Total Synthesis of Pyranicin

Daniel Strand and Tobias Rein

Supporting information

Table of contents

General methodology S-2
Preparation of $\mathbf{2 0}$ and 21 S-3
Preparation of and analytical data for compounds 33, 34, 22, S-4
23, 24, 25, 5a, 26, 35, 27, 28, 3a, 36, 4a, 37, 10, 12, 14, 15,16, 17, 18, 2a, 32, 38 and 1Determination of the relative configuration of the stereocentersof the THP-rings in $\mathbf{1 2}$ and 13.S-22
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for compounds 33, 34, 22, S-25
23, 24, 25, 5a, 26, 35, 27, 28, 3a, 36, 4a, 37, 10, 12, 14, 15,
16, 17, 18, 2a, 32, 38 and 1

General methodology. All solvents were distilled before use unless otherwise stated. Diethyl ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)$ and tetrahydrofuran (THF) were distilled from sodium/benzophenone under a nitrogen atmosphere. Dichloromethane (DCM), dichloroethane (DCE), toluene and triethylamine $\left(\mathrm{Et}_{3} \mathrm{~N}\right)$ were distilled from CaH_{2} under a nitrogen atmosphere. All reactions were carried out in oven-dried or flame-dried glassware and under a nitrogen atmosphere unless water was used as a reaction medium. For reactions run in sealed vessels a thick-walled testtube fitted with a screw cap was used. Commercially available compounds were used without further purification unless otherwise indicated. Potassium and sodium hexamethyldisilazide (KHMDS, NaHMDS) were purchased as stock solutions ($0.5 \mathrm{M}, 0.6 \mathrm{M}$ in toluene respectively) and titrated according to the method of Ireland and Meissner. ${ }^{1}$ 18-crown-6 was recrystallized from anhydrous acetonitrile and dried under vacuum. Neocuproine was sublimated at $120^{\circ} \mathrm{C}, 0.01 \mathrm{mmHg}$. Zinc triflate was dried at 0.01 mmHg using a heat gun for 5 min . Acrolein dimer was bulb-to-bulb distilled, oven temperature $60^{\circ} \mathrm{C}, 0.15 \mathrm{mmHg}$. LDA was purchased as a stock solution (2 M) in THF/heptane/ethyl benzene. TLC analyses were performed on aluminium-backed F_{254} silica gel plates, using UV and a solution of 5\% phosphomolybdic acid in ethanol for visualisation. Flash chromatography was performed as described by Still and coworkers ${ }^{2}$ using silica gel $60(40-63 \mu \mathrm{~m})$. Proton $\left({ }^{1} \mathrm{H}\right)$ and carbon $\left({ }^{13} \mathrm{C}\right)$ NMR spectra were recorded on a 400 or 500 MHz instrument using the residual signals from $\mathrm{CHCl}_{3}, \delta 7.26 \mathrm{ppm}$ and $\delta 77.0 \mathrm{ppm}$, as internal references for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ respectively. IR-spectra were recorded from DCM films using NaCl plates. Optical rotations were determined using the sodium-D line (589 nm).

(1R,2S,5R)-5-Methyl-2-(1-methyl-1-phenylethyl)cyclohexyl (2E)-3-[(2R)-3,4-dihydro-2H-pyran-2-yl]acrylate (16) and ($1 R, 2 S, 5 R$)-5-methyl-2-(1-methyl-1-phenylethyl)cyclohexyl (2Z)-3-[(2S)-3,4-dihydro-2H-pyran-2-yl]acrylate (20). To a stirred solution of phosphonate $19(1.97 \mathrm{~g}, 3.80 \mathrm{mmol})$ and 18 -crown-6 $(2.61 \mathrm{~g}, 9.88 \mathrm{mmol})$ in THF $(150 \mathrm{~mL})$ was added KHMDS ($7.24 \mathrm{~mL}, 3.62 \mathrm{mmol}, 0.5 \mathrm{M}$ in toluene) dropwise at $-78^{\circ} \mathrm{C}$. The resulting solution was stirred for 30 min and then added via a cannula to a precooled solution of acrolein dimer
rac- $7(533 \mathrm{mg}, 4.94 \mathrm{mmol})$ in THF $(70 \mathrm{~mL})$ over 5 h at $-78{ }^{\circ} \mathrm{C}$. After an additional 2 h the reaction was quenched by addition of $\mathrm{AcOH}(1 \mathrm{M}, \mathrm{MeOH})$ followed by phosphate buffer (pH 7) and partitioned between EtOAc and phosphate buffer (pH 7). The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to afford a crude oil. Purification by flash chromatography (3.13-6.25\% EtOAc in heptane) afforded a 60:40 mixture of (2Z,4S)-21 and $(2 E, 4 R)-\mathbf{2 0}$ as a clear oil $(1.54 \mathrm{~g}, 77 \%$ based on $\mathbf{1 9})$: $d r \mathbf{2 1},(2 Z, 4 S):(2 Z, 4 R)=96: 4 ; \mathbf{2 0}$, $(2 E, 4 R):(2 E, 4 S)=98: 2 .^{3}$

General procedure for preparation of hemiacetals 33 and 34. To a solution of vinyl ether 20 or 21 (or a mixture of the two) in THF (0.02 M) was added p-toluenesulfonic acid monohydrate (5.0 equiv., 0.4 M in water) dropwise over 30 min at $0^{\circ} \mathrm{C}$. The resulting solution was heated at $32 \pm 2{ }^{\circ} \mathrm{C},{ }^{4}$ and stirred for 20 h . The reaction was quenched by addition of $\mathrm{NaOH}(2 \mathrm{M}, \mathrm{aq})$ and partitioned between EtOAc and $\mathrm{NaOH}(2 \mathrm{M}, \mathrm{aq})$ followed by repeated basic wash until the aqueous phase was clearly basic (tested with pH paper). The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to afford a crude oil. Purification by flash chromatography ($12.5-25 \% \mathrm{EtOAc} /$ heptane) afforded the hemiacetals (clear oils) as inseparable diastereomeric mixtures. Isolated yields were 81% from 20, 89% from 21 and 85% from a mixture.

(1R,2S,5R)-5-Methyl-2-(1-methyl-1-phenylethyl)cyclohexyl
(2E)-3-[(2R,6RS)-6-
hydroxytetrahydro-2H-pyran-2-yl]acrylate (33). Diastereomeric ratio (major epimer/minor epimer) $=67: 33 ;[\alpha]_{\mathrm{D}}{ }^{23}-0.75(\mathrm{c}=1.0, \mathrm{DCM})$; IR (film) 3411 (br s), $2950(\mathrm{~s}), 2869(\mathrm{~m}), 1710$ (s), 1658 (m), 1442 (m), 1442 (m), 1297 (s$), 1270(\mathrm{~s}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28$ $7.18(\mathrm{~m}, 4 \mathrm{H}), 7.13-7.03(\mathrm{~m}, 1 \mathrm{H}), 6.56-6.61(\mathrm{~m}, 1 \mathrm{H}), 5.60-5.46(\mathrm{~m}, 1 \mathrm{H}), 5.32(\mathrm{~s}, 1 \mathrm{H}$ major epimer), 4.83 (dt, $J=10.7,4.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.74 (ddd, $J=9.3,2.0,6.3 \mathrm{~Hz}, 1 \mathrm{H}$ minor epimer), $4.50(\mathrm{tdd}, J=11.6,2.0,4.2,1 \mathrm{H}$ major epimer), $4.00(\mathrm{tdd}, J=11.4,4.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}$ minor epimer), 2.84 (d, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}$ minor epimer), 2.45 (dd, $J=3.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}$ major epimer), 2.08-0.57 (m, 14H), $1.28(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 0.83(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100.6
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.7,165.6,151.1,147.6,146.2,127.8,125.2,124.8,120.6,120.2,96.2$, $91.5,74.5,74.39,74.35,67.3,50.3,41.5,39.6,34.3,32.0,31.7,31.1,30.3,29.6,29.3,28.8$, 26.6, 26.5, 26.1, 22.5, 21.8, 21.6, 17.1, 14.0; HRMS (FAB, M+Na ${ }^{+}$) calcd for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{Na}$ 409.2355, found 409.2352.

(1R,2S,5R)-5-Methyl-2-(1-methyl-1-phenylethyl)cyclohexyl
(2Z)-3-[(2S,6RS)-6-hydroxytetrahydro-2H-pyran-2-yl]acrylate (34). Diastereomeric ratio (major epimer/minor epimer) $=67: 33 ;[\alpha]_{\mathrm{D}}{ }^{23}+14.5(\mathrm{c}=1.0, \mathrm{DCM})$; IR (film) 3407 (br s), 2952 (s), 2874 (s), 1712 (s), 1650 (m), 1415 (m), 1186 (s); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-7.19(\mathrm{~m}, 4 \mathrm{H}), 7.16-$ $7.08(\mathrm{~m}, 1 \mathrm{H}), 6.05(\mathrm{dd}, \mathrm{J}=11.7,7.3 \mathrm{~Hz}$, 1H major epimer), $5.97(\mathrm{dd}, \mathrm{J}=11.7,7.5 \mathrm{~Hz}, 1 \mathrm{H}$ minor epimer), 5.51-5.41 (m, 1H minor epimer), $5.29(\mathrm{~s}, 1 \mathrm{H}$ minor epimer), 5.16-4.90 ($\mathrm{m}, 1 \mathrm{H}$ plus 1 H major epimer), 4.88-4.66 ($\mathrm{m}, 1 \mathrm{H}$ plus 1 H major epimer), 3.58 (br s, 1 H major epimer), 2.86 (br s, 1 H minor epimer), $2.08-0.56(\mathrm{~m}, 23 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.3$, $165.2,151.8,149.5,148.7,128.4,125.85,125.81,125.5,120.2,119.8,96.3,92.1,74.7,74.6$, 74.1, 66.8, 50.9, 42.1, 40.17, 40.11, 34.9, 32.6, 32.3, 31.8, 30.5, 29.8, 29.6, 29.4, 28.1, 27.9, $27.08,27.05,25.9,25.6,23.1,22.5,22.2,17.5,14.5$; HRMS (FAB, M+H ${ }^{+}$) calcd for $\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{O}_{4} 387.2535$, found 387.2547 .

