$ in $\mathrm{MeOH}(10 \mathrm{~mL})$ was injected MeI ($28 \mu \mathrm{~L}, 0.45 \mathrm{mmol}$). The solution was stirred for 48 h , resulting in a gradual color change from red to yellow. Metathesis with $\mathrm{NH}_{4} \mathrm{PF}_{6}(40 \mathrm{mg}, 0.24 \mathrm{mmol})$ led to precipitation of the product as yellow solids together with $\mathrm{NH}_{4} \mathrm{I}$. Filtration and subsequent workup yielded yellow crystalline solids of $\left[(\mathrm{HMB}) \mathrm{Ru}\left\{\eta^{3}-\mathrm{NH}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SMe}\right)_{2}\right\}\right]\left(\mathrm{I} . \mathrm{PF}_{6}\right)(6)$ ($20 \mathrm{mg}, 63 \%$ yield) from $\mathrm{CH}_{3} \mathrm{NO}_{2}$-ether after 24 h at $-30^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($\delta, \mathrm{CD}_{3} \mathrm{CN}$): NH: 6.51 (br s, 1H); $\mathrm{SCH}_{2}+\mathrm{HNCH}_{2}: 2.92-2.71$ (m, 6H), 2.65-2.57 (unres m, 2H); $\mathrm{SCH}_{3}: 2.33$ (s, 6H); C_{6} Me $_{6}: 2.19(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\delta, \mathrm{CD}_{3} \mathrm{CN}$): $C_{6} \mathrm{Me}_{6}: 103.0 ; \mathrm{HNCH}_{2}: 52.9 ; \mathrm{SCH}_{2}: 38.1$; $\mathrm{SCH}_{3}: 21.2 ; \mathrm{C}_{6} \mathrm{Me}_{6}: 16.1 . \mathrm{IR}\left(\mathrm{v} \mathrm{cm}{ }^{-1}, \mathrm{KBr}\right): 3307 \mathrm{w}(\mathrm{N}-\mathrm{H}), 842$ vs and $558 \mathrm{~s}\left(\mathrm{PF}_{6}\right) . \mathrm{FAB}^{+}$ MS: $m / z 574[\mathrm{M}-\mathrm{I}]^{+}, 556\left[\mathrm{M}-\mathrm{PF}_{6}\right]^{+}, 428\left[\mathrm{M}-\mathrm{I}-\mathrm{PF}_{6}-\mathrm{H}\right]^{+}, 414\left[\mathrm{M}-\mathrm{I}-\mathrm{PF}_{6}-\mathrm{CH}_{3}\right]^{+}$. FAB^{-}MS: m / z 145. Anal. Found: C, 30.6; H, 5.0; N, 2.0; S, 9.0. Calcd for $\mathrm{C}_{18} \mathrm{H}_{33} \mathrm{~F}_{6} \mathrm{INPRuS}_{2}$: C, 30.9; H, 4.8; N, 2.0; S, 9.2.

Reactions of 2 with bromoalkenes.

