Electron Transfer Through H-bonded Peptide Assemblies

Heinz-Bernhard Kraatz, * Irene Bediako-Amoa, Samuel H. Gyepi-Garbrah and Todd. C. Sutherland

Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan, CANADA S7N 5C9. kraatz@ skyway.usask.ca

Supporting Information

Figure 1. Expanded portion of the Amide A region showing exchange of $\mathrm{N}-\mathrm{H}$ signal due to for Fc-peptide conjugates 1 and 3. A drop of $\mathrm{D}_{2} \mathrm{O}$ was added to CDCl_{3} solutions of $\mathbf{1}$ and $\mathbf{3}$. For 1, the H/D exchanged occurred at room temperature over a 90 minute period. Whereas, peptides 2 and $\mathbf{3}$ required heating of the sample at $58{ }^{\circ} \mathrm{C}$ for 30 minutes to obtain complete H / D exchange.

Figure 2. Solution electrochemistry of FcPeptides 1-3 in 0.1 m TBAP/ $\mathrm{CH}_{3} \mathrm{CN}$ at a Scan rate of $\left.100 \mathrm{mV} \cdot \mathrm{s}^{-1} \mathbf{1}(), 2(), \mathbf{3 (}\right)$.

Figure 3. IR spectra (KBr) of peptide $\mathbf{1 - 3}$.

Figure 4. RAIRS of the Amide A region of $\mathbf{1}$.

Figure 6. RAIRS of the Amide A region of $\mathbf{3}$.

Figure 5. RAIRS of the Amide A region of 2.

Peptide tilt angles calculation by RAIRS.
$D_{o b s}=\frac{I_{1}}{I_{2}}=C\left(\frac{2\left[\frac{1}{2}\left(3 \cos ^{2} \gamma-1\right) \bullet \frac{1}{2}\left(3 \cos ^{2} \theta_{1}-1\right)\right]+1}{2\left[\frac{1}{2}\left(3 \cos ^{2} \gamma-1\right) \bullet \frac{1}{2}\left(3 \cos ^{2} \theta_{2}-1\right)\right]+1}\right)$
$D_{\text {obs }}$ represents the observed ratio of Amide I and Amide II absorbances and γ, θ_{i} and C, the tilt angle of the peptide axis from the surface normal, the angle between the transition moment (amide I amide II) and the helix axis, and the scaling constant, respectively. In case of helical peptides the transition moment from the helix axis is reported as 39° of θ_{l} and 75° of θ_{2}, respectively. ${ }^{1,2}$ The scaling factor, C, can be determined from the ratio of Amide I and Amide II absorbance in a KBr pellet as an approximation of a random orientation. As reported in the literature ${ }^{3}$ for peptidic monolayers the scaling factor is approximated to $1.5 .^{4-6}$

Collagen melting temperature determination.

Fc-peptides 1, 2 and $\mathbf{3}$ were fit to the following general sigmoid curve shape using the following formula:

$$
y=A_{2}+\frac{A_{1}-A_{2}}{1+e^{-(x-x c) / d x}}
$$

where A_{2} is the fully H -bonded system and A_{1} is the melted peptide. $d x$ is a parameter that accommodates the steepness of the sigmoid and x_{c} is the melting temperature. Residuals were minimized using the Levenberg-Marquardt algorithm built into Origin 7.0 (OriginLab Corporation, Northampton, MA, USA).

Table 1. Parameters from CV of the Concentrated and Mixed Monolayers of Fc-peptides in $2 \mathrm{~m} \mathrm{NaClO} 4 \mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O}$.

Compound	$\Delta \boldsymbol{E}(\mathbf{m V})$		$\Delta \boldsymbol{E}_{\text {fwhm }}$ $(\mathbf{m V})$	
$\mathbf{1}$	$35(10)$	$60(18)$	$145(8)$	$126(16)$
$\mathbf{2}$	$40(7)$	$40(15)$	$140(12)$	$110(10)$
$\mathbf{3}$	$45(10)$	$40(15)$	$150(15)$	$110(10)$
$\mathbf{1}^{\mathrm{a}}$	$40(12)$	$30(10)$	$125(15)$	$95(5)$
$\mathbf{2}^{\mathrm{a}}$	$36(15)$	$25(10)$	$120(20)$	$110(10)$
$\mathbf{3}^{\mathrm{a}}$	$40(10)$	$50(11)$	$130(10)$	$128(15)$

amixed monolayers of Fc -Peptides using hexanethiol

Figure 7. CA results for the calculation of k_{ET} for compound $\mathbf{3}$ in $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{D}_{2} \mathrm{O}$.

Impedance CNLS fitting: The curve fitting was done using ZSimpWin software (v2.00). All parameters were permitted to float during the curve fitting process. The resultant model chosen (see Figure 4 of main text) has a χ^{2} value of 0.002 on a typical data set. Of course inclusion of additional parameters resulted in a slightly lower χ^{2} value(~ 0.001). However, we have chosen to follow the general rule that addition of a parameter should result in a 10 fold decrease in χ^{2} value. Equivalent circuit models that contained 4 or fewer parameters resulted in an 8-15 fold increase in χ^{2} value.

References

(1) Tsuboi, M. J. Polym. Sci. 1965, 59, 139.
(2) Kimura, S.; Miura, Y.; Morita, T.; Kobayashi, S.; Imanashi, Y. J. Polym. Sci. Part A. Polym. Chem. 2000, 38, 4826.
(3) Worley, C. G.; Linton, R. W.; Samulski, R. W. Langmuir 1995, 11, 3805.
(4) Miura, Y.; Kimura, S. Langmuir 1999, 15, 1155.
(5) Erniquez, E. P.; Gray, K. H.; Guarisco, V. F.; Linton, R. W.; Mar, K. D.; Samulski, E. T. J. Vac. Sci. Technol. 1992, 10, 2775.
(6) Miura, Y.; Kimura, S.; Kobayashi, S.; Imanashi, Y.; Uemura, J. Biopolymers 2000, 55, 391.

