Electron Transfer Through H-bonded Peptide Assemblies

Heinz-Bernhard Kraatz,* Irene Bediako-Amoa, Samuel H. Gyepi-Garbrah and Todd. C. Sutherland

Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan, CANADA S7N 5C9. kraatz@skyway.usask.ca

Supporting Information

Figure 1. Expanded portion of the Amide A region showing exchange of N-H signal due to for Fc-peptide conjugates **1** and **3**. A drop of D_2O was added to $CDCl_3$ solutions of **1** and **3**. For **1**, the H/D exchanged occurred at room temperature over a 90 minute period. Whereas, peptides **2** and **3** required heating of the sample at 58 °C for 30 minutes to obtain complete H/D exchange.

Figure 2. Solution electrochemistry of Fc-Peptides 1 - 3 in 0.1 M TBAP/CH₃CN at a Scan rate of 100 mV·s⁻¹ 1 (), 2 (), 3().

Figure 3. IR spectra (KBr) of peptide 1 - 3.

Figure 4. RAIRS of the Amide A region of **1**.

Figure 5. RAIRS of the Amide A region of **2**.

Figure 6. RAIRS of the Amide A region of 3.

Peptide tilt angles calculation by RAIRS.

$$D_{obs} = \frac{I_1}{I_2} = C \left(\frac{2 \left[\frac{1}{2} (3\cos^2 \gamma - 1) \bullet \frac{1}{2} (3\cos^2 \theta_1 - 1) \right] + 1}{2 \left[\frac{1}{2} (3\cos^2 \gamma - 1) \bullet \frac{1}{2} (3\cos^2 \theta_2 - 1) \right] + 1} \right)$$
(1)

 D_{obs} represents the observed ratio of Amide I and Amide II absorbances and γ , θ_i and C, the tilt angle of the peptide axis from the surface normal, the angle between the transition moment (amide I amide II) and the helix axis, and the scaling constant, respectively. In case of helical peptides the transition moment from the helix axis is reported as 39° of θ_1 and 75° of θ_2 , respectively.^{1,2} The scaling factor, *C*, can be determined from the ratio of Amide I and Amide II absorbance in a KBr pellet as an approximation of a random orientation. As reported in the literature³ for peptidic monolayers the scaling factor is approximated to 1.5.⁴⁻⁶

Collagen melting temperature determination.

Fc-peptides 1, 2 and 3 were fit to the following general sigmoid curve shape using the following formula:

$$y = A_2 + \frac{A_1 - A_2}{1 + e^{-(x - xc)/dx}}$$

where A_2 is the fully H-bonded system and A_1 is the melted peptide. dx is a parameter that accommodates the steepness of the sigmoid and x_c is the melting temperature. Residuals were minimized using the Levenberg-Marquardt algorithm built into Origin 7.0 (OriginLab Corporation, Northampton, MA, USA).

Compound	$\Delta E (mV)$		$\Delta E_{\rm fwhm}$ (mV)	
	H_2O	D_2O	H_2O	D_2O
1	35 (10)	60 (18)	145 (8)	126 (16)
2	40 (7)	40 (15)	140 (12)	110 (10)
3	45 (10)	40 (15)	150 (15)	110 (10)
1^{a}	40 (12)	30 (10)	125 (15)	95 (5)
2^{a}	36 (15)	25 (10)	120 (20)	110 (10)
3 ^a	40 (10)	50 (11)	130 (10)	128 (15)

Table 1. Parameters from CV of the Concentrated and Mixed Monolayers of Fc-peptides in $2 \text{ M} \text{ NaClO}_4 \text{ H}_2\text{O}/\text{D}_2\text{O}$.

^amixed monolayers of Fc-Peptides using hexanethiol

Figure 7. CA results for the calculation of k_{ET} for compound **3** in H₂O and D₂O.

Impedance CNLS fitting: The curve fitting was done using ZSimpWin software (v2.00). All parameters were permitted to float during the curve fitting process. The resultant model chosen (see Figure 4 of main text) has a χ^2 value of 0.002 on a typical data set. Of course inclusion of additional parameters resulted in a slightly lower χ^2 value(~0.001). However, we have chosen to follow the general rule that addition of a parameter should result in a 10 fold decrease in χ^2 value. Equivalent circuit models that contained 4 or fewer parameters resulted in an 8-15 fold increase in χ^2 value.

References

(1) Tsuboi, M. J. Polym. Sci. **1965**, 59, 139.

(2) Kimura, S.; Miura, Y.; Morita, T.; Kobayashi, S.; Imanashi, Y. J. Polym. Sci. Part A: Polym. Chem. 2000, 38, 4826.

(3) Worley, C. G.; Linton, R. W.; Samulski, R. W. *Langmuir* **1995**, *11*, 3805.

(4) Miura, Y.; Kimura, S. *Langmuir* **1999**, *15*, 1155.

(5) Erniquez, E. P.; Gray, K. H.; Guarisco, V. F.; Linton, R. W.; Mar, K. D.; Samulski, E. T. J. Vac. Sci. Technol. **1992**, *10*, 2775.

(6) Miura, Y.; Kimura, S.; Kobayashi, S.; Imanashi, Y.; Uemura, J. *Biopolymers* **2000**, *55*, 391.