With excess allyl bromide. Into a stirred solution of $2(30 \mathrm{mg}, 0.075 \mathrm{mmol})$ in $\mathrm{MeOH}(8 \mathrm{~mL})$ was injected $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Br}(34 \mu \mathrm{~L}, 0.40 \mathrm{mmol})$. The solution gradually changed from red to yellow over a period of 12 h . Metathesis with $\mathrm{NH}_{4} \mathrm{PF}_{6}(50 \mathrm{mg}, 0.30 \mathrm{mmol}$) followed by the usual workup procedures gave a yellow oil (48 mg), which after trituration with THF (8 mL) to extract out a minor uncharacterizable yellow component, was found to possess a ${ }^{1} \mathrm{H}$ NMR spectrum indicating the presence of mainly $\left[(\mathrm{HMB}) \mathrm{Ru}\left\{\eta^{3}\right.\right.$ $\left.\left.\mathrm{NH}\left(\left(\mathrm{CH}_{2}\right)_{2} \mathrm{SCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)_{2}\right\}\right]\left(\mathrm{Br}^{2} \mathrm{PF}_{6}\right)(\mathbf{8})($ ca. 90% yield), together with trace amounts of two other arene-containing impurity complex which also carried a S-allylic substituent. This was very difficult to purify and crystallize. After several attempts some yellow crystalline plates of ($\mathbf{8}$) ($8 \mathrm{mg}, 16 \%$ yield) were successfully obtained from a $\mathrm{CH}_{3} \mathrm{CN}$-ether solution after 3 days at $-30{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($\delta, \mathrm{CD}_{3} \mathrm{CN}$): $\mathrm{NH}: 7.92$ (br s, 1 H); $\mathrm{SCH}_{2} \mathrm{CH}=$: 6.03-5.90 (symm 14line $\mathrm{m}, 2 \mathrm{H})$; $=\mathrm{CH} H_{\text {trans }}: 5.50(\mathrm{~d}, \mathrm{~J}=16.9 \mathrm{~Hz}, 2 \mathrm{H}) ;=\mathrm{CH} H_{\text {cis }}: 5.42(\mathrm{~d}, \mathrm{~J}=10.1 \mathrm{~Hz}, 2 \mathrm{H}) ; \mathrm{SCH}_{2}$ $+\mathrm{HNCH}_{2}: 3.40-3.33$ (4-line m, 2H), 3.26-3.19 (4-line m, 2H), 2.93-2.83 (unres m, 2H), 2.77-2.63 (unres m, 6 H); $\mathrm{C}_{6} M e_{6}: 2.24(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\delta, \mathrm{CD}_{3} \mathrm{CN}$): $C \mathrm{H}=: 130.8 ;=\mathrm{CH}_{2}$: 123.4; $C_{6} \mathrm{Me}_{6}: 103.3 ; \mathrm{HNCH}_{2}$: $52.9 ; \mathrm{SCH}_{2}: 41.2,35.0 ; \mathrm{C}_{6} \mathrm{Me}_{6}$: 15.8. IR ($\left.\mathrm{v} \mathrm{cm}^{-1}, \mathrm{KBr}\right): 843 \mathrm{vs}$ and $557 \mathrm{~s}\left(\mathrm{PF}_{6}\right) . \mathrm{FAB}^{+} \mathrm{MS}: m / z 626\left[\mathrm{M}-\mathrm{Br}^{+}, 562\left[\mathrm{M}-\mathrm{PF}_{6}\right]^{+}, 480\left[\mathrm{M}-\mathrm{Br}-\mathrm{PF}_{6}-\mathrm{H}\right]^{+}, 440\right.$ $\left[\mathrm{M}-\mathrm{Br}-\mathrm{PF}_{6}-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right]^{+}, 399\left[\mathrm{M}-\mathrm{Br}-\mathrm{PF}_{6}-\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)_{2}\right]^{+} . \mathrm{FAB}^{-} \mathrm{MS}: m / z .145$. Anal. Found: C, 37.4; H, 5.4; N, 2.2; S, 9.1. Calcd for $\mathrm{C}_{22} \mathrm{H}_{37} \mathrm{BrF}_{6} \mathrm{NPRuS}_{2}$: C, 37.5; H, 5.3; N, 2.0; S, 9.1.

