Supporting Information

Mesoporous alumina with amidoxime groups for CO₂ sorption at ambient and elevated temperatures

Chamila Gunathilake, Mahinda Gangoda, and Mietek Jaroniec*

Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, USA E-mail: jaroniec@kent.edu

EXPERIMENAL

Materials

Boehmite (Catapal A) was donated from Sasol, Johannesburg, South Africa. Pluronic P123 (EO₂₀PO₇₀EO₂₀) triblock copolymer was donated by BASF Corporation, Flortham Park, New Jersey. (3-cyanopropyl)triethoxysilane (CPTS) was purchased from Alfa Aesar, Johnson Matthey Company, Ward Hill, Massachusetts. Hydroxylamine hydrochloride (NH₂OH.HCl) was purchased from Sigma Aldrich. 200 proof ethanol was purchased from Fisher Scientific, Pittsburgh, Pennsylvania. 95 % ethanol, 36 % HCl, 69.1 % HNO₃, and NaOH were also purchased from Fisher Scientific, Pittsburgh, Pennsylvania. Deionized water (DW) was obtained using in house Ion pure Plus 150 Service Deionization Ion-Exchange purification system. All reagents were in analytical grade and used without further purification.

Characterization

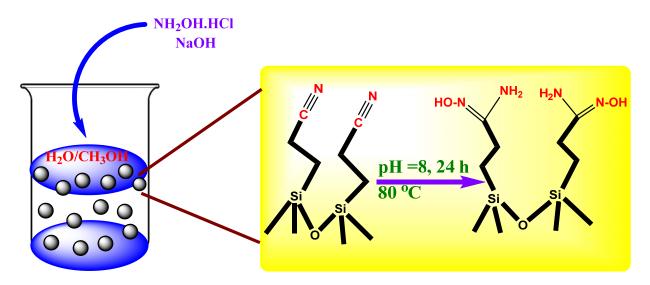
Experimental details related to the instruments used such as adsorption analyzers, thermogravimetry, elemental analyzer, NMR instrument and transmission electron microscope are similar to those provided in previous publications.¹⁻⁴ Nitrogen adsorption isotherms were measured at -196 °C on an ASAP 2010 volumetric analyzer (Micromeritics, Inc., Norcross, GA). Prior to adsorption measurements, all samples were out gassed under vacuum at 110 °C for 2 h. High resolution thermogravimetric measurements were recorded on TGA Q-500 analyzer (TA Instruments, Inc., New Castle, DE). Thermogravimetric (TG) profiles were recorded from 25 to 720 °C in flowing nitrogen with a heating rate of 10 °C / min using a high resolution mode. The weight of each analyzed sample was typically in 5-15 mg range. Elemental CHNS analysis was performed on a LECO model CHNS-932 elemental analyzer (St. Joseph, MI).

¹H-¹³C cross polarization (CP) MAS NMR spectra were recorded using Bruker Avance (III) 400WB NMR spectrometer (Bruker Biospin Corporation, Billerica, MA, USA) with MAS triple resonance probe head using zirconia rotors 4 mm in diameter. ¹H-¹³C CP-MAS NMR spectra were acquired at 400.13 MHz for ¹H and 100.63 MHz for ¹³C. The MAS rate was 5 KHz. ¹H $\pi/2$ pulse length was 3.5 μ s and pulse delay 2.0 s. TPPM20 ¹H decoupling sequence was used during acquisition. The ¹³C chemical shifts were referenced to p-dioxane 66.6 ppm. ²⁷Al magic-angle–spinning (MAS)-NMR spectra were acquired at 104.24 MHz using a single

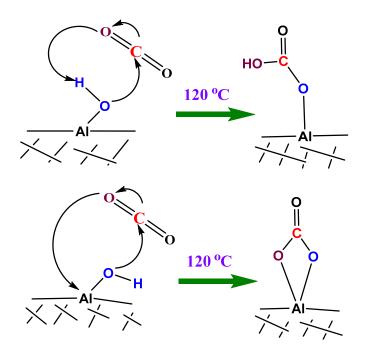
pulse sequence with pulse shorter than $\pi/4$ (1 µs pulse length) and a MAS rate of 10 KHz, 400-1000 scans were acquired with recycle delay of 1s. The position of the ²⁷Al resonance was referenced to 1M Al(NO₃)₃ (0 ppm). ¹H-²⁹Si cross polarization (CP) MAS NMR spectra were recorded at 79.49 MHz for ²⁹Si and 400.13 MHz (¹H). The MAS rate was 5 KHz. ¹H $\pi/2$ pulse length was 4.5 µs and pulse delay 3.0 s. Two pulse phase modulated TPPM15 decoupling sequence was used during acquisition. The ²⁹Si chemical shifts were referenced to TMS (0 ppm).

Transmission electron microscopy (TEM) images were obtained on a FEI Tecnai G2 F20 microscope. Prior to TEM analysis, the sample powders were dispersed in ethanol by moderate sonication at concentrations of \sim 5-10 wt. %. A Lacy carbon coated, 200-mesh, copper TEM grid was dipped into the sample suspension and then dried under vacuum at 80 °C for 20 h. Field emission scanning electron microscopy (FE-SEM) images of the selected samples were observed using Hitachi S-4700 FE-SEM. Resolution of 1.5 nm at 15 kV can be achieved at 12 mm working distance and 2.5 nm at low kV (2 kV), at a working distance of 3 mm.

