Perturbation of Fluorescence by Non-Specific Interactions Between Anionic Poly(phenylenevinylene)s and Proteins: Implications for Biosensors

Stephen J. Dwight, Brent S. Gaylord, Janice W. Hong, and Guillermo C. Bazan^{*} Departments of Chemistry and Materials, University of California, Santa Barbara, CA 93106 Institute for Polymers and Organic Solids Received, XXXX, 2004

^{*} Bazan@chem.ucsb.edu

Supporting Information

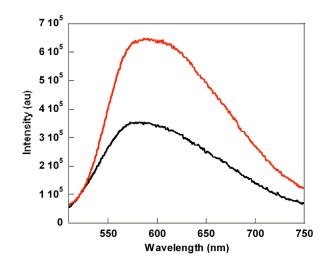


Figure S1: Fluorescence spectra ($\lambda_{ex} = 500 \text{ nm}$) in water: Na⁺-MPS-PPV ([RU] = 1.7 x 10⁻⁵ M) (black line) and Na⁺-MPS-PPV and [avidin] = 5 x 10⁻⁷ M (red line).

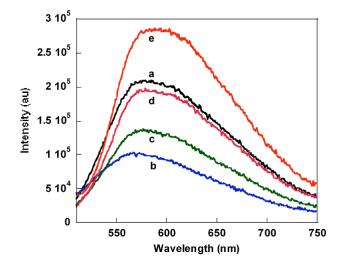


Figure S2: Fluorescence spectra ($\lambda_{ex} = 500 \text{ nm}$) in water: (a) Na⁺-MPS-PPV ([RU] = 1 x 10⁻⁵ M) (black line); (b) Na⁺-MPS-PPV and [BPP⁺] = 3.2 x 10⁻⁷ M (blue line); (c) Na⁺-MPS-PPV, BPP⁺, and [avidin] = 3 x 10⁻⁸ M (green line); (d) Na⁺-MPS-PPV, BPP⁺, and [avidin] = 8 x 10⁻⁸ M (pink line); (e) Na⁺-MPS-PPV, BPP⁺, and [avidin] = 2.7 x 10⁻⁷ M (red line).

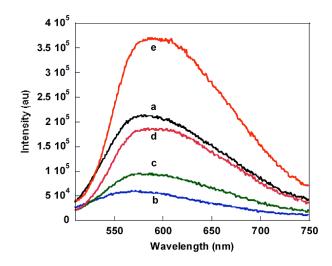


Figure S3: Fluorescence spectra ($\lambda_{ex} = 500 \text{ nm}$) in water: (a) Na⁺-MPS-PPV ([RU] = 1 x 10⁻⁵ M) (black line); (b) Na⁺-MPS-PPV and [mMV⁺] = 3.2 x 10⁻⁷ M (blue line); (c) Na⁺-MPS-PPV, mMV⁺, and [avidin] = 2.4 x 10⁻⁸ M (green line); (d) Na⁺-MPS-PPV, mMV⁺, and [avidin] = 8 x 10⁻⁸ M (pink line); (e) Na⁺-MPS-PPV, mMV⁺, and [avidin] = 2.8 x 10⁻⁷ M (red line).

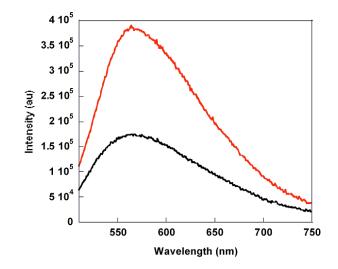


Figure S4: Fluorescence spectra ($\lambda_{ex} = 500 \text{ nm}$) in water: \mathbf{Li}^+ -**MPS-PPV** ([RU] = 1.7 x 10⁻⁵ M) (black line) and \mathbf{Li}^+ -**MPS-PPV** and [Tau] = 1 x 10⁻⁷ M (red line).

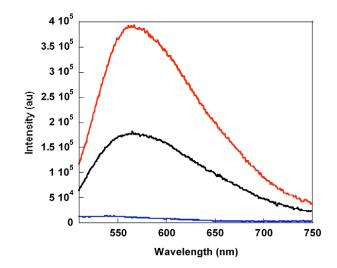


Figure S5: Fluorescence spectra ($\lambda_{ex} = 500 \text{ nm}$) in water: \mathbf{Li}^+ -**MPS-PPV** ([RU] = 1.7 x 10⁻⁵ M) (black line); \mathbf{Li}^+ -**MPS-PPV** and [**BPP**⁺] = 2 x 10⁻⁶ M (blue line); \mathbf{Li}^+ -**MPS-PPV**, **BPP**⁺, and [Tau] = 1 x 10⁻⁷ M (red line).