With 4-bromobutene. Into a stirred solution of $2(100 \mathrm{mg}, 0.25 \mathrm{mmol})$ in $\mathrm{MeOH}(15 \mathrm{~mL})$ was injected $\mathrm{CH}_{2}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Br}(38 \mu \mathrm{~L}, 0.37 \mathrm{mmol})$. The solution was stirred for 2 h and then evacuated to dryness to remove excess 4-bromobutene. The red residue was redissolved in MeOH and $\mathrm{NH}_{4} \mathrm{PF}_{6}(200 \mathrm{mg}, 1.22 \mathrm{mmol}$) added. After stirring for 30 min , the solution was evacuated to dryness and the product extracted with $\mathrm{CH}_{3} \mathrm{CN}(3 \times 3 \mathrm{~mL})$. The red extracts were passed through a disk of alumina (Act III, 1.5 cm) giving two red bands. The first band gave deep red crystals of $\left[(\mathrm{HMB}) \mathrm{Ru}\left\{\eta^{3}-\mathrm{S}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~S}_{\left.\left.\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}=\mathrm{CH}_{2}\right\}\right] \mathrm{PF}_{6} \text { (9) (105 }}\right.\right.$ $\mathrm{mg}, 82 \%$ yield based on reacted 2) upon recrystallization in ether for 1 day at $-30^{\circ} \mathrm{C}$. The second fraction gave red crystals of the starting substrate $2(14 \mathrm{mg}, 0.035 \mathrm{mmol}, 14 \%$ recovery) upon recrystallization with ether. For 9: ${ }^{1} \mathrm{H}$ NMR ($\delta, \mathrm{CD}_{3} \mathrm{CN}$): $\mathrm{S}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}=: 5.83$ (10-line $\mathrm{m} \equiv \operatorname{tdd}\left(J=16.9,10.4,6.4 \mathrm{~Hz}\right.$), 1H); NH: 5.24 (s br, 1H); $\mathrm{CH} H_{\text {trans }}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~S}$: 5.12 (quartet-like \equiv partially res. tdd $(J=18.1, ~ c a .2,1.6 \mathrm{~Hz}), 1 \mathrm{H}) ; \mathrm{CHH}_{\text {cis }}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~S}: 5.07$
(quartet-like tdd, $\left(J=10.8\right.$, ca.2, 1.2 Hz), 1 H); $\mathrm{SCH}_{2}+\mathrm{HNCH}_{2}: 3.09-3.00$ (symm 6-line m, 1 H), 2.95-2.88 (symm 7-line m, 1H), 2.73-2.61 (unsymm 10-line m, 1H), 2.59-2.42 (unsymm 12-line m, 6H), 2.29-2.16 (unsymm 10-line m, 3H); $\mathrm{C}_{6} \mathrm{Me}_{6}: 2.07$ (s, 18H). ${ }^{13} \mathrm{C}$ NMR ($\delta, \mathrm{CD}_{3} \mathrm{CN}$): $C \mathrm{H}=: 136.5 ;=\mathrm{CH}_{2}: 117.0 ; C_{6} \mathrm{Me}_{6}: 97.9 ; \mathrm{HNCH}_{2}: 60.5,50.4 ; \mathrm{SCH}_{2}$ and $\mathrm{SCH}_{2} \mathrm{CH}_{2}: 38.2,32.3,31.7,26.7$; $\mathrm{C}_{6} \mathrm{Me}_{6}$: 15.4. IR ($\left.\mathrm{v} \mathrm{cm}{ }^{-1}, \mathrm{KBr}\right): 3292 \mathrm{~m}(\mathrm{~N}-\mathrm{H}), 841 \mathrm{vs}$ and $558 \mathrm{~s}\left(\mathrm{PF}_{6}\right) . \mathrm{FAB}^{+} \mathrm{MS}: m / z 454\left[\mathrm{M}-\mathrm{PF}_{6}\right]^{+}, 399\left[\mathrm{M}-\mathrm{PF}_{6}-\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}=\mathrm{CH}_{2}\right]^{+}, 352\left[\mathrm{M}-\mathrm{PF}_{6}\right.$ $\left.-\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}=\mathrm{CH}_{2}-\mathrm{SCH}_{2}-\mathrm{H}\right]^{+}$. $\mathrm{FAB}^{-} \mathrm{MS}: m / z$ 145. Anal. Found: C, 40.3; H, 5.9; N, 2.8; S, 11.0. Calcd for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{~F}_{6} \mathrm{NPRuS}_{2}$: C, 40.1; H, 5.7; N, 2.3; S, 10.7.

Reactions with base.

Reaction of $\mathbf{3}$ with one mol equivalent of KOH . A solution of $\mathbf{3}(25 \mathrm{mg}, 0.035 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ was stirred with solid $\mathrm{KOH}(2 \mathrm{mg}, 0.036 \mathrm{mmol})$ for 1 h resulting in a color change from pale yellow to reddish orange. The product suspension was filtered through a disk of Celite and the filtrate concentrated to ca. 3 mL and ether added. Yellow crystalline plates of $3(5 \mathrm{mg}, 20 \%)$ were recovered on cooling to $-30^{\circ} \mathrm{C}$ for 12 h . Addition of more ether to the red mother liquor gave red crystals of $\left[(H M B) R u\left\{\eta^{3}\right.\right.$ $\left.\left.\left.\mathrm{S}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{SCH}=\mathrm{CH}_{2}\right)\right\}\right] \mathrm{PF}_{6}(\mathbf{1 0})(10 \mathrm{mg}, 63 \%$ yield based on reacted $\mathbf{3})$ after 2 days at $-30^{\circ} \mathrm{C}$.