General procedure for HWE reactions with hemiacetals 33 and 34. To a solution of $(\mathrm{EtO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Bn}^{5}$ (5.0 equiv., 0.4 M) in THF at $0^{\circ} \mathrm{C}$ was added LiHMDS (1.5 equiv., 1.0 M in toluene). After 1 h the resulting solution was transferred via a cannula to a precooled solution of hemiacetal $\mathbf{3 3}$ or $\mathbf{3 4}$ (or a mixture of the two) in THF (1.0 equiv., 0.1 M) and stirred at this temperature for 14 h . The reaction was then quenched with phosphate buffer (pH 7) and partitioned between EtOAc and phosphate buffer (pH 7). The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to afford a crude oil. Purification by flash chromatography ($12.5-25 \% \mathrm{EtOAc} / \mathrm{heptane}$) furnished the olefinated product as a clear oil. Isolated yields were 81% from $\mathbf{3 3}$, 74% from 34 and 80% from a mixture.

10-Benzyl 1-[(1R,2S,5R)-5-methyl-2-(1-methyl-1-phenylethyl)cyclohexyl] (2E,4R,8E)-4-hydroxydeca-2,8-dienedioate (22). $[\alpha]_{\mathrm{D}}{ }^{23}+1.5$ ($\mathrm{c}=1.0$, DCM); IR (film) 3455 (br, s), 2952 (s), 2919 (s), 1714 (s), 1652 (s), 1267 (m), 1174 (m); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.29$ $(\mathrm{m}, 5 \mathrm{H}), 7.29-7.20(\mathrm{~m}, 5 \mathrm{H}), 7.12-7.05(\mathrm{~m}, 1 \mathrm{H}), 6.99(\mathrm{td}, J=15.6,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{dd}, J=$ $15.7,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{td}, J=15.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{dd}, J=15.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~s}$, $1 \mathrm{H}), 5.17,(\mathrm{~s}, 2 \mathrm{H}), 4.85(\mathrm{dt}, J=10.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.24(\mathrm{dd}, J=12.4,6.3 \mathrm{~Hz}$, $2 \mathrm{H}), 2.11-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.08(\mathrm{~m}, 1 \mathrm{H}), 1.79-0.79(\mathrm{~m}, 9 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 0.87$ $(\mathrm{d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.7,165.8,152.2,149.4,148.9,136.5$, $128.9,128.6,128.5,128.3,125.8,125.1,121.9,121.4,74.8,71.2,66.5,50.8,42.0,40.1,36.1$, $34.9,32.3,31.7,30.1,28.4,26.9,25.2,24.0,22.2$; HRMS (FAB, $\mathrm{M}^{+} \mathrm{H}^{+}$) calcd for $\mathrm{C}_{33} \mathrm{H}_{43} \mathrm{O}_{5}$ 519.3110, found 519.3114 .

10-Benzyl 1-[(1R,2S,5R)-5-methyl-2-(1-methyl-1-phenylethyl)cyclohexyl] (2Z,4S,8E)-4-hydroxydeca-2,8-dienedioate (23). $[\alpha]_{\mathrm{D}}{ }^{23}+3.1$ (c =1.0, DCM); IR (film) 3440 (br, m), 2950 (s), 2923 (s), 1712 (s), 1650 (m), 1182 (s); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.32(\mathrm{~m}, 4 \mathrm{H})$, $7.31-7.23(\mathrm{~m}, 5 \mathrm{H}), 7.17-7.10(\mathrm{~m}, 1 \mathrm{H}), 7.05(\mathrm{td}, J=15.6,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{dd}, J=11.9,6.9$ $\mathrm{Hz}, 1 \mathrm{H}), 5.92(\mathrm{td}, J=15.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{~s}, 1 \mathrm{H}), 5.21-5.16(\mathrm{~m}, 1 \mathrm{H}), 5.19(\mathrm{~s}, 2 \mathrm{H}), 4.84$ (dt, $J=10.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{dd}, J=11.9,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.29(\mathrm{q}, J=6.6 \mathrm{~Hz}$, $2 \mathrm{H}), 2.06$ (ddd, $J=12.6,10.9,3.7 \mathrm{~Hz}, 1 \mathrm{H}) ; 1.79-0.80(\mathrm{~m}, 10 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H})$, $0.87(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.4,165.9,151.5,151.0,149.5$, $128.5,128.1,128.0,127.9,125.3,124.9,121.2,121.0,74.8,67.6,66.0,50.5,41.6,39.6,35.7$,
34.5, 32.0, 31.3, 28.0, 26.5, 24.7, 23.7, 21.7; HRMS (FAB, M+H ${ }^{+}$) calcd for $\mathrm{C}_{33} \mathrm{H}_{43} \mathrm{O}_{5}$ 519.3110 , found 519.3114 .

General procedure for the preparation of diphenylphosphinate esters. To a stirred solution of $\mathbf{2 2}$ or $\mathbf{2 3}$ (or a mixture of the two) in DCE/THF ($0.1 \mathrm{M}, 1: 1$) was added imidazole (5 equiv.) followed by dropwise addition of diphenylphosphinic chloride (3 equiv.) at room temperature. The resulting slurry was stirred at $60^{\circ} \mathrm{C}$ for 16 h , then quenched with phosphate buffer (pH 7) and partitioned between DCM and phosphate buffer (pH 7). The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to afford a crude oil. Purification by flash chromatography ($25-37.5 \% \mathrm{EtOAc} /$ heptane) afforded the phosphinate esters. Isolated yields were 91% from 22, 86% from 23 and 96% from a mixture.

10-Benzyl 1-[(1R,2S,5R)-5-methyl-2-(1-methyl-1-phenylethyl)cyclohexyl] (2E,4R,8E)-4-[(diphenylphosphoryl)oxy]deca-2,8-dienedioate (24). $[\alpha]_{\mathrm{D}}{ }^{23}+34.8$ ($\left.\mathrm{c}=1.0, \mathrm{DCM}\right)$; IR (film) 3060 (m), 2952 (s), 2925 (s), 1714 (s), 1654 (m), 1438 (m); ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.82-7.70(\mathrm{~m}, 4 \mathrm{H}), 7.56-7.14(\mathrm{~m}, 16 \mathrm{H}), 7.00(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{td}, J=15.4$, $6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{dd}, J=15.7,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{dd}, J=15.6,0.9$ $\mathrm{Hz}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 2 \mathrm{H}), 4.93(\mathrm{qd}, J=12.4,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{dt}, J=10.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{q}$, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.03-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.86(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.80-0.74(\mathrm{~m}, 9 \mathrm{H}), 1.27(\mathrm{~s}$, $3 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.6,165.3$, 151.7, 149.1, 144.9, 144.8, 136.4, 132.8, 132.7, 132.2, 132.1, 131.8, 131.7, 129.0, 128.91, $128.87,128.8,128.6,128.5,128.3,125.8,125.4,123.2,121.9,75.1,74.5,74.4,66.5,50.8$, $42.0,40.1,35.4,35.4,34.9,32.1,31.7,27.5,27.0,26.3,23.1,22.2$; HRMS (FAB, M+H ${ }^{+}$) calcd for $\mathrm{C}_{45} \mathrm{H}_{52} \mathrm{O}_{6} \mathrm{P} 719.3502$, found 719.3527.

10-Benzyl 1-[(1R,2S,5R)-5-methyl-2-(1-methyl-1-phenylethyl)cyclohexyl] (2Z,4S,8E)-4-[(diphenylphosphoryl)oxy]deca-2,8-dienedioate (25). $[\alpha]_{\mathrm{D}}{ }^{23}+1.2$ ($\mathrm{c}=1.0$, DCM); IR (film) 3058 (m), 2952 (s), 2925 (s), 1714 (s), 1652 (m), 1440 (m), 1230 (s), 1199 (s); ${ }^{1}$ H NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.87-7.72(\mathrm{~m}, 4 \mathrm{H}), 7.50-7.16(\mathrm{~m}, 16 \mathrm{H}), 7.13-7.07(\mathrm{~m}, 1 \mathrm{H}), 7.02(\mathrm{td}, J=15.4$, $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{dd}, J=11.6,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.92-5.83(\mathrm{~m}, 1 \mathrm{H})$, 5.18 (s, 2H), $4.95(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{dt}, J=10.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{q}, J=7.0 \mathrm{~Hz}$, 2 H), 2.03-1.85 (m, 2H), 1.82-0.78 (m, 9H), 1.24 (s, 3H), 1.18 (s, 3H), 0.91 (d, $J=6.5 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.7,164.6,151.8,149.7,147.6,147.5,136.5,132.58$, $132.54,132.52,132.2,132.1,132.0,131.9,131.5,131.4,128.9,128.86,128.84,128.7,128.6$, $128.5,128.3,125.7,125.4,121.7,120.6,74.6,73.09,73.05,66.4,50.8,42.0,40.0,35.76$, $35.72,34.9,32.1,31.6,28.3,26.9,25.3,23.7,22.3$; HRMS (FAB, $\mathrm{M}^{+} \mathrm{H}^{+}$) calcd for $\mathrm{C}_{45} \mathrm{H}_{52} \mathrm{O}_{6} \mathrm{P} 719.3502$, found 719.3506.

