Supporting Information For:

Photochemical Organic Oxidations and Dechlorinations with a μ -Oxo Bridged Heme/Non-Heme Diiron Complex.

*Ian M. Wasser, H. Christopher Fry, Paul G. Hoertz, Gerald J. Meyer** and Kenneth D. Karlin*

Department of Chemistry, Johns Hopkins University, Charles and 34th Streets, Baltimore, Maryland 21218

Contents:

Figure S1. UV-visible spectra showing the photoreduction of $[(^6L)Fe^{III}-O-Fe^{III}-Cl]^+(1)$ { λ_{max} 418 (Soret), 575 nm} to $[(^6L)Fe^{II}...Fe^{II}-Cl]^+(2)$ { λ_{max} 415 (Soret), 432 (sh), 532, 550 (sh) nm} in benzene-triphenylphosphine.

Figure S2. UV-visible spectra showing the photoreduction of $[(^6L)Fe^{III}-O-Fe^{III}-Cl]^+(1)$ { λ_{max} 418 (Soret), 575 nm} to $[(^6L)Fe^{II}...Fe^{II}-Cl]^+(2)$ { λ_{max} 415, 430 (sh), 532, 550 (sh) nm} in toluene.

Figure S3. EI-MS spectrum for either biphenyl trichloride product $C_{12}H_7Cl_3$ at m/z 256, which is derived from the photolysis of $[(^6L)Fe^{III}-O-Fe^{III}-Cl]^+(1)$ in 1,2-dichlorobenzene. The calculated isotope pattern for $C_{12}H_7Cl_3$ is shown at the bottom.

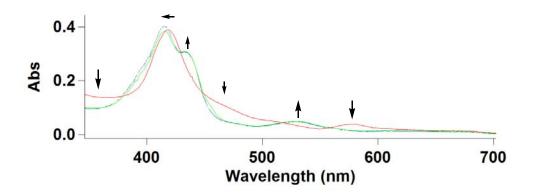

Figure S4. EI-MS spectrum for either biphenyl monochloride product $C_{12}H_9Cl$ at m/z 188, which is derived from the photolysis of $[(^6L)Fe^{III}-O-Fe^{III}-Cl]^+(1)$ in chlorobenzene. The calculated isotope pattern for $C_{12}H_9Cl$ is shown at the bottom.

Figure S5. ESI-MS spectrum (positive ion mode) for $\{[(^6L)Fe^{III}-C1...Fe^{III}-C1]_2O\}^+$ (3) in showing the ion peak at m/z 1221 which corresponds to the broken-oxo ion $[(^6L)Fe^{III}-C1...Fe^{III}-C1]^+$. The inset shows the spectrum calculated for $C_{63}H_{40}N_8OFe_2C1_2F_6$.

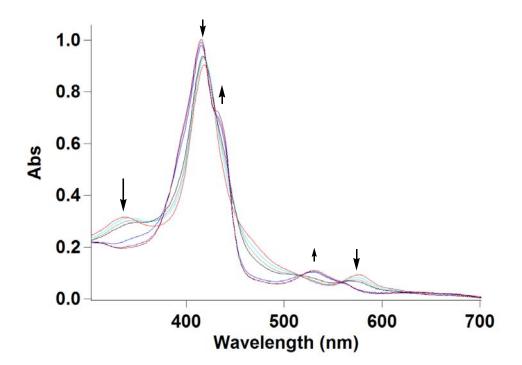
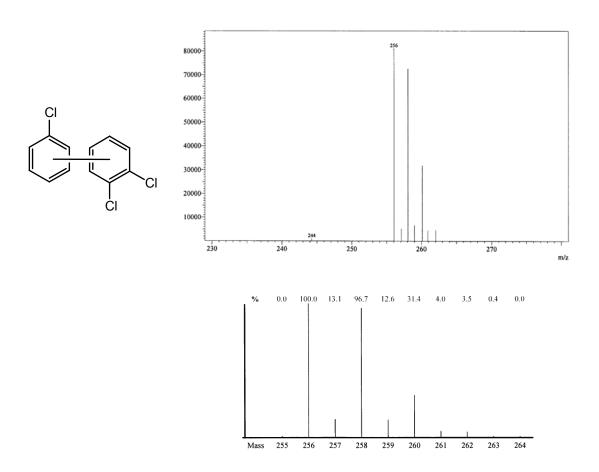
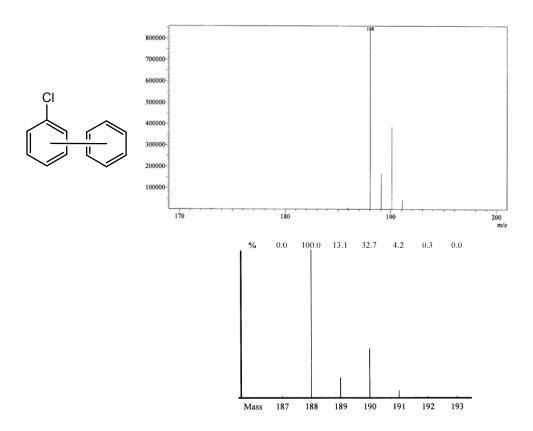
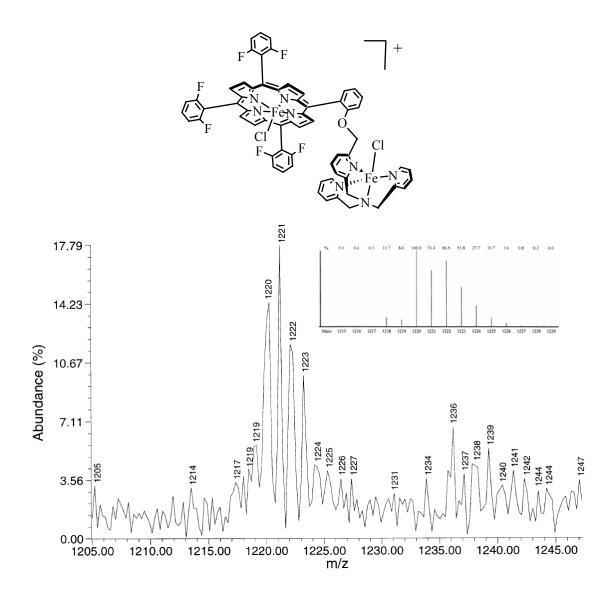
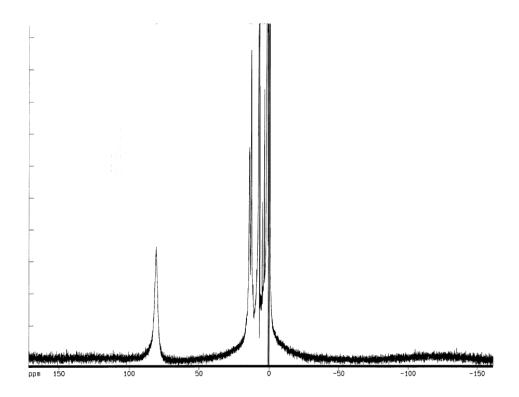