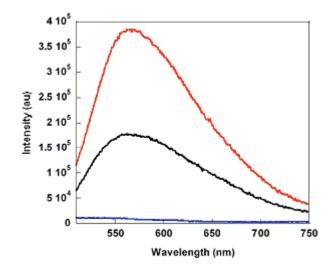


Figure S6: Fluorescence spectra ($\lambda_{ex} = 500 \text{ nm}$) in water: \mathbf{Li}^+ -**MPS-PPV** ([RU] = 1.7 x 10⁻⁵ M) (black line); \mathbf{Li}^+ -**MPS-PPV** and $[\mathbf{mMV}^+] = 2 x 10^{-6} M$ (blue line); \mathbf{Li}^+ -**MPS-PPV**, \mathbf{mMV}^+ , and $[\text{Tau}] = 1 x 10^{-7} M$ (red line).

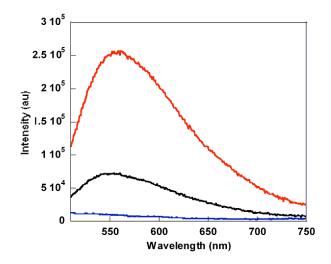


Figure S7: Fluorescence spectra ($\lambda_{ex} = 500 \text{ nm}$) in water: \mathbf{Li}^+ -**MPS-PPV** ([RU] = 1.7 x 10⁻⁵ M) (black line); \mathbf{Li}^+ -**MPS-PPV** and $[\mathbf{mMV}^+] = 2 x 10^{-6} M$ (blue line); \mathbf{Li}^+ -**MPS-PPV**, \mathbf{mMV}^+ , and [pepsin-A] = 3 x 10⁻⁷ M (red line).

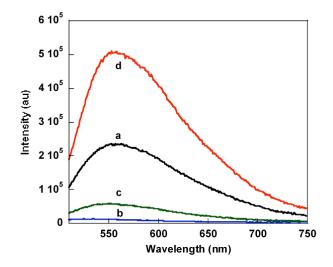


Figure S8: Fluorescence spectra ($\lambda_{ex} = 500 \text{ nm}$) in water: (a) \mathbf{Li}^+ -**MPS-PPV** ([RU] = 1.7 x 10⁻⁵ M) (black line); (b) \mathbf{Li}^+ -**MPS-PPV** and [**BPP**^+] = 2 x 10⁻⁶ M, (blue line); (c) \mathbf{Li}^+ -**MPS-PPV**, **BPP**⁺, and [pepsin-A] = 3 x 10⁻⁷ M (green line); (d) \mathbf{Li}^+ -**MPS-PPV** and [pepsin-A] = 3 x 10⁻⁷ M (red line).

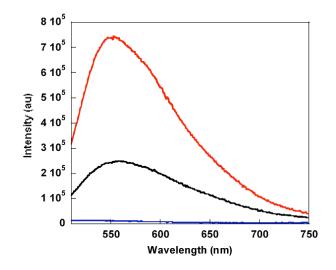


Figure S9: Fluorescence spectra ($\lambda_{ex} = 500 \text{ nm}$) in water: \mathbf{Li}^+ -**MPS-PPV** ([RU] = 1.7 x 10⁻⁵ M) (black line); \mathbf{Li}^+ -**MPS-PPV** and $[\mathbf{mMV}^+] = 2 \times 10^{-6} \text{ M}$ (blue line); \mathbf{Li}^+ -**MPS-PPV**, \mathbf{mMV}^+ , and [BSA] = 3 x 10⁻⁷ M (red line).

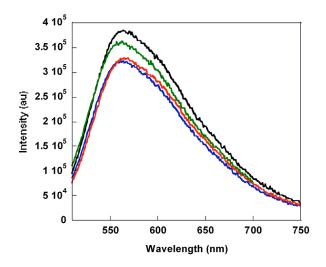


Figure S10: Fluorescence spectra ($\lambda_{ex} = 500 \text{ nm}$) in 0.1M (NH₄)₂CO₃: Li⁺-MPS-PPV ([RU] = 1.7 x 10⁻⁵ M) (black line); Li⁺-MPS-PPV and [BPP⁺] = 2 x 10⁻⁶ M (blue line); Li⁺-MPS-PPV, BPP⁺, and [pepsin-A] = 3 x 10⁻⁷ M (red line); Li⁺-MPS-PPV and [pepsin-A] = 3 x 10⁻⁷ M (green line).