10-Benzyl 1-[(1R,2S,5R)-5-methyl-2-(1-methyl-1-phenylethyl)cyclohexyl] (2E,4R,8E)-4-[2-(trimethylsilyl)ethoxy]deca-2,8-dienedioate (5a). Neocuproine ($427 \mathrm{mg}, 0.608 \mathrm{mmol}$) and $\mathrm{Pd}_{2} \mathrm{dba}_{3}(15.7 \mathrm{mg}, 0.015 \mathrm{mmol})$ were dissolved in $\mathrm{DCM}(1 \mathrm{~mL})$ at rt and stirred for 30 minutes. The resulting clear orange-red solution was transferred to a stirred solution of $\mathbf{2 4}$ or 25 (or a mixture of the two), dissolved in 2-(trimethylsilyl)ethanol (2 mL) and DCM (1 mL) at rt . The resulting clear yellow solution was then stirred at rt for 3 h during which time the colour changed to light brown. The reaction mixture was poured onto phosphate buffer (pH 7) and partitioned between DCM and phosphate buffer (pH 7). The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$ followed by removal of DCM under reduced pressure. Recovery of 2(trimethylsilyl)ethanol was accomplished using bulb-to-bulb distillation ($0.01 \mathrm{mmHg}, 60^{\circ} \mathrm{C}$)
to give $1.50 \mathrm{~g}, 80 \%$. Repeated purification by flash chromatography ($10 \% \mathrm{Et}_{2} \mathrm{O} /$ heptane) furnished the $(2 E, 8 E)$-diene as a clear oil $(263.4 \mathrm{mg}, 72 \%)$: Diastereomeric ratio $(4 R):(4 S)=$ 97:3; $[\alpha]_{\mathrm{D}}{ }^{23}+16.4$ (c = 1.0, DCM); IR (film) $3058(\mathrm{w}), 2952(\mathrm{~s}), 2925(\mathrm{~s}), 1714(\mathrm{~s}), 1652(\mathrm{~m})$, $1440(\mathrm{~m}), 1230(\mathrm{~m}), 1230(\mathrm{~s}), 1199(\mathrm{~s}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.20(\mathrm{~m}, 9 \mathrm{H})$, 7.13-7.07 (m, 1H), $7.01(\mathrm{td}, J=15.6,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{dd}, J=15.8,6.5 \mathrm{~Hz}, 1 \mathrm{H}$ major diastereomer), $6.35(\mathrm{dd}, J=15.8,6.3 \mathrm{~Hz}, 1 \mathrm{H}$ minor diastereomer), $5.89(\mathrm{td}, J=15.6,1.5,1 \mathrm{H})$, $5.44(\mathrm{dd}, J=15.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~s}, 2 \mathrm{H}), 4.87(\mathrm{dt}, J=10.7,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{q}, J=5.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.49$ (ddd, $J=10.1,9.4,6.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.29 (ddd, $J=10.2,9.4,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.18$ (m, 2H), 2.03 (ddd, $J=12.3,10.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.96-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.76-0.74(\mathrm{~m}, 12 \mathrm{H}), 1.31$ $(\mathrm{s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.00(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $167.7,166.7,152.7,150.6,149.3,137.4,129.8,129.55,129.50,129.2,126.7,126.3,123.6$, $122.7,79.4,75.9,67.9,67.4,51.8,43.0,41.1,35.9,35.8,33.4,32.6,28.3,28.0,27.4,25.1$, 23.1, 19.7, 0.0; HRMS (FAB, M+H ${ }^{+}$) calcd for $\mathrm{C}_{38} \mathrm{H}_{54} \mathrm{O}_{5} \mathrm{Si}$ 619.3819, found 619.3822.

(4R)-4-[2-(Trimethylsilyl)ethoxy]decanedioic acid 1-[(1R,2S,5R)-5-methyl-2-(1-methyl-1phenylethyl)cyclohexyl] ester (26). To a solution of diene 5a ($20.0 \mathrm{mg}, 0.032 \mathrm{mmol}$) in hexanes (2.5 mL) was added palladium ($10 \mathrm{wt} . \%$ on activated carbon, cat.) under a nitrogen atmosphere and the atmosphere was then changed to hydrogen (purged 5 times). After 48 h at rt , the reaction was passed through a short plug of celite and concentrated in vacuo. Purification by flash chromatography ($12.5-25 \% \mathrm{EtOAc} /$ heptane) furnished the saturated acid 26 as a clear oil ($15.3 \mathrm{mg}, 90 \%$): $[\alpha]_{\mathrm{D}}{ }^{23}+0.15$ (c = 1.0, DCM); IR (film) 3058 (br, m), 2950 (s), 2923 (s), 1727 (s), 1710 (s); 1247 (s), 1174 (s), 1091 (s); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ The acid proton is not reported, $7.31-7.22(\mathrm{~m}, 4 \mathrm{H}), 7.15-7.08(\mathrm{~m}, 1 \mathrm{H}), 4.81(\mathrm{dt}, J=10.7,4.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.48-3.36(\mathrm{~m}, 2 \mathrm{H}), 3.14-3.05(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.03-1.96(\mathrm{~m}, 1 \mathrm{H})$, $1.92-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.79-0.75(\mathrm{~m}, 19 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 0.85(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$, 0.00 (s, 9H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.2,173.0,151.68,151.62,127.8,125.3$, $124.9,77.8,73.9,65.9,50.3,41.8,39.7,34.5,33.8,33.6,31.2,30.2,29.2,28.6,27.7,26.5$,
25.1, 25.0, 24.6, 21.7, 18.6, -1.3; HRMS (FAB, M+H ${ }^{+}$) calcd for $\mathrm{C}_{31} \mathrm{H}_{53} \mathrm{O}_{5} \mathrm{Si} 533.3662$, found 533.3663 .

(1R,2S,5R)-5-Methyl-2-(1-methyl-1-phenylethyl)cyclohexyl
(4R)-10-hydroxy-4-[2(trimethylsilyl)ethoxy]decanoate (35). To a solution of $26(475 \mathrm{mg}, 0.029 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{BH}_{3} \cdot \mathrm{DMS}(90 \mu \mathrm{~L}, \mathrm{mmol}, 1.0 \mathrm{M}$ in DCM$)$. The temperature was raised to rt over 12 h and the reaction was quenched by careful addition of phosphate buffer (pH 7). The resulting solution was partitioned between EtOAc and phosphate buffer (pH 7). The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to afford a crude oil. Purification by flash chromatography (12.5-25\% EtOAc/heptane) furnished the reduced product 35 as a clear oil (460 mg , quant.): $[\alpha]_{\mathrm{D}}{ }^{23}-1.32$ ($\mathrm{c}=0.87, \mathrm{DCM}$); IR (film) 3429 (br, s), 2938 (s), 2856 (s), 1727 (s), 1456 (m), 1248 (m), 1177 (m), 1091 (m); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.15-7.10(\mathrm{~m}, 1 \mathrm{H}), 4.81(\mathrm{dt}, J=10.7,4.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.64(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.48-3.37(\mathrm{~m}, 2 \mathrm{H}), 3.14-3.06(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.79$ $(\mathrm{m}, 2 \mathrm{H}), 1.78-0.77(\mathrm{~m}, \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 0.00(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 173.1,151.6,127.8,125.3,124.9,77.8,73.9,65.9,63.0,50.3,41.7,39.6,34.5,33.7$, 32.7, 31.2, 30.2, 29.5, 28.6, 27.7, 26.5, 25.7, 25.3, 25.1, 21.7, 18.6, -1.3; HRMS (FAB, $\mathrm{M}+\mathrm{H}^{+}$) calcd for $\mathrm{C}_{31} \mathrm{H}_{55} \mathrm{O}_{4} \mathrm{Si} 519.3870$, found 519.3873.

(1R,2S,5R)-5-Methyl-2-(1-methyl-1-phenylethyl)cyclohexyl
(4R)-10-0x0-4-[2(trimethylsilyl)ethoxy]decanoate (27). Dess-Martin periodinane ($508 \mathrm{mg}, 1.20 \mathrm{mmol}$) was added in one portion to a solution of $35(478 \mathrm{mg}, 0.92 \mathrm{mmol})$ and pyridine $(15 \mu \mathrm{~L}, 0.18$ $\mathrm{mmol})$ in DCM (8 mL) at $0{ }^{\circ} \mathrm{C}$. The resulting suspension was stirred for 4 h followed by
addition of $\mathrm{NaOH}(2 \mathrm{M}, \mathrm{aq})$. After stirring for an additional 5 min the reaction was partitioned between DCM and water. The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to afford a crude oil. Purification by flash chromatography (6.25% EtOAc/heptane) afforded aldehyde 27 as a clear oil ($392 \mathrm{mg}, 82 \%$): $[\alpha]_{\mathrm{D}}{ }^{23}-1.2$ ($\mathrm{c}=1.0$, DCM); IR (film) 2950 (s), 2929 (s), 2863 (m), 1727 (s), 1247 (m), 1174 (m), 1089 (m); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.80(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.15(\mathrm{~m}, 1 \mathrm{H}), 4.84(\mathrm{dt}$, $J=10.7,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~m}, 2 \mathrm{H}), 3.13(\mathrm{~m}, 1 \mathrm{H}), 2.46(\mathrm{dt}, J=7.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{~m}$, $1 \mathrm{H}), 1.96-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.82-0.81(\mathrm{~m}, 23 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100.6 MHz, CDCl_{3}) $\delta 203.1,173.4,152.0,128.2,125.8,125.4,78.2,74.4,66.4,50.7,44.2$, $42.2,40.1,34.9,34.1,32.3,31.7,30.6,29.7,29.1,28.1,27.0,25.6,25.5,23.1,22.4,22.2$, 19.0, 14.5, -0.9; HRMS (ES+, M+Na ${ }^{+}$) calcd for $\mathrm{C}_{31} \mathrm{H}_{52} \mathrm{NaO}_{4} \mathrm{Si} 539.3532$, found 539.3533.

