## A Heterobimetallic Ru(II)-Cu(II) Donor-Acceptor Complex as a Chemodosimetric Ensemble for Selective Cyanide Detection

Cheuk-Fai Chow<sup>a</sup>, Michael H. W. Lam\*<sup>a</sup>, Wai-Yeung Wong<sup>b</sup>

<sup>a</sup> Department of Biology & Chemistry, City University of Hong Kong, 83 Tat Chee Ave., Hong Kong SAR, China
<sup>b</sup> Department of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, Hong Kong SAR, China

## **Supporting Information**

**Fig. 1** IR spectra of **1** with KBr pellet. The  $v_{C=N}$  (cm<sup>-1</sup>) of **1** is located at 2055 cm<sup>-1</sup>.





Fig. 2 Solution IR spectrum of 1 in methanol.

**Fig. 3** Isotopic distribution of ESI-MS of  $\{Ru^{II}({}^{t}Bubpy)(CN)_{4}-[Cu^{II}(dien)]_{2}\}^{2+}$  (1) in methanol. The parent ion at m/z 907 corresponds to  $[M - ClO_{4}]^{+}$  fragment. The simulated isotopic distribution is shown in the inset.



**Fig. 4** Binding isotherm of cis-[Ru(bpy)<sub>2</sub>(CN)<sub>2</sub>] (1.25 × 10<sup>-3</sup> *M* in 1:1 DMF:HEPES) by [Cu(dien)](ClO<sub>4</sub>)<sub>2</sub> monitored by the quenching of the <sup>3</sup>MLCT emission of cis-[Ru(bpy)<sub>2</sub>(CN)<sub>2</sub>] at 634 nm. The binding equilibrium is reached at 1:1 cis-[Ru(bpy)<sub>2</sub>(CN)<sub>2</sub>]:[Cu(dien)](ClO<sub>4</sub>)<sub>2</sub>. Thus, the donor-acceptor adduct, **2**, formed is denoted cis-[Ru(bpy)<sub>2</sub>(CN)<sub>2</sub>]-[Cu(dien)]<sup>2+</sup>.



**Fig. 5** Spectrofluorimetric titration of *cis*-[Ru(bpy)<sub>2</sub>(CN)<sub>2</sub>] (5.0 × 10<sup>-5</sup> M) with [Cu(dien)](ClO<sub>4</sub>)<sub>2</sub> (0 to  $2.0 \times 10^{-3}$  M) in aqueous DMF (1:1 v/v) (pH 7.4). The slope and y-intercept of the best fitted I<sub>0</sub>/(I-I<sub>0</sub>) vs. 1/[Cu(dien)]<sup>2+</sup> plot are  $2.14 \pm 0.052 \times 10^{-3}$  *M* and 8.97 ± 0.67 × 10<sup>-1</sup> respectively. According to Equation (2), the  $\Delta G^{\circ}$  of formation of the donor-acceptor adduct **2** is estimated to be -14.8 kJ mol<sup>-1</sup>.



**Fig 6** Isotopic distribution of ESI-MS of the m/z 497 peak corresponding to  $[Ru(^{t}Bubpy)(CN)_{4} + Na]^{-}$  obtained from a mixture of **1** and sodium cyanide. The simulated isotopic distribution is shown in the inset.



Fig. 7 Job's plot of the luminescent responses of solvated 1 (L = solvent) towards cyanide showing that the maximum response occurs at 1:CN<sup>-</sup> mole ratio of 1:4. This implies that each Cu(II) center of 1 binds two CN<sup>-</sup>.



**Fig. 8** Fitting of the luminescent responses  $I_0/(I-I_0)$  of **1** ( $1.40 \times 10^{-4} M$ ) at 656 nm towards CN<sup>-</sup> according to the 1:2 binding model. The slope and y-intercept of the best fitted  $I_0/(I-I_0)$  vs.  $1/[CN^-]^2$  plot are 7.94  $\pm 0.069 \times 10^{-9} M^2$  and  $5.87 \pm 0.11 \times 10^{-2}$  respectively. The luminescent responses of **1** are shown in the inset.



**Fig. 9** Summary of UV-vis spectroscopic (top left) and spectrofluorimetric (top right) titrations of **1** ( $1.40 \times 10^{-4}$  M) by common anions monitored as a function of the increase in absorbance (A/A<sub>0</sub> at 475 nm) and emission (I/I<sub>0</sub> at 656 nm) respectively. All titrations were carried out in aqueous DMF (1:1 v/v) at pH 7 at 298 K.