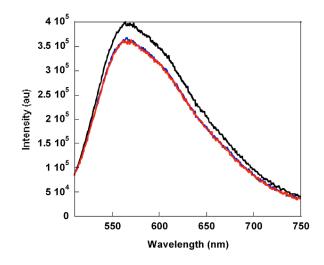


Figure S11: Fluorescence spectra ($\lambda_{ex} = 500 \text{ nm}$) in 0.1M (NH₄)₂CO₃: Li⁺-MPS-PPV ([RU] = 1.7 x 10⁻⁵ M) (black line); Li⁺-MPS-PPV and [mMV⁺] = 2 x 10⁻⁶ M (blue line); Li⁺-MPS-PPV, mMV⁺, and [pepsin-A] = 3 x 10⁻⁷ M (red line).

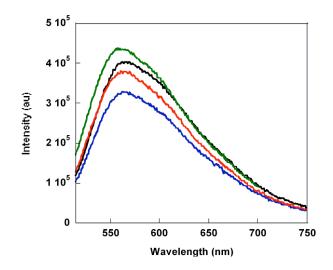


Figure S12: Fluorescence spectra ($\lambda_{ex} = 500 \text{ nm}$) in 0.1M (NH₄)₂CO₃: Li⁺-MPS-PPV ([RU] = 1.7 x 10⁻⁵ M) (black line); Li⁺-MPS-PPV and [BPP⁺] = 2 x 10⁻⁶ M (blue line); Li⁺-MPS-PPV, BPP⁺, and [BSA] = 3 x 10⁻⁷ M (red line); Li⁺-MPS-PPV and [BSA] = 3 x 10⁻⁷ M (green line).

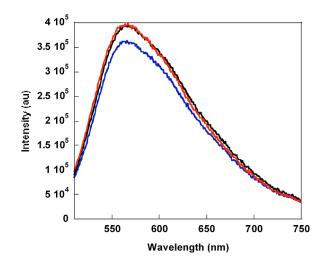


Figure S13: Fluorescence spectra ($\lambda_{ex} = 500 \text{ nm}$) in 0.1M (NH₄)₂CO₃: Li⁺-MPS-PPV ([RU] = 1.7 x 10⁻⁵ M) (black line); Li⁺-MPS-PPV and [mMV⁺] = 2 x 10⁻⁶ M (blue line); Li⁺-MPS-PPV, mMV⁺, and [BSA] = 3 x 10⁻⁷ M (red line).

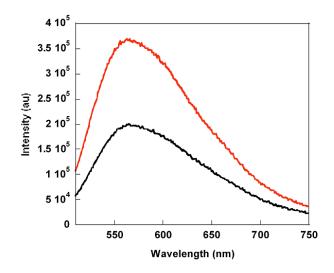


Figure S14: Fluorescence spectra ($\lambda_{ex} = 500 \text{ nm}$) in 0.1 M (NH₄)₂CO₃ at pH 8.9: of Li⁺-**MPS-PPV** ([RU] = 1.7 x 10⁻⁵ M) (black line); Li⁺-**MPS-PPV** and [Tau] = 1 x 10⁻⁷ M (red line).

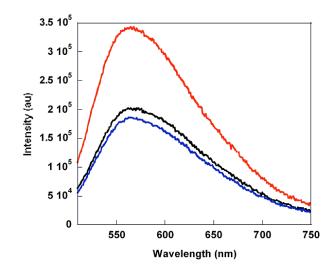


Figure S15: Fluorescence spectra ($\lambda_{ex} = 500 \text{ nm}$) in 0.1 M (NH₄)₂CO₃ at pH 8.9: Li⁺-**MPS-PPV** ([RU] = 1.7 x 10⁻⁵ M) (black line); Li⁺-**MPS-PPV** and [**mMV**⁺] = 2 x 10⁻⁶ M (blue line); Li⁺-**MPS-PPV**, **mMV**⁺, and [Tau] = 1 x 10⁻⁷ (red line).