(1R,2S,5R)-5-Methyl-2-(1-methyl-1-phenylethyl)cyclohexyl (4R,10R)-10-hydroxy-12-(trimethylsilyl)-4-[2-(trimethylsilyl)ethoxy]dodec-11-ynoate (28). To a solution of zinc triflate $(79.7 \mathrm{mg}, 0.21 \mathrm{mmol})$ and $(1 R, 2 S)-N-(+)$-methylephedrine $(46.9 \mathrm{mg}, 0.26 \mathrm{mmol})$ in toluene $(1 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(73 \mu \mathrm{~L}, 0.52 \mathrm{mmol})$ through a septum ${ }^{6}$. The resulting slurry was stirred 1 h 45 min and then trimethylsilylacetylene ($246 \mu \mathrm{~L}, 1.744 \mathrm{mmol}$) was added. After 15 min a solution of aldehyde $27(90 \mathrm{mg}, 0.17 \mathrm{mmol})$ in toluene $(1 \mathrm{~mL})$ was added via a cannula (rinsed with 0.5 mL toluene). The reaction vessel was then sealed with a screw cap and heated to $60^{\circ} \mathrm{C}$. After 20 h the reaction mixture was evaporated onto silica. Purification by flash chromatography ($12.5-25 \% \mathrm{EtOAc} /$ heptane) afforded propargylic alcohol 28 as a clear oil ($80 \mathrm{mg}, 75 \%$): Diastereomeric ratio $(10 R: 10 S)=98: 2 ;^{7}[\alpha]_{\mathrm{D}}{ }^{23}-2.8(\mathrm{c}=1.0, \mathrm{DCM})$; IR (film) 3436 (br, s), 2952 (s), 2929 (s), 2961 (s), 2169 (w), 1727 (s), 1249 (s), 1174 (m), $840(\mathrm{~s}) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.33-7.27 (m, 4H), 7.18-7.11 (m, 1H), $4.84(\mathrm{dt}, J=$ $10.7,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.52-3.40(\mathrm{~m}, 2 \mathrm{H}), 3.17-3.08(\mathrm{~m}, 1 \mathrm{H}), 2.06-1.98$ $(\mathrm{m}, 1 \mathrm{H}), 1.97-0.81(\mathrm{~m}, 27 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 0.20(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.5,152.0,128.3,125.8,125.4,107.2,89.7,78.3,74.3,66.3,63.2$,
50.7, 42.2, 40.1, 38.1, 34.9, 34.2, 31.7, 30.7, 29.8, 29.1, 28.1, 27.0, 25.7, 25.6, 25.5, 22.2, 19.0, 0.3, -0.8 ; HRMS (FAB, M+H ${ }^{+}$) calcd for $\mathrm{C}_{36} \mathrm{H}_{63} \mathrm{O}_{4} \mathrm{Si}_{2} 615.4265$, found 615.4269.

(5S)-3-\{(2R,8R)-8-Hydroxy-2-[2-(trimethylsilyl)ethoxy]dec-9-yn-1-yl\}-5-methylfuran-
$\mathbf{2 (5 H)}$-one (3a). To a solution of ester $28(100 \mathrm{mg}, 0.17 \mathrm{mmol})$ in THF $(5 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added LDA ($249 \mu \mathrm{~L}, 0.499 \mathrm{mmol}, 2 \mathrm{M}$). The resulting mixture was stirred for 35 min and a pre-cooled solution $\left(-78{ }^{\circ} \mathrm{C}\right)$ of $\mathbf{3 1}(131 \mathrm{mg}, 0.83 \mathrm{mmol})$ in THF (3 mL) was added dropwise via a cannula. After stirring for 1 h the reaction was quenched by addition of $\mathrm{MeOH}(2 \mathrm{~mL})$. The reaction was then brought to rt and $\mathrm{K}_{2} \mathrm{CO}_{3}(200 \mathrm{mg}, 1.44 \mathrm{mmol})$ was added. The resulting suspension was stirred another 12 h after which the reaction mixture was poured into $\mathrm{HCl}(1$ $\mathrm{M}, \mathrm{aq})$. The mixture was partitioned between EtOAc and $\mathrm{HCl}(1 \mathrm{M}, \mathrm{aq})$. The combined organic phases were then dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The crude product 29 was dissolved in MeOH and 10-camphorsulfonic acid (cat.) was added. The resulting mixture was heated to reflux. After 60 min the reaction was cooled to room temperature and partitioned between EtOAc and NaHCO_{3} (sat., aq). The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$ and filtered through a short plug of silica ($50 \% \mathrm{EtOAc} / \mathrm{heptane}$) to remove (-)-8phenylmenthol. The resulting crude oil (59.9 mg) was isolated as a mixture of diastereomers. Of this crude lactone 44 mg was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(159.2 \mu \mathrm{l}, 0.572 \mathrm{mmol})$ was added, followed by trichloroacetyl chloride ($38.3 \mu \mathrm{l}, 0.343 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred at rt for 24 hours after which THF (6 mL) followed by $\mathrm{NaHCO}_{3}(5 \mathrm{~mL}$, sat. aq) was added. The resulting mixture was stirred for 3 h and then partitioned between EtOAc and water. The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to afford a crude oil. Purification by flash chromatography (12.5-50\% EtOAc/heptane) afforded butenolide 3a as a clear oil ($33 \mathrm{mg}, 79 \%$ overall from 28) : $[\alpha]_{\mathrm{D}}{ }^{23}$ +17.7 (c = 0.82, DCM); IR (film) 3430 (br, m), 3297 (w), 2935 (s , 2859 (m), 1752 (s), 1319 (m), 1247 (m), 1076 (s$), 1076$ (s$), 837(\mathrm{~s}) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.16$ (d, $J=1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.08-5.00(\mathrm{~m}, 1 \mathrm{H}), 4.39(\mathrm{dq}, J=6.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.58-3.46(\mathrm{~m}, 3 \mathrm{H}), 2.50-2.45(\mathrm{~m}, 3 \mathrm{H})$, $1.85(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.80-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.25(\mathrm{~m}, 11 \mathrm{H}), 0.99-0.82(\mathrm{~m}, 2 \mathrm{H}), 0.02(\mathrm{~s}$,

9H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.0,151.4,130.7,84.9,77.5,76.6,72.8,66.3,62.2$, 37.5, 34.0, 29.8, 29.2, 25.1, 24.8, 19.1, 18.6, -1.3; HRMS (FAB, M+H ${ }^{+}$) calcd for $\mathrm{C}_{20} \mathrm{H}_{35} \mathrm{O}_{4} \mathrm{Si}$ 367.2305 , found 367.2308 .

36
(1S,2R)-2-(1-Methyl-1-phenylethyl)cyclohexyl
(2Z,4R,7S)-4,7-bis\{[tert-butyl(diphenyl)silyl]oxy\}-8-oxooct-2-enoate (36). To a stirred solution of phosphonate $\mathbf{8}^{\mathbf{8}}$ $(1.48 \mathrm{~g}, 2.94 \mathrm{mmol})$ in THF $(130 \mathrm{~mL})$ was added NaHMDS $(4.45 \mathrm{~mL}, 2.67 \mathrm{mmol}, 0.6 \mathrm{M}$ in toluene) dropwise at $-78^{\circ} \mathrm{C}$. The resulting solution was stirred for 30 min and then transferred to a precooled solution of dialdehyde $\mathbf{6 a}(2.00 \mathrm{~g}, 3.21 \mathrm{mmol})$ in THF $(70 \mathrm{~mL})$. After 4 h the reaction was quenched by addition of $\mathrm{AcOH}(1 \mathrm{M}$ in MeOH$)$ followed by phosphate buffer (pH 7) and partitioned between EtOAc and phosphate buffer (pH 7). The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to afford a crude oil. Purification by flash chromatography ($6.25 \% \mathrm{EtOAc} /$ heptane) furnished olefin 36, a single detected stereoisomer, as a clear oil ($2.00 \mathrm{~g}, 77 \%$ based on $\mathbf{8}^{9}$): $[\alpha]_{\mathrm{D}}{ }^{23}-21.8(\mathrm{c}=0.91, \mathrm{DCM})$; IR (film) 3072 (w), 2931 (s), 2858 (s), 1753 (s), 1710 (s), 1427 (s), 1191 (s), 1110 (s), 700 (s); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.53(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.70(\mathrm{~m}, 4 \mathrm{H}), 7.62-7.55(\mathrm{~m}, 4 \mathrm{H})$, 7.49-7.42 (m, 2H), 7.43-7.35 (m, 6H), 7.35-7.19 (m, 8H), 7.27-7.18 (m, 1H), $5.95(\mathrm{dd}, J=$ $11.7,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.43-5.35(\mathrm{~m}, 1 \mathrm{H}), 4.83(\mathrm{dd}, J=11.7,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{dt}, J=10.4,4.2$ $\mathrm{Hz} \mathrm{Hz}, 1 \mathrm{H}), 4.07(\mathrm{t}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.02-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.88-0.81(\mathrm{~m}, 12 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H})$, $1.18(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~s}, 9 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 203.7,164.8,151.9$, $151.8,136.25,136.22,136.1,134.4,134.2,133.5,133.4,130.3,130.0,129.9,128.3,128.2$, $128.1,127.9,127.8,125.7,125.4,118.9,78.4,74.6,69.8,51.3,40.2,33.7,32.5,28.4,27.6$, 27.49, 27.42, 26.3, 26.0, 25.1, 19.8, 19.7; HRMS (ES+, M+Na ${ }^{+}$) calcd for $\mathrm{C}_{55} \mathrm{H}_{68} \mathrm{O}_{5} \mathrm{Si}_{2} \mathrm{Na}$ 887.4503, found 887.4523.

4a
(1S,2R)-2-(1-Methyl-1-phenylethyl)cyclohexyl
(2Z,4R,7S)-4,8-bis $\{[t e r t-$ butyl(diphenyl)silyl $]$ oxy)-7-hydroxyoct-2-enoate (4a). To a solution of aldehyde 36 (1.86 g , 2.11 mmol) in isopropanol/THF ($100 \mathrm{~mL}, 1: 1$) was added sodium borohydride (240.1 mg , 6.35 mmol) in one portion at $0^{\circ} \mathrm{C}$. After 3 h the solution was poured into phosphate buffer (pH 7) and partitioned between EtOAc and phosphate buffer (pH 7). The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to afford a crude oil. Purification by flash chromatography (3.13-12.5\% EtOAc/heptane) afforded the secondary alcohol 4 a as a clear oil (1.289, g 70\%); ${ }^{10}[\alpha]_{\mathrm{D}}{ }^{23}-19.6$ (c $=0.8$, DCM); IR (film) 3579 (br, s), 3070 (w), 2931 (s), 2858 (s), 1719 (s), 1428 (s), 1193 (s), 1110 (s) 700 (s); ${ }^{1} \mathrm{H}$ NMR (MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 7.70-7.66 (m, 4H), 7.64-7.60 (m, 2H), 7.60-7.56 (m, 2H), 7.48-7.32 (m, 8H), 7.33$7.25(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.15(\mathrm{~m}, 4 \mathrm{H}), 7.11-7.06(\mathrm{~m}, 1 \mathrm{H}), 5.98(\mathrm{dd}, J=11.6,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{dd}$, $J=13.1,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{dd}, 11.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{dt}, J=10.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.73-3.65$ (m, 1H), $3.63(\mathrm{dd}, J=10.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{dd}, J=10.0,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{~d}, J=3.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.00-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.78-0.86(\mathrm{~m}, 12 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 9 \mathrm{H}), 1.05(\mathrm{~s}$, 9H) ${ }^{13}{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.9,152.2,151.7,136.24,136.21,135.9,134.5,134.4$, 133.7, 133.6, 130.2, 129.9, 129.9, 128.3, 128.2, 127.9, 127.8, 125.7, 125.4, 118.7, 74.6, 72.5, $70.0,68.4,51.3,40.2,33.9,33.7,28.3,27.6,27.49,27.46,27.3,26.3,25.9,25.1,19.7$; HRMS (FAB, M+Na ${ }^{+}$) calcd for $\mathrm{C}_{55} \mathrm{H}_{70} \mathrm{NaO}_{5} \mathrm{Si}_{2}$ 889.4659, found 889.4661.