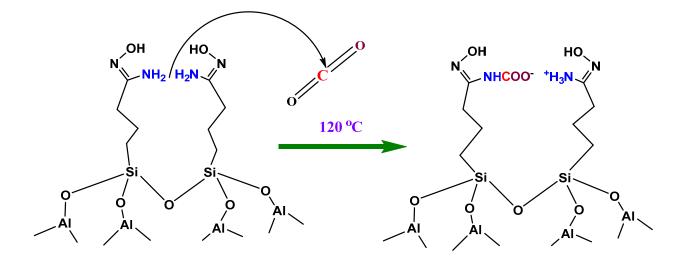
Room temperature CO₂ adsorption measurements

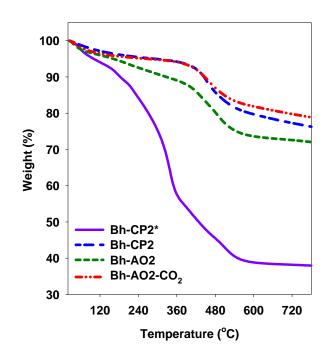

 CO_2 adsorption on the selected samples studied was measured in the pressure range up to 1.2 atm on ASAP 2020 volumetric adsorption analyzer (Micromeritics, Inc., GA) at 25 °C using ultrahigh purity (99.99 %) gaseous CO_2 . Prior to adsorption analysis each sample was outgassed at 110 °C for 2 h under vacuum.

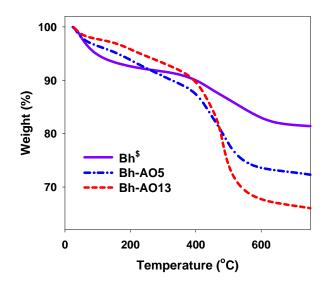
CO₂ chemisorption and TPD measurements


 CO_2 chemisorption and TPD experiments were conducted using a Micromeritics Auto Chem II Chemisorption Analyzer (Micromeritics, Inc., GA) equipped with a thermocouple detector (TCD). Approximately 20-100 mg of each sample were loaded in a quartz tube microreactor supported by quartz wool and subjected to pretreatment at 370 °C for 10 min before CO_2 adsorption, using a heating rate of 10 °C/min in flowing helium (at a rate of 50 cm³/min). Next, the sample was cooled to selected temperature (120 °C) using heating rate of 10 °C/min, exposed to pulse of 5 % CO₂-He (50 cm³/min) as a loop gas, kept for 3 min and allowed for return to baseline. Recording was repeated until peaks are equal or 30 times. Recording was taken every 0.1 seconds and finally post CO₂ pulse purge was applied in flowing helium (50 cm³/min) for 30 min. In the TPD experiments, the samples were heated up to 370 °C using a heating rate of 5 °C/min and kept at this temperature for 90 min. The amounts of desorbed CO₂ were obtained by integration of the desorption profiles and referenced to the TCD signals calibrated for known volumes of analyzed gases.¹⁻³

Calculations


The Brunauer-Emmett-Teller specific surface areas (S_{BET}) were calculated from N_2 adsorption isotherms in the relative pressure range of 0.05-0.2 using a cross sectional area of 0.162 nm² per nitrogen molecule. The single-point pore volume (V_{sp}) was estimated from the amount adsorbed at a relative pressure of ~ 0.98. The pore size distributions (PSD) were calculated using adsorption branches of nitrogen adsorption-desorption isotherms by the improved KJS method calibrated for cylindrical pores.⁵ The volume of fine pores (micropores and small mesopores below 3 nm) V_{mic} was calculated by integration of the PSD curve up to 3 nm. The pore width (W_{max}) was obtained at the maximum of the PSD curve.


Scheme S1. Illustration of the conversion of cyano groups to amidoxime groups using hydroxylamine hydrochloride. Adapted from Ref. [1] by permission from the American Chemical Society.


Scheme S2. Illustration of possible hydrogen carbonate (top) and bidentate carbonate (bottom) formation upon CO_2 chemisorption on the Bh^{\$}, Bh-CPX, and Bh-AOX samples; Adapted from Ref. [3] by permission from the Royal Society of Chemical.

Scheme S3. Illustration of CO₂ binding on the Bh-AOX samples at 120 °C. Adapted from Ref. [1] by permission from the American Chemical Society.

Figure S1. TG curves for the as-synthesized (Bh-CP2*) and calcined cyanopropyl-containing (Bh-CP2) samples, and amidoxime-containing samples without (Bh-AO2) and with (Bh-AO2- CO_2) chemisorbed CO_2 .

Figure S2. TG curves for the Bh^{\$} and Bh-AOX (X=5, 13) samples studied.