Reaction of 3 with excess KOH or $K O B u^{t}$. Into a solution of $3(16 \mathrm{mg}, 0.022 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$ was added $\mathrm{KOH}(5 \mathrm{mg}, 0.089 \mathrm{mmol})$ (or $\mathrm{KOBu}^{\mathrm{t}} 8 \mathrm{mg}, 0.036 \mathrm{mmol}$) and the solution was stirred for 3 h or 1 h (for KOBu^{t}), resulting in a color change from pale yellow through reddish orange to orange. The solution was filtered through a disk of Celite $(1.5 \mathrm{~cm})$, and the filtrate concentrated to ca. 2 mL . Addition of ether gave orange needle-shaped crystals of $\left[\mathrm{Ru}\left\{\eta^{6}: \eta^{3}-\mathrm{C}_{6} \mathrm{Me}_{5}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~S}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~S}\right\}\right] \mathrm{PF}_{6}(\mathbf{1 1})(12 \mathrm{mg}, 99 \%$ yield) after 2 days at $-30{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\delta, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$: $\mathrm{NH}: 5.23$ (br s, 1 H); $\mathrm{SCH}_{2}+\mathrm{HNCH}_{2}: 3.01-2.94$ (12line $\mathrm{m}, 1 \mathrm{H}$), 2.85-2.72 (12-line m, 2H), 2.70-2.59 (unsymm m, 6H), 2.57-2.46 (7-line m, 1 H), 2.44-2.36 (8-line m, 1H), 2.31-2.23 (13-line m, 1H), 2.12-2.07 (m, partly obscured by the $\mathrm{C}_{6} M e_{5}$ peak, 1 H), 2.04-1.97 (m , also partly obscured by the $\mathrm{C}_{6} M e_{5}$ peak, 1 H); $\mathrm{C}_{6} M e_{5}$: 2.21, 2.18, 2.10, 2.03, 1.95 (each s, 15 H). ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} \delta, \mathrm{CD}_{3} \mathrm{CN}$): $C_{6} \mathrm{Me}_{5}$: 100.1 (overlapping peaks), 97.4, 96.7, 96.3, 87.5; $\mathrm{HNCH}_{2}: ~ 63.5,54.7 ; \mathrm{SCH}_{2}: 38.7,31.8,27.9,27.4,24.3 ; \mathrm{C}_{6} \mathrm{Me}_{5}$: 16.9, 16.0 and 15.6 (overlapping s), 14.8. IR $\vee\left(\mathrm{cm}^{-1}, \mathrm{KBr}\right): 3309 \mathrm{~m}(\mathrm{~N}-\mathrm{H}), 836 \mathrm{vvs}$ and 558 s $\left(\mathrm{PF}_{6}\right) . \mathrm{FAB}^{+} \mathrm{MS}: m / z 426\left[\mathrm{M}-\mathrm{PF}_{6}\right]^{+}, 379\left[\mathrm{M}-\mathrm{PF}_{6}-\mathrm{SNH}\right]^{+}, 323\left[\mathrm{M}-\mathrm{PF}_{6}-\right.$
$\left.\mathrm{S}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{NH}\right]^{+}$. FAB^{-}MS: m / z 145. Anal. Found: C, $37.6 ; \mathrm{H}, 5.2 ; \mathrm{N}, 2.5 ; \mathrm{S}, 11.2$. Calcd for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{~F}_{6} \mathrm{NPRuS}_{2}$: C, 37.9; H, 5.3; N, 2.5; S, 11.2.

Similar treatment of $\mathbf{4}$ and $\mathbf{5}$ with KOH in $\mathrm{CD}_{3} \mathrm{CN}$ caused a color change to orange, accompanied by disappearance of the NH proton resonance in the ${ }^{1} \mathrm{H}$ NMR spectrum and significant decrease in resolution of all the peaks which are also slightly upfield-shifted. An attempt to isolate the product from the reaction of $\mathbf{4}$ led to recovery of the starting complex.

Reaction of 7 with KOH . Into a stirred solution of $7(21 \mathrm{mg}, 0.036 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ was added $\mathrm{KOH}(2 \mathrm{mg}, 0.036 \mathrm{mmol})$. The solution immediately changed from red to dark blue and gradually to orange over 15 h. A ${ }^{1} \mathrm{H}$ NMR spectrum of this intermediate dark blue species showed broad peaks and an isolation attempt proved futile as the species was obviously undergoing further transformation. The final orange solution was filtered and the filtrate was passed through a disk of alumina (1.5 cm , ACT III), and eluted out with $\mathrm{CH}_{3} \mathrm{CN}$. From the orange eluate was obtained an oil residue. Recrystallization in THF-ether gave orange crystalline solids of $\left[\mathrm{Ru}\left\{\eta^{6}: \eta^{3}-\mathrm{C}_{6} \mathrm{Me}_{5} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{Me}) \mathrm{CH}_{2} \mathrm{~S}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~S}\right\}\right] \mathrm{PF}_{6}$ (12) $(16 \mathrm{mg}, 76 \%)$ after 1 day at $-30^{\circ} \mathrm{C}$.