(1S,2R)-2-(1-Methyl-1-phenylethyl)cyclohexyl (2Z,4R,7R)-4,8-bis\{[tert-butyl(diphenyl)silyl]oxy\}-7-[(chloroacetyl)oxy]oct-2-enoate (37). To a stirred solution of secondary alcohol $\mathbf{4 a}(918 \mathrm{mg}, 1.06 \mathrm{mmol}$), triphenylphosphine ($556 \mathrm{mg}, 2.12 \mathrm{mmol}$) and
chloroacetic acid ($200 \mathrm{mg}, 2.12 \mathrm{mmol}$) was added DIAD ($0.395 \mathrm{~mL}, 2.01 \mathrm{mmol}$) dropwise over 10 min at rt . The yellowish mixture turned clear over 5 min and was stirred for 3 h . The reaction was then quenched by evaporation onto silica. Purification by flash chromatography (1.56-6.25\% EtOAc/heptane) afforded ester 37 as a clear oil ($995 \mathrm{mg}, 95 \%$): $[\alpha]_{\mathrm{D}}{ }^{23}-21.8$ (c = 1.25, DCM); IR (film) 3070 (w), 2931 (s), 2858 (s), 1762 (m), 1710 (s), 1427 (m), 1187 (s), 1112 (s), 701 (s$) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.73-7.66(\mathrm{~m}, 4 \mathrm{H}), 7.65-7.56(\mathrm{~m}, 4 \mathrm{H}), 7.49-$ 7.33 (m, 8H), 7.33-7.26 (m, 4H), 7.25-7.17 (m, 4H), 7.16-7.09 (m, 1H), 5.97 (dd, $J=11.6,7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 5.38(\mathrm{dd}, J=11.9,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.13-5.05(\mathrm{~m}, 1 \mathrm{H}), 4.84(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.63$ (dt, $J=10.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.99 (dd, $34.9,14.8 \mathrm{~Hz}, 2 \mathrm{H}$), 2.74-3.62 (m, 2H), 2.00 (dt, $J=11.1$, $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.86-0.85(\mathrm{~m}, 13 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 9 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.8,164.3,151.6,151.3,135.75,135.70,135.6,135.5,134.0$, $133.8,133.2,133.1,129.76,129.72,129.59,129.51,127.8,127.7,127.4,127.3,125.3,124.9$, $118.4,76.5,74.2,69.3,64.9,50.8,41.0,39.7,33.2,32.8,27.3,27.0,26.9,26.7,25.9,25.5$, 25.4, 24.6, 19.2, 19.1; HRMS (FAB, M+Na ${ }^{+}$) calcd for $\mathrm{C}_{57} \mathrm{H}_{71} \mathrm{NaO}_{6} \mathrm{Si}_{2} 965.4375$, found 965.4383.

10
(1S,2R)-2-(1-Methyl-1-phenylethyl)cyclohexyl (2Z,4R,7R)-4,8-bis $\{[t e r t-$
butyl(diphenyl)silyl]oxy\}-7-hydroxyoct-2-enoate (10). To a stirred solution of chloroacetace $37(1.30 \mathrm{~g}, 0.837 \mathrm{mmol})$ in THF (50 mL) was added LiOH ($30 \mathrm{~mL}, 0.4 \mathrm{M} \mathrm{aq}$) dropwise at $0{ }^{\circ} \mathrm{C}$. The reaction was then stirred for 2.5 h , poured into phosphate buffer $(\mathrm{pH} 7)$ and partitioned between EtOAc and phosphate buffer (pH 7). The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to afford a crude oil. Purification by flash chromatography (3.13-12.5\% EtOAc/heptane) furnished a separable mixture of secondary and primary alcohols, $\mathbf{1 0 : 1 1}$ (92:8), as a clear oil ($1.10 \mathrm{~g}, 92 \%$): $[\alpha]_{\mathrm{D}}{ }^{23}-31.5$ ($\mathrm{c}=$ 1.0, DCM); IR (film) 3567 (br, s), 3070 (w), 2931 (s), 2858 (s), 1712 (s), 1427 (s), 1193 (s), 1112 (s), $701(\mathrm{~s}) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.77-7.71(\mathrm{~m}, 4 \mathrm{H}), 7.67-7.58(\mathrm{~m}, 4 \mathrm{H}), 7.54-$ $7.35(\mathrm{~m}, 8 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 8 \mathrm{H}), 7.18-7.11(\mathrm{~m}, 1 \mathrm{H}), 6.04(\mathrm{dd}, J=11.7,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.46-$ $5.46-5.39(\mathrm{~m}, 1 \mathrm{H}), 4.81(\mathrm{dd}, J=11.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{dt}, J=10.3,4.2,1 \mathrm{H}), 3.78-3.70(\mathrm{~m}$,
$1 \mathrm{H}), 3.64(\mathrm{dd}, J=10.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{dd}, J=10.0,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.02$ (dt, $J=11.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.93-0.87(\mathrm{~m}, 12 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~s} 3 \mathrm{H}), 1.13(\mathrm{~s}, 9 \mathrm{H}), 1.08(\mathrm{~s}$, 9 H) ${ }^{13}{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.0,152.7,151.8,136.27,136.22,136.0,134.6,134.3$, 133.7, 130.2, 130.0, 129.9, 128.3, 128.2, 127.9, 127.8, 125.8, 125.4, 118.5, 74.6, 72.0, 70.0, 68.5, 51.3, 40.2, 33.7, 28.4, 27.8, 27.4, 27.3, 26.3, 25.8, 25.1, 19.76, 19.73; HRMS (FAB, $\mathrm{M}+\mathrm{Na}^{+}$) calcd for $\mathrm{C}_{55} \mathrm{H}_{70} \mathrm{NaO}_{5} \mathrm{Si}_{2}$ 889.4659, found 889.4643.

\{(2R,3R,6R)-3-\{[tert-Butyl(diphenyl)silyl]oxy\}-6-\{[tert-butyl(diphenyl)silyl]oxymethyl\}-tetrahydro-2H-pyran-2-yl\}-acetic acid (1S,2R)-2-(1-Methyl-1-phenylethyl)cyclohexyl ester (12). To a solution of secondary alcohol 10 (or a mixture of secondary/primary alcohol 10:11 (92:8)) ($440 \mathrm{mg}, 0.597 \mathrm{mmol}$) in toluene (10 mL) at $0{ }^{\circ} \mathrm{C}$ was added t-BuOK ($99 \mu \mathrm{~L}$, $0.1 \mathrm{mmol}, 1.0 \mathrm{M}$ in THF) dropwise over 5 min . The reaction was stirred for 50 min , then quenched by addition of phosphate buffer (pH 7) and partitioned between EtOAc and phosphate buffer (pH 7). The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to afford the cyclised product $\mathbf{1 2}$ as clear a oil, pure by NMR (440 mg , quant.): Diastereomeric ratio $(2 R: 2 S)=96: 4 ;[\alpha]_{\mathrm{D}}{ }^{23}-0.8(\mathrm{c}=1.0, \mathrm{DCM})$; IR (film) 3070 (w), 2931 (s), 2851 (s), 1725 (s), 1427 (m), 1110 (s), 701 (s); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75-$ $7.65(\mathrm{~m}, 8 \mathrm{H}), 7.50-7.34(\mathrm{~m}, 13 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.12(\mathrm{~m}, 2 \mathrm{H}), 4.71(\mathrm{dt}, J=10.5$, $4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.96$ (td, $J=9.2,4.6 \mathrm{~Hz}, 1 \mathrm{H}$ minor diastereomer), 3.72 (dd, $J=10.2,4.8 \mathrm{~Hz}$, 1 H), 3.61-3.54 (m, 2H), 3.44-3.36 (m, 1H major diastereomer), 3.20 (dd, $J=9.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}$), $2.28(\mathrm{dd}, J=15.7,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{dt}, J=11.8,3.4,1 \mathrm{H}), 1.86-0.86(\mathrm{~m}, 11 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H})$, $1.16(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.6,151.9,135.97$, $135.95,135.6,135.5,134.4,133.89,133.85,133.6,129.6,129.55,129.52,129.4,127.7$, $127.59,127.53,127.4,125.3,124.8,78.0,76.6,74.4,67.8,67.2,50.8,39.6,38.3,33.0,31.8$, 30.2, 28.0, 27.1, 26.9, 26.8, 26.0, 24.6, 24.3, 22.6, 22.3, 19.6, 19.2; HRMS (FAB, M+H $)$ calcd for $\mathrm{C}_{55} \mathrm{H}_{71} \mathrm{O}_{5} \mathrm{Si}_{2}$ 867.4840, found 867.4852.