Figure S6. Full ¹H-NMR spectrum for {[(⁶L)Fe^{III}-Cl...Fe^{III}-Cl]₂O}⁺(**3**) recorded at 296 K in CDCl₃.

Figure S7. Diamagnetic region ¹H-NMR spectrum for {[(⁶L)Fe^{III}-Cl...Fe^{III}-Cl]₂O}²⁺ (**3**) recorded in CDCl₃.


Figure S1. UV-visible spectra showing the photoreduction of $[(^6L)Fe^{III}-O-Fe^{III}-Cl]^+$ (1) $\{\lambda_{max} 418 \text{ (Soret)}, 575 \text{ nm}\}$ to $[(^6L)Fe^{II}...Fe^{II}-Cl]^+$ (2) $\{\lambda_{max} 415 \text{ (Soret)}, 432 \text{ (sh)}, 532, 550 \text{ (sh) nm}\}$ in benzene-triphenylphosphine.


Figure S2. UV-visible spectra showing the photoreduction of $[(^6L)Fe^{III}-O-Fe^{III}-Cl]^+(1)$ { λ_{max} 418 (Soret), 575 nm} to $[(^6L)Fe^{II}...Fe^{II}-Cl]^+(2)$ { λ_{max} 415, 430 (sh), 532, 550 (sh) nm} in toluene.


Figure S3. EI-MS spectrum for either biphenyl trichloride product $C_{12}H_7Cl_3$ at m/z 256, which is derived from the photolysis of $[(^6L)Fe^{III}-O-Fe^{III}-Cl]^+$ (1) in 1,2-dichlorobenzene. The calculated isotope pattern for $C_{12}H_7Cl_3$ is shown at the bottom.


Figure S4. EI-MS spectrum for either biphenyl monochloride product $C_{12}H_9Cl$ at m/z 188, which is derived from the photolysis of $[(^6L)Fe^{III}-O-Fe^{III}-Cl]^+(1)$ in chlorobenzene. The calculated isotope pattern for $C_{12}H_9Cl$ is shown at the bottom.

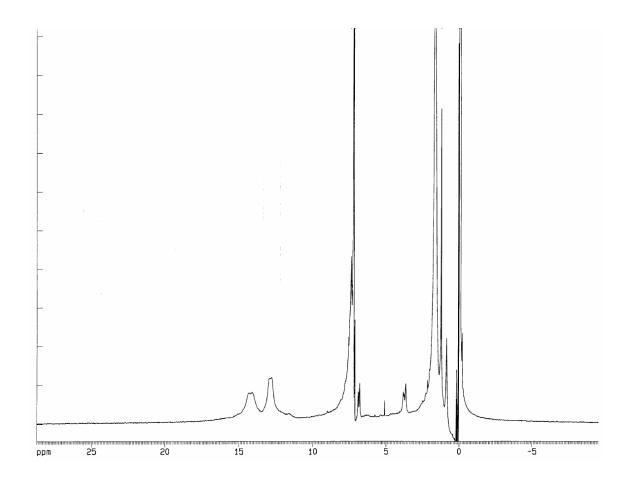

Figure S5. ESI-MS spectrum (positive ion mode) for $\{[(^6L)Fe^{III}-Cl...Fe^{III}-Cl]_2O\}^+$ (3) in showing the ion peak at m/z 1221 which corresponds to the broken-oxo ion $[(^6L)Fe^{III}-Cl...Fe^{III}-Cl]^+$. The inset shows the spectrum calculated for $C_{63}H_{40}N_8OFe_2Cl_2F_6$.

Figure S6. Full ¹H-NMR spectrum for {[(⁶L)Fe^{III}-Cl...Fe^{III}-Cl]₂O}⁺(**3**) recorded at 296 K in CDCl₃.

Figure S7. Diamagnetic region 1 H-NMR spectrum for $\{[({}^{6}L)Fe^{III}-Cl...Fe^{III}-Cl]_{2}O\}^{2+}$ (3) recorded in CDCl₃.