Protonation with HPF6: Into a $\mathrm{CD}_{3} \mathrm{CN}(0.5 \mathrm{~mL})$ solution of $7(5 \mathrm{mg}, 0.0086 \mathrm{mmol})$ in an NMR tube, cooled to $0^{\circ} \mathrm{C}$, was injected 1.5 mol equivalents of dilute $\mathrm{HPF}_{6}(200 \mu \mathrm{~L}, 0.068 \mathrm{M}$ prepared by diluting $60 \% \mathrm{HPF}_{6}$ in $\mathrm{CD}_{3} \mathrm{CN}$). An immediate color change from reddish orange to pale orange was observed. The ${ }^{1} \mathrm{H}$ NMR spectra of the solution were monitored at intervals ($10,60,180 \mathrm{~min}$, daily up to 4 days). Similar protonation studies were done on complexes 9 (5 mg and $150 \mu \mathrm{~L}$ of the above diluted HPF_{6}) and $\mathbf{1 0}$ (4 mg and $150 \mu \mathrm{~L}$ of the above diluted HPF_{6}).

Attempts were made to isolate the protonated products of $\mathbf{7}$ and $\mathbf{9}$. However, upon workup by concentration and addition of hexane or ether, the products readily reverted to the original complexes.

Crystal Structure Determinations. The crystals were mounted on glass fibers. X-ray data were collected on a Bruker AXS SMART APEX CCD diffractometer, using Mo- K_{α} radiation $\left(\lambda=0.71073 \AA\right.$) at 223 K . The program SMART ${ }^{4}$ was used for collecting the intensity data, indexing and determination of lattice parameters, SAINT ${ }^{4}$ was used for integration of the intensity of reflections and scaling, SADABS^{5} was used for absorption correction and SHELXTL ${ }^{6}$ for space group and structure determination and least-squares refinements against F^{2}. The structures were solved by direct methods to locate the heavy atoms, followed by difference maps for the light, non-hydrogen atoms. The hydrogens were placed in calculated positions. Fluorine atoms of the $\mathrm{PF}_{6}{ }^{-}$anions of $\mathbf{3}, \mathbf{5}, \mathbf{1 0}$ and $\mathbf{1 1}$ were disordered. The ethylene carbons (C6 and C7) in 7, the propyl group and the two bridging $\mathrm{C}_{2} \mathrm{H}_{4}$ - groups in $\mathbf{9}$ were disordered. In one of the cations of $\mathbf{1 2}$ the carbon C 5 is disordered into two positions of 70% and 30% occupancy. There is one nitromethane molecule present per asymmetric unit, as space filling solvent in complexes $\mathbf{3}, \mathbf{6}$ and 11, and two such solvent molecules in 5. Similarly there is one acetonitrile molecule per asymmetric unit in complexes 2 and 12. The quality of X-ray data for complex $\mathbf{8}$ was bad (high Rint of 0.1649), due to the poor quality of the crystal, resulting from rapid loss of lattice acetonitrile from which it was crystallized under diffusion of ether. Hence data collection was difficult and the set of data used was the best that was obtained. The final R1 and wR2 values were relatively high. However, despite the poor R values, the structure of the cation could be confirmed. After the atoms of the cation and anion were located, there were residual peaks in some of the voids. These were fitted with acetonitrile molecules, one of which was given a one-third occupancy (resulting in $1.83 \mathrm{CH}_{3} \mathrm{CN}$ in the formula). Crystal data collection and processing parameters are given in Table S 1 .
4. SMART \& SAINT Software Reference manuals, version 5.0, Bruker AXS Inc., Madison, WI, 1998.
5. Sheldrick, G.M. SADABS software for empirical absorption correction; University of Göttingen: Germany, 2000.
6. SHELXTL Reference Manual, version 5.1, Bruker AXS Inc., Madison, WI, 1998.

[^0]: ${ }^{\mathrm{a}} R=\left(\Sigma\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right) \Sigma\left|F_{\mathrm{o}}\right| . \quad{ }^{\mathrm{b}} w R_{2}=\left[\left(\Sigma \omega\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2} / \Sigma \omega\left|F_{\mathrm{o}}\right|^{2}\right]^{1 / 2} .{ }^{\mathrm{c}} \mathrm{GoF}=\left[\left(\Sigma \omega\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2} /\left(N_{\mathrm{obs}}-N_{\text {param }}\right)\right]^{1 / 2}$