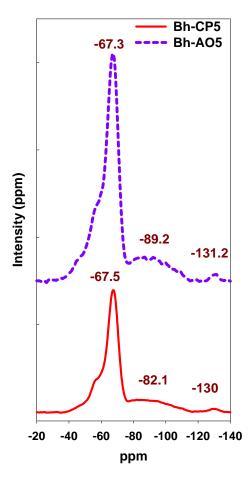


Figure S3. ²⁹Si MAS NMR spectra obtained for the Bh-CP5 and Bh-AO5 samples.

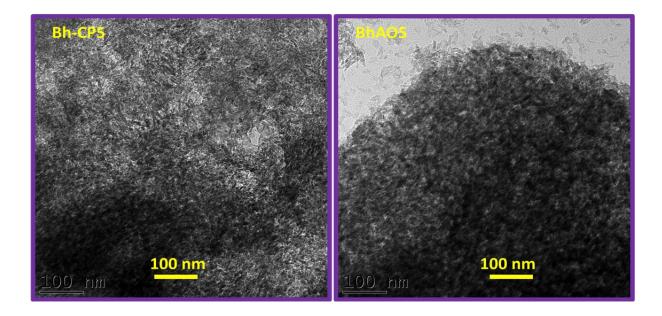


Figure S4. TEM images of the Bh-CP5 (left panel) and Bh-AO5 (right panel) samples.

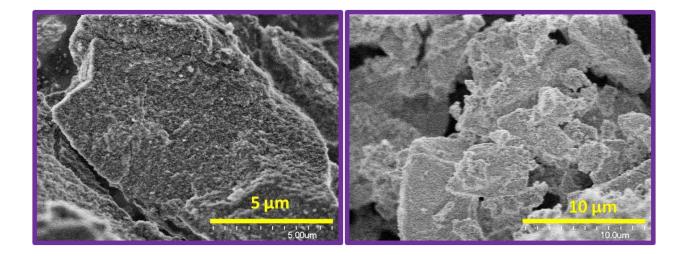
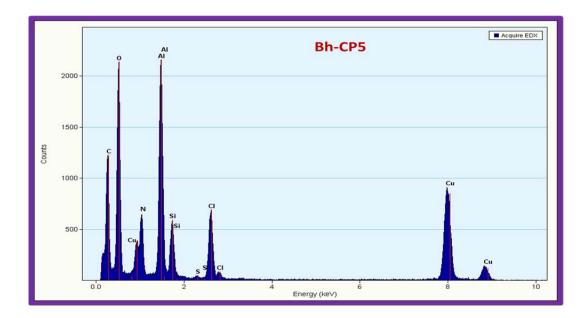
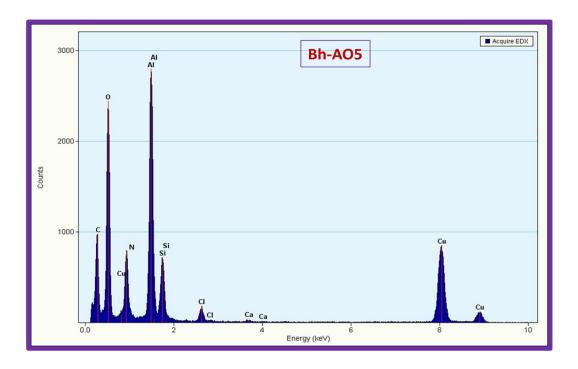
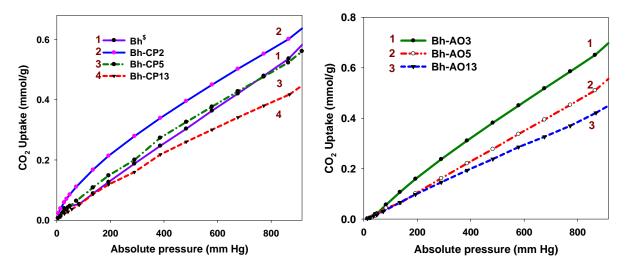





Figure S5. SEM images of the Bh-CP5 (left panel) and Bh-AO5 (right panel) samples.

Figure S6. EDX spectra obtained for the Bh-CP5 (top panel) and Bh-AO5 (bottom panel) samples.

Figure S7. CO₂ adsorption isotherms at 25 °C obtained for the Bh^{\$} and Bh-CPX (left panel) and Bh-AOX (right panel) samples.



Figure S8. CO_2 and N_2 adsorption-desorption isotherms at 25 $^{\circ}C$ measured on the Bh-AO2 sample studied.

References

- 1) Gunathilake, C.; Jaroniec, M. Appl. Mater. Interfaces. 2014, 6, 13069–13078.
- Gunathilake, C.; Gorka, J.; Dai, S.; Jaroniec, M. J. Mater. Chem. A, 2015, 3, 11650-11659.
- 3) Gunathilake, C.; Jaroniec, M. J. Mater. Chem. A.2015, 3, 2707-2716.
- 4) Gunathilake, C.; Gangoda, M.; Jaroniec, M. J. Mater. Chem.A, 2013, 1, 8244-8252.
- 5) Kruk, M.; Jaroniec. M.; Sayari, A. Langmuir. 1997, 13, 6267-6273.