(2R,3R,6R)-3-\{[tert-Butyl(diphenyl)silyl]oxy\}-6-\{[tert-butyl(diphenyl)silyl]oxymethyl\}-2-[(E)-dodec-2-enyl]-tetrahydro-2H-pyran (14). To a stirred solution of ester $\mathbf{1 2}$ (100 mg , $0.116 \mathrm{mmol})$ in DCM $(2 \mathrm{~mL})$ at -7 $^{\circ} \mathrm{C}$ was added DIBAL-H ($90.8 \mu \mathrm{~L}, 0.136 \mathrm{mmol}, 1.5 \mathrm{M}$ in toluene) dropwise over 5 min . The resulting mixture was stirred for 35 min , after which a preformed (30 min) solution of decyl triphenylphosphonium bromide ($164 \mathrm{mg}, 0.340 \mathrm{mmol}$) and NaHMDS ($0.45 \mathrm{~mL}, 0.227 \mathrm{mmol}, 0.6 \mathrm{M}$ in toluene) in THF $(4 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added via a cannula. The temperature was raised to $0{ }^{\circ} \mathrm{C}$ over 12 h and the reaction was then quenched by evaporation onto silica. Purification by flash chromatography (0.78-3.13\% EtOAc/heptane) furnished olefin 14 as a clear oil ($69 \mathrm{mg}, 75 \%$): $(E):(Z) \sim 1: 10 ;[\alpha]_{\mathrm{D}}{ }^{23}+19.0$ (c = 1.0, DCM); IR (film) 3070 (w), 2927 (s), 2856 (s), 1471 (m), 1427 (m), 1112 (s), 701 (s); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.82-7.63 (m, 8H), 7.48-7.29 (m, 12H), 5.39-5.21 (m, 2H), $3.82(\mathrm{dd}, J=10.3,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 1 \mathrm{H}), 3.66(\mathrm{dd}, J=10.2,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.51-3.42(\mathrm{~m}$, $1 \mathrm{H}), 3.17(\mathrm{dd}, J=8.3,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.24(\mathrm{~m}, 1 \mathrm{H}), 2.21-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.68(\mathrm{~m}, 4 \mathrm{H})$, $1.57-1.35(\mathrm{~m}, 3 \mathrm{H}), 1.35-0.99(\mathrm{~m}, 13 \mathrm{H}), 1.10(\mathrm{~s}, 9 \mathrm{H}), 1.09(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 136.0, 135.7, 136.0, 134.5, 134.0, 133.9, 133.88, 133.81, 133.6, 132.7, 132.6, 131.1, 129.4, 128.6, 128.5, 128.48, 128.44, 128.3, 127.53, 127.47, 127.40, 127.3, 126.2, 80.5, 78.1, 68.0, 67.3, 31.9, 30.7, 30.5, 29.6, 29.57, 29.56, 29.35, 29.33, 27.4, $27.1, \quad 26.8, \quad 22.6, \quad 22.5, \quad 19.6, \quad 19.2, \quad 14.1 ; \quad \operatorname{HRMS}\left(\mathrm{FAB}, \mathrm{M}+\mathrm{Na}^{+}\right)$calcd for $\mathrm{C}_{50} \mathrm{H}_{70} \mathrm{NaO}_{3} \mathrm{Si}_{2}$ 797.4761, found 797.4762.

15
\{(2R,3R,6R)-5-\{[tert-Butyl(diphenyl)silyl]oxy\}-6-[(E)-dodec-2-enyl]-tetrahydro-2H-pyran-2-yl\}-methanol (15). To a solution of bis-silyl ether 14 ($270 \mathrm{mg}, 0.336 \mathrm{mmol}$) in hexanes (20 mL , HPLC grade) was added activated $\mathrm{Al}_{2} \mathrm{O}_{3}\left(11.34 \mathrm{~g}\right.$, dried 18 h at $120^{\circ} \mathrm{C}, 0.01$ $\mathrm{mmHg})$. The mixture was stirred for 24 h and $\mathrm{MeOH}(20 \mathrm{~mL})$ was added. After stirring an additional 15 min the mixture was filtered and concentrated in vacuo to afford a crude oil. Purification by flash chromatography (12.5-25\% EtOAc/heptane) afforded the primary
alcohol 15 as a clear oil $(157 \mathrm{mg}, 83 \%):[\alpha]_{\mathrm{D}}^{23}+28.2(\mathrm{c}=1.0, \mathrm{DCM})$; IR (film) $3421(\mathrm{br}, \mathrm{m})$, 2925 (s), 2854 (s), 1457 (w), 1427 (w), 1110 (s), 1031 (s); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.78-7.62 (m, 4H), 7.48-7.31 (m, 6H), 5.46-5.15 (m, 2H), 3.76-3.73 (m, 1H), 3.54-3.64 (m, $2 \mathrm{H}), 3.52-3.44(\mathrm{~m}, 1 \mathrm{H}), 3.21(\mathrm{dd}, J=8.6,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{td}, J=15.8,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.69$ (br s, 1H), 2.04-1.66 (m, 5H), 1.52-1.40 (m, 1H), 1.38-1.059 (m, 15H), $1.13(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{t}, J$ $=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.00,135.97,134.4,133.9,131.6,129.5$, $127.5,127.4,125.7,80.3,77.7,67.9,66.2,31.9,30.5,30.4,29.6,29.55,29.53,29.33,29.31$, 27.4, 27.1, 22.6, 21.5, 19.6, 14.1; HRMS (FAB, M+Na ${ }^{+}$) calcd for $\mathrm{C}_{34} \mathrm{H}_{53} \mathrm{O}_{3} \mathrm{Si}$ 537.3764, found 537.3754.

(2R,3R,6R)-5-\{[tert-Butyl(diphenyl)silyl]oxy\}-6-[(E)-dodec-2-enyl]-tetrahydro-2H-pyran-
2-carbaldehyde (16). To a solution of primary alcohol 15 ($147 \mathrm{mg}, 0.259 \mathrm{mmol}$) and pyridine $(64 \mu \mathrm{~L}, 0.778 \mathrm{mmol})$ in $\mathrm{DCM}(3.0 \mathrm{~mL})$ was added, in one portion, Dess-Martin periodinane $(165 \mathrm{mg}, 0.390 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred 3 h , after which $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(5$ $\mathrm{mL}, 20 \% \mathrm{aq})$ was added and the reaction was stirred for an additional 10 min . The reaction mixture was then partitioned between EtOAc and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(20 \%$, aq). The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo. Purification by flash chromatography (6.25-12.5\% EtOAc/heptane) afforded aldehyde 16 as a clear oil (125 mg , $81 \%):[\alpha]_{\mathrm{D}}{ }^{23}+55.0(\mathrm{c}=1.0, \mathrm{DCM})$; IR (film) $2927(\mathrm{~s}), 2856(\mathrm{~s}), 1739(\mathrm{~s}), 1427(\mathrm{~m}), 1110(\mathrm{~s})$, $701(\mathrm{~s}) ;{ }^{1} \mathrm{H}$ NMR (MHz, CDCl_{3}) $\delta 9.72(\mathrm{~s}, 1 \mathrm{H}), 7.77-6.60(\mathrm{~m}, 4 \mathrm{H}), 7.49-7.32(\mathrm{~m}, 6 \mathrm{H}), 5.46-$ $5.17(\mathrm{~m}, 2 \mathrm{H}), 3.82-3.72(\mathrm{~m}, 2 \mathrm{H}), 3.25(\mathrm{dd}, J=8.3,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.56-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.11-1.78$ $(\mathrm{m}, 5 \mathrm{H}), 1.61-1.40(\mathrm{~m}, 3 \mathrm{H}), 1.37-1.00(\mathrm{~m}, 13 \mathrm{H}), 1.10(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.6,136.0,135.9,135.2,134.1,133.6,131.9,129.7,127.6$, $127.58,127.55,125.4,81.6,80.7,67.5,31.9,30.4,30.3,29.6,29.57,29.54,29.3,27.4,27.1$, 22.6, 20.5, 19.6, 14.1; HRMS (ES+, M+Na+ calcd for $\mathrm{C}_{34} \mathrm{H}_{50} \mathrm{NaO}_{3} \mathrm{Si}$ 557.3427, found 557.3442 .

(1R)-1-\{(2R,5R,6R)-5-\{[tert-Butyl(diphenyl)silyl]oxy\}-6-[(E)-dodec-2-en-1-yl]tetrahydro-2H-pyran-2-yl\}-3-(trimethylsilyl)prop-2-yn-1-ol (17). To a solution of zinc triflate (97 mg , 0.256 mmol) and ($1 S, 2 R$)- $N-(-)$-methylephedrine ($57 \mathrm{mg}, 319 \mathrm{mmol}$) in toluene (1 mL) was added $\mathrm{Et}_{3} \mathrm{~N}(88.8 \mu \mathrm{~L}, 0.637 \mathrm{mmol})$. The resulting slurry was stirred 1 h 45 min , and the trimethylsilylacetylene $(150 \mu \mathrm{~L}, 1.06 \mathrm{mmol})$ was added. After 15 min a solution of aldehyde $16(120 \mathrm{mg}, 0.212 \mathrm{mmol})$ in toluene (1 mL) was added via a cannula (rinsed with 0.5 mL toluene). ${ }^{11}$ After stirring for 20 h at rt the reaction mixture was evaporated onto silica. Purification by flash chromatography ($6.25 \% \mathrm{EtOAc} /$ heptane) afforded propargylic alcohol 17 as a clear oil ($110 \mathrm{mg}, 83 \%$); $[\alpha]_{\mathrm{D}}{ }^{23}+19.8(\mathrm{c}=1.0, \mathrm{DCM})$; IR (film) 3478 (br, w), 2956 (s), 2927 (s), 2856 (s), 2177 (w), 1427 (w), 1249 (m), 1110 (s), 842 (s), 701 (s); ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78-7.65(\mathrm{~m}, 4 \mathrm{H}), 7.50-7.37(\mathrm{~m}, 6 \mathrm{H}), 5.43-5.20(\mathrm{~m}, 2 \mathrm{H}), 4.32(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.76-3.70(\mathrm{~m}, 1 \mathrm{H}), 3.40(\mathrm{ddd}, J=10.1,7.9,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{dd}, J=9.1,4.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.98(\mathrm{~s}, 1 \mathrm{H}), 2.53-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.68(\mathrm{~m}, 5 \mathrm{H}), 1.67-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.41-0.99(\mathrm{~m}, 14 \mathrm{H})$, $1.13(\mathrm{~s}, 9 \mathrm{H}), 0.92(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.20(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.4$, 134.2, 132.1, 130.0, 128.00, 127.96, 126.0, 103.4, 91.2, 81.1, 80.7, 68.2, 66.8, 32.3, 30.9, $30.8,30.06,30.00,29.79,29.76,27.8,27.5,23.1,22.1,20.0,14.5,0.2 ;$ HRMS (FAB, M+Na ${ }^{+}$) calcd for $\mathrm{C}_{39} \mathrm{H}_{61} \mathrm{O}_{3} \mathrm{Si}_{2}$ 633.4159, found 633.4153.