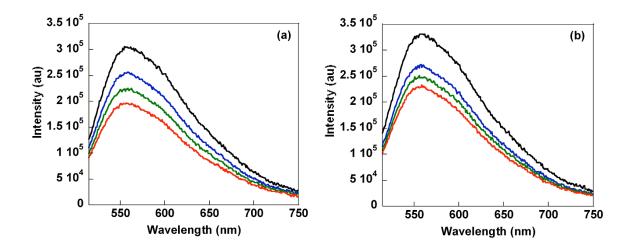


Figure S16: Fluorescence spectra ($\lambda_{ex} = 500 \text{ nm}$) in 0.1 M (NH₄)₂CO₃ at pH 8.9: Li⁺-MPS-PPV ([RU] = 1.7 x 10⁻⁵ M) (black line); Li⁺-MPS-PPV and [BPP⁺] = 2 x 10⁻⁶ M (blue line); Li⁺-MPS-PPV, BPP⁺, and [avidin] = 1 x 10⁻⁷ M avidin (green line); Li⁺-MPS-PPV, BPP⁺, and [avidin] = 2 x 10⁻⁷ M avidin (red line). Figure S16a: Avidin has four vacant biotin binding sites per protein. Figure S16b: Avidin has three vacant biotin binding sites per protein.

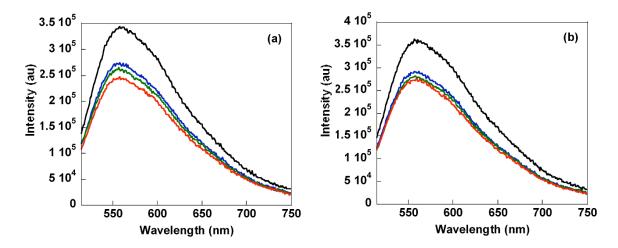


Figure S17: Fluorescence spectra ($\lambda_{ex} = 500 \text{ nm}$) in 0.1 M (NH₄)₂CO₃ at pH 8.9: Li⁺-MPS-PPV ([RU] = 1.7 x 10⁻⁵ M) (black line); Li⁺-MPS-PPV and [BPP⁺] = 2 x 10⁻⁶ M (blue line); Li⁺-MPS-PPV, BPP⁺, and [avidin] = 1 x 10⁻⁷ M avidin (green line); Li⁺-MPS-PPV, BPP⁺, and [avidin] = 2 x 10⁻⁷ M avidin (red line). Figure S17a: Avidin has two vacant biotin binding sites per protein. Figure S17b: Avidin has one vacant biotin binding site per protein.

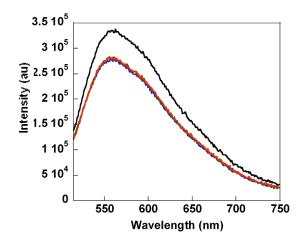


Figure S18: Fluorescence spectra ($\lambda_{ex} = 500 \text{ nm}$) in 0.1 M (NH₄)₂CO₃ at pH 8.9: (a) Li⁺-MPS-PPV ([RU] = 1.7 x 10⁻⁵ M) (black line); (b) Li⁺-MPS-PPV and [BPP⁺] = 2 x 10⁻⁶ M (blue line); (c) Li⁺-MPS-PPV, BPP⁺, and [avidin] = 1 x 10⁻⁷ M avidin (green line); (d) Li⁺-MPS-PPV, BPP⁺, and [avidin] = 2 x 10⁻⁷ M avidin (red line). Avidin used has no vacant biotin binding sites.

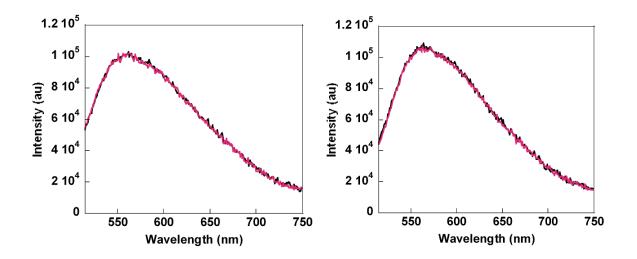


Figure S19: Fluorescence spectra ($\lambda_{ex} = 500 \text{ nm}$) in water (left chart) and 0.1 M (NH₄)₂CO₃ at pH 8.9 (right chart): Li⁺-MPS-PPV ([RU] = 1.7 x 10⁻⁵ M) (black line); Li⁺-MPS-PPV ([RU] = 1.7 x 10⁻⁵ M) (red line) after 15 consecutive scans. Samples were mixed for 4-5 seconds between each scan. Similar results were obtained for Na⁺-MPS-PPV in water and (NH₄)₂CO₃ buffer.