(2R,3R,6R)-3-\{[tert-Butyl(diphenyl)silyl]oxy\}-6-\{(R)-1-\{[tert-butyl(dimethyl)silyl]oxy\}-prop-2-ynyl\}-2-[(E)-dodec-2-enyl]-tetrahydro-2H-pyran (18). To a stirred solution of propargylic alcohol $17(105 \mathrm{mg}, 0.166 \mathrm{mmol})$ in $\mathrm{DCM}(2.5 \mathrm{~mL})$ at rt , was added t butyldimetylsilyl chloride ($49 \mathrm{mg}, 0.332 \mathrm{mmol}$) and imidazole ($56.5 \mathrm{mg}, 0.829 \mathrm{mmol}$) in one portion respectively at rt . The resulting suspension was stirred for 2 h , and then MeOH (2.5 mL) followed by $\mathrm{K}_{2} \mathrm{CO}_{3}(120 \mathrm{mg}, 0.868 \mathrm{mmol})$ was added. The resulting mixture was stirred a further 14 h , after which the reaction was quenched by addition of phosphate buffer (pH 7) and partitioned between EtOAc and phosphate buffer (pH 7). The combined organic phases
were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo. Purification by flash chromatography ($1.56 \% \mathrm{EtOAc} /$ heptane) furnished alkyne 18 as a clear oil ($105 \mathrm{mg}, 93 \%$): $[\alpha]_{\mathrm{D}}{ }^{23}+29.1(\mathrm{c}=$ 1.0, DCM); IR (film) 3070 (w), 2927 (s), 2856 (s), 1608 (w), 1471 (m), 1253 (m), 1110 (s), $836(\mathrm{~m}), 701(\mathrm{~s}) ;{ }^{1} \mathrm{H}$ NMR (MHz, CDCl_{3}) $\delta 7.79-7.64(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.31(\mathrm{~m}, 6 \mathrm{H}), 5.37-5.12$ (m, 2H), 4.43 (dd, $J=6.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.75-3.71(\mathrm{~m}, 1 \mathrm{H}), 3.39(\mathrm{ddd}, J=11.4,6.4,2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.14(\mathrm{dd}, J=8.1,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.75(\mathrm{~m}$, $5 \mathrm{H}), 1.62-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.38-0.92(\mathrm{~m}, 14 \mathrm{H}), 1.11(\mathrm{~s}, 9 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H})$, $0.90(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.19(\mathrm{~s}, 3 \mathrm{H}), 0.15(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.5$, $136.4,134.5,131.5,130.0,129.9,127.8,126.6,83.5,81.1,80.4,73.7,68.2,67.0,32.3,31.0$, $30.9,30.08,30.02,29.9,29.80,29.77,27.8,27.5,26.2,23.1,21.1,20.1,18.8,14.5,-4.41$, 4.45; HRMS (FAB, M+Na ${ }^{+}$) calcd for $\mathrm{C}_{42} \mathrm{H}_{66} \mathrm{NaO}_{3} \mathrm{Si}_{2}$ 697.4448, found 697.4431.

(2R,3R,6R)-6-\{(E)-(R)-1-\{[tert-Butyl(dimethyl)silyl]oxy\}-3-iodo-allyl\}-3-\{[tert-
butyl(diphenyl)silyl]oxy\}-2-[(E)-dodec-2-enyl]-tetrahydro-2H-pyran (2a). To a stirred suspension of Schwartz reagent ($24 \mathrm{mg}, 0.092 \mathrm{mmol}$) in DCM (1 mL) was added alkyne $\mathbf{1 8}$ $(52 \mathrm{mg}, 0.0770 \mathrm{mmol})$ in DCM $(1.5 \mathrm{~mL})$. The resulting yellowish solution was stirred for 15 min and then cooled to $0{ }^{\circ} \mathrm{C}$. A solution of I_{2} in $\mathrm{DCM}(0.2 \mathrm{M})$ was added until a brownish colour persisted (~ 1 equiv.). The reaction was stirred a further 10 min after which $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ $(20 \%$, aq) was added. The brownish colour disappeared and the reaction mixture was partitioned between DCM and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(20 \%$, aq). The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo. Purification by flash chromatography (3.13$6.25 \% \mathrm{EtOAc} /$ heptane) afforded vinyl iodide $\mathbf{2 a}$ as a clear oil ($53 \mathrm{mg}, 86 \%$): $[\alpha]_{\mathrm{D}}{ }^{23}+35.8$ (c =1.0, DCM); IR (film) 3070 (w), 2927 (s), 2856 (s), 1608 (w), 1471 (m), 1427 (m), 1253 (m), $1110(\mathrm{~s}), 863(\mathrm{~m}), 701(\mathrm{~s}) ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.77-7.62(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.32(\mathrm{~m}$, $6 \mathrm{H}), 6.77$ (dd, $J=14.4,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{dd}, J=14.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.37-5.06(\mathrm{~m}, 2 \mathrm{H}), 4.23-$ $4.18(\mathrm{~m}, 1 \mathrm{H}), 3.73-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.33-3.27(\mathrm{~m}, 1 \mathrm{H}), 3.11(\mathrm{dd}, J=8.1,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{td}, J$ $=14.7,7.2,1 \mathrm{H}), 2.20-1.61(\mathrm{~m}, 6 \mathrm{H}), 1.46-0.8(\mathrm{~m}, 15 \mathrm{H}), 1.11(\mathrm{~s}, 9 \mathrm{H}), 0.94-0.86(\mathrm{~m}, 12 \mathrm{H})$, $0.081(\mathrm{~s}, 3 \mathrm{H}), 0.077(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.7,136.0,134.4,134.1$, $131.2,129.5,129.4,127.4,126.1,80.5,79.7,76.6,76.2,67.8,31.9,30.57,30.52,29.65$,
29.60, 29.3, 27.4, 27.2, 25.8, 22.7, 19.68, 19.63, 18.2, 14.1, -4.8, -4.9; HRMS (FAB, M+Na+ calcd for $\mathrm{C}_{42} \mathrm{H}_{67} \mathrm{NaO}_{3} \mathrm{Si}_{2} 825.3571$, found 825.3571 .

(5S)-3-\{(2R,8R,11E,13R)-13-\{[tert-Butyl(dimethyl)silyl]oxy\}-13-\{(2R,5R,6R)-5-\{[tert-butyl(diphenyl)silyl]oxy\}-6-[(E)-dodec-2-en-1-yl]tetrahydro-2H-pyran-2-yl\}-8-hydroxy-2-[2-(trimethylsilyl)ethoxy]tridec-11-en-9-yn-1-yl\}-5-methylfuran-2(5H)-one (32). To a solution of vinyl iodide $\mathbf{2 a}(26.3 \mathrm{mg}, 0.033 \mathrm{mmol})$ in $\mathrm{Et}_{3} \mathrm{~N}(0.5 \mathrm{~mL})$ was added $\mathrm{CuI}(1.29 \mathrm{mg}$, 0.0068 mmol) and dichlorobis(triphenylphosphine)-palladium(II) ($1.91 \mathrm{mg}, 0.0027 \mathrm{mmol}$). The reaction mixture was stirred for 35 min at rt , after which a solution of acetylene 3a (12 $\mathrm{mg}, 0.0328 \mathrm{mmol}$) in $\mathrm{Et}_{3} \mathrm{~N}(1 \mathrm{~mL})$ was added dropwise over 10 min (rinsed with 0.5 mL $\mathrm{Et}_{3} \mathrm{~N}$). After 2.5 h , the volatiles were removed in vacuo. Purification by flash chromatography ($12.5-25 \% \mathrm{EtOAc} /$ heptane) afforded ene-yne $\mathbf{3 2}$ as a yellowish oil ($30.4 \mathrm{mg}, 89 \%$): $[\alpha]_{\mathrm{D}}{ }^{23}$ +36.4 (c = 1.0, DCM); IR (film) 3436 (br, s), 2929 (s), 2856 (s), 1758 (m), 1249 (m), 1103 (s), 1027 (m), 836 (m); $703(\mathrm{~m}) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.76-7.60(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.31$ (m, 6H), $7.13(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{dd}, J=15.9,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{td}, J=16.0,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.36-5.13(\mathrm{~m}, 2 \mathrm{H}), 5.05-4.96(\mathrm{~m}, 1 \mathrm{H}), 4.50-4.42(\mathrm{~m}, 1 \mathrm{H}), 4.32-4.25(\mathrm{~m}, 1 \mathrm{H}), 3.73-3.68$ (m, 1H), 3.56-3.42 (m, 3H), 3.31 (ddd, $J=11.4,5.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.10 (dd, $J=8.0,5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.43(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.39-2.26(\mathrm{~m}, 1 \mathrm{H}), 1.54-0.70(\mathrm{~m}, 35 \mathrm{H}), 1.40(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}), 1.09(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H}), 0.00(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $173.9,151.3,143.6,136.0,134.4,134.1,131.2,130.7,129.5,129.4,127.4,126.0,109.0,90.1$, $83.5,80.4,80.1,77.4,74.1,67.8,66.3,62.9,37.8,34.0,31.9,30.5,29.8,29.6,29.5,29.4$, $29.35,29.32,27.3,27.1,25.8,25.2,25.1,22.6,19.6,19.1,18.6,18.2,14.1,-1.3,-4.82,-4.89$; HRMS (FAB, M+Na+) calcd for $\mathrm{C}_{62} \mathrm{H}_{100} \mathrm{NaO}_{7} \mathrm{Si}_{3} 1063.6675$, found 1063.6689.

(5S)-3-\{(2R,8R,13R)-13-\{[tert-Butyl(dimethyl)silyl]oxy\}-13-[(2R,5R,6R)-5-\{[tert-butyl(diphenyl)silyl]oxy\}-6-dodecyltetrahydro-2H-pyran-2-yl)-8-hydroxy-2-[2-(trimethylsilyl)ethoxyltridecyl\}-5-methylfuran-2(5H)-one (38). A solution of ene-yne 32 ($17.5 \mathrm{mg}, 0.017 \mathrm{mmol}$) and tosylhydrazine ($300 \mathrm{mg}, 1.6 \mathrm{mmol}$) in 1,2-DME (2.4 mL) was heated to reflux and sodium acetate ($160 \mathrm{mg}, 2.0 \mathrm{mmol}$) in water (3.0 mL) was added over 4 h using a syringe pump. The reaction was then poured onto water and partitioned between EtOAc and water and the combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo. Purification by flash chromatography (12.5-25\% EtOAc/heptane) furnished triprotected pyranicin 38 as a clear oil ($15.0 \mathrm{mg}, 85 \%$): $[\alpha]_{\mathrm{D}}{ }^{23}+19.4(\mathrm{c}=1.0, \mathrm{DCM})$; IR (film) 3399 (br, w), 2927 (s), 2856 (s), 1758 (m), 1461 (m), 1429 (m), 1089 (s), 1027 (m); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.74-7.62(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.28(\mathrm{~m}, 6 \mathrm{H}), 7.13(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $5.01(\mathrm{dq}, J=6.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.70-3.62(\mathrm{~m}, 2 \mathrm{H}), 3.62-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.55-3.42(\mathrm{~m}, 3 \mathrm{H}), 3.29-$ $3.23(\mathrm{~m}, 1 \mathrm{H}), 3.05(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.49-2.36(\mathrm{~m}, 3 \mathrm{H}), 1.88-1.61(\mathrm{~m}, 3 \mathrm{H}), 1.60-0.73(\mathrm{~m}$, $44 \mathrm{H}), 1.41(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.00(\mathrm{~s}$, $9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.9,151.3,136.0,135.9,134.7,134.2,130.8,129.4$, $129.1,128.0,127.4,127.3,80.7,80.4,77.4,76.6,74.5,71.9,67.7,66.3,37.6,37.4,34.1,32.2$, $31.9,29.87,29.83,29.69,29.63,29.5,29.3,27.1,25.9,25.8,25.6,25.5,25.3,22.6,19.6,19.1$, 18.6, 14.1, $-1.3,-4.2,-4.5$; HRMS (FAB, M+Na+) calcd for $\mathrm{C}_{62} \mathrm{H}_{108} \mathrm{NaO}_{7} \mathrm{Si}_{3}$ 1071.7301, found 1071.7296; The product contained traces of tosylhydrazine.

Pyranicin (1). To a stirred solution of tri-protected pyranicin $38(12.0 \mathrm{mg}, 0.0114 \mathrm{mmol})$ in $\mathrm{MeCN}(1.2 \mathrm{~mL})$ was added $\mathrm{HF}\left(50 \mu \mathrm{~L}, 40 \%\right.$, aq) at rt . The reaction was heated to $45^{\circ} \mathrm{C}$ during 22 h and then quenched by addition of NaHCO_{3} (sat., aq) and partitioned between EtOAc and NaHCO_{3}. The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo. Purification by flash chromatography ($3-5 \% \mathrm{MeOH} / \mathrm{EtOAc}$) afforded
unprotected pyranicin (1) as a clear oil ($5.7 \mathrm{mg}, 85 \%$): $[\alpha]_{\mathrm{D}}{ }^{23}+21.1\left(\mathrm{c}=0.24, \mathrm{CHCl}_{3}\right)$; IR (film) 3392 (br, m), 2921 (s), 2850 (s), 1757 (m), 1743 (m), 1644 (m), 1467 (m), 1321 (m), 1205 (w), 1079 (s), 1027 (m); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 7.19$ (dd, 2.5, $1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.07 $(\mathrm{dq}, J=6.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.89-3.82(\mathrm{~m}, 1 \mathrm{H}), 3.65-3.58(\mathrm{~m}, 2 \mathrm{H}), 3.49-3.43(\mathrm{~m}, 1 \mathrm{H}), 3.35(\mathrm{dd}$, $J=8.1,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{ddd}, J=10.8,7.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{~s}, 1 \mathrm{H}), 2.54(\mathrm{tdd}, J=15.1$, $3.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{tdd}, J=15.2,8.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.3$ (br s, 1 H), 2.01 (ddd, $J=13.0,5.9$, $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.77-1.10(\mathrm{~m}, 45 \mathrm{H}) 1.44(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{t}, J$ $=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.5,151.8,131.1,81.2,80.0,77.9,74.0$, $71.7,69.9,66.1,37.35,37.30,37.2,33.4,32.2,31.9,31.6,30.5,29.67,29.66,29.65,29.63$, 29.60, 29.57, 29.50, 29.3, 25.63, 25.60, 25.51, 25.3, 22.6, 21.5, 19.1, 14.1; HRMS (FAB, $\mathrm{M}+\mathrm{H}+$) calcd for $\mathrm{C}_{35} \mathrm{H}_{65} \mathrm{O}_{7}$ 597.4730, found 597.4732.

Determination of the relative configuration of the stereocenters of the THPrings in 12 and 13

a) Preparation of, and analytical data for compound 39

In order to confirm the stereochemical assignment of compound 12, it was converted to alcohol 39 by reduction with DIBAL-H; 39: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.95-7.72(\mathrm{~m}, 8 \mathrm{H})$, $7.30-7.15(\mathrm{~m}, 12 \mathrm{H}), 3.79(\mathrm{dd}, J=10.7,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.75-3.67(\mathrm{~m}, 1 \mathrm{H}), 3.67-3.59(\mathrm{~m}, 2 \mathrm{H})$, 3.52-3.46 (m, 1H), 3.42-3.33 (m, 1H), 3.21-3.14 (m, 1H), 2.36-2.20 (m, 2H), $1.85(\mathrm{dq}, J=$ $13.2,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.72-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.24-0.97(\mathrm{~m}, 2 \mathrm{H}), 1.22(\mathrm{~s}, 9 \mathrm{H}), 1.16(\mathrm{~s}, 9 \mathrm{H})$.

Diagnostic NOESY correlations of cis-cis THP 39:

b) Preparation of, and analytical data for compound 40

In order to confirm the stereochemical assignment of compound $\mathbf{1 3}$, it was converted to alcohol 40 by reduction with DIBAL-H; 40: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.86-7.79(\mathrm{~m}, 4 \mathrm{H})$, 7.79-7.40 (m, 2H), 7.74-7.68 (m, 2H), 7.29-7.13 (m, 12H), 3.93 (td, $J=10.5,3.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.85(\mathrm{dd}, J=10.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{qd}, J=11.6,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{dd}, J=10.5,5.1 \mathrm{~Hz}$, 2 H), 3.56 (dd, $J=10.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.51(\mathrm{td}, J=5.4,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H})$, 1.78-1.67 (m, 1H), 1.62-1.48 (m, 2H), 1.46-1.35 (m, 1H), $1.22(\mathrm{~s}, 9 \mathrm{H}), 1.16(\mathrm{~s}, 9 \mathrm{H}), 1.10-0.98$ (m, 1H).

${ }^{1}$ Ireland, R. E.; Meissner, R. S. J. Org. Chem. 1991, 56, 4566-4568.
${ }^{2}$ Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923-2925.
${ }^{3}$ For analytical data of $\mathbf{2 0}$ and 21, see: Pedersen, T. M.; Jensen, J. F.; Humble, R. E.; Rein, T.; Tanner, D.; Bodmann, K.; Reiser, O. Org. Lett. 2000, 2, 535-538.
${ }^{4}$ A pre-heated oilbath was used since precise temperature control was critical to avoid byproduct formation.
${ }^{5}$ Prepared using an Arbuzov protocol similar to that used in: Nagata, W.; Wakabayashi, T.; Hayase, Y. Org. Synth. 1973, 53, 44-48.
${ }^{6}$ Sealing the reaction vessel using only a septum was not sufficient to prevent TMS-acetylene from escaping from the reaction.
${ }^{7}$ As determined by ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ analysis of the corresponding (+)- and (-)-MTPA derivatives.
${ }^{8}$ Prepared using a similar protocol to that used in: Hatakeyama, S; Satoh, K; Sakurai, K; Takano, S. Tetrahedron Lett. 1987, 28, 2713-2716. Selected data: Yield 93\%; IR (film) 2964, 2918, 1730, 1300, 1268, 1180, 1070, 960; ${ }^{1} \mathrm{H}$ NMR (500 MHz , selected data) $\delta 7.31-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.16-7.11$ (m, 1H), 4.81 (ddd [app td], $J=10.5,4.5$, $1 \mathrm{H}), 4.45-4.27(\mathrm{~m}, 4 \mathrm{H}), 2.27(\mathrm{ddd}, J=26.0,20.5,16 \mathrm{~Hz}, 2 \mathrm{H}), 2.12(\operatorname{app} \mathrm{td}, J=11.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{brd}, J=$ $13 \mathrm{~Hz}, 1 \mathrm{H}), 1.87-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz) $\delta 164.1$, $151.9,128,1,125.3,125.1,123.7,121.1,76.3,62.4(\mathrm{qd}, J=19.6,5.5 \mathrm{~Hz}), 62.3$ (qd, $J=19.6,5.5 \mathrm{~Hz}$), 50.5 , $39.5,39.5,33.4$, (d, $J=14.4 \mathrm{~Hz}), 32.9,30.0,26.6,25.8,24.6,22.1$. See also; Vares, L. Ph.D. Thesis, Tartu University, Estonia, 2000.
${ }^{9}$ Alternatively, the crude $\mathbf{3 6}$ obtained after filtration through a short plug of silica could be directly subjected to reduction/protective group migration. This protocol afforded $\mathbf{4 a}$ in 70% overall yield, based on $\mathbf{8}$.
${ }^{10}$ In addition, 224 mg (12\%) of a mixture of primary and secondary alcohol was recovered. This mixture could be re-equilibrated under the following conditions: A mixture of primary alcohol 9 and secondary alcohol 4a was dissolved in EtOH followed by addition of catalytic amounts of DMAP. The resulting solution was refluxed for 14 h and then subjected to a similar workup as described above to give an additional $159 \mathrm{mg}(70 \%)$ of secondary alcohol, thus increasing the overall yield.
${ }^{11}$ Due to the higher reactivity of aldehyde $\mathbf{1 6}$ compared to that of aldehyde $\mathbf{2 7}$, the reaction could be run at rt using standard inert techniques.

