Supporting Information

Design, Synthesis, and Evaluation of Analogues of (+)-14Normethyldiscodermolide

Amos B. Smith, III, ${ }^{1 *}$ B. Scott Freeze, ${ }^{1}$ Matthew J. LaMarche, ${ }^{1}$ Tomoyasu Hirose, ${ }^{1}$ Ignacio Brouard, ${ }^{1}$ Ming Xian, ${ }^{1}$ Kurt F. Sundermann, ${ }^{2}$ Simon J. Shaw, ${ }^{2}$ Mark A. Burlingame, ${ }^{2}$ Susan Band Horwitz ${ }^{3}$, and David C. Myles ${ }^{2 *}$
${ }^{1}$ Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
${ }^{2}$ Kosan Biosciences Inc. 3832 Bay Center Place, Hayward, CA 94545
3 Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461

Table of Contents.

Cover page S1
Table of contents S2
Materials and methods S2
Experimental details for transformations described in the main text S3
Experimental details for previously reported compounds (as per footnote 4f) S52

Materials and Methods. Reactions were carried out in oven or flame-dried glassware under an argon atmosphere, unless otherwise noted. All solvents were reagent grade. Diethyl ether ($\mathrm{Et}_{2} \mathrm{O}$) and tetrahydrofuran (THF) were freshly distilled from sodium/benzophenone under argon. n-butyllithium and t butyllithium were purchased from Aldrich. Reactions were magnetically stirred and monitored by thin layer chromotography (TLC) with 0.25 mm E. Merck pre-coated silica gel plates. Flash chromatography was performed with silica gel 60 (particle size $0.040-0.062 \mathrm{~mm}$) supplied by Silicycle and Sorbent Technologies. Yields refer to chromatographically and spectroscopically pure compounds, unless otherwise stated. Infrared spectra were recorded on a Jasco Model FT/IR-480 Plus spectrometer. Proton and carbon-13 NMR spectra were recorded on a Bruker AMX-500 spectrometer. Chemical shifts are reported relative to chloroform ($\square 7.26$), methanol ($\square 3.31$), acetonitrile ($\square 1.94$), or benzene $(\square 7.15)$ for ${ }^{1} \mathrm{H}-$ NMR and either chloroform ($\square 77.0$), methanol ($\square 49.2$), acetonitrile ($\square 118.7$), or benzene ($\square 128.0$) for ${ }^{13} \mathrm{C}$ NMR. Optical rotations were measured on a Perkin-Elmer model 241 polarimeter. High resolution mass spectra were measured at the University of Pennsylvania Mass Spectrometry Service Center.

Experimental Details

(+)-S1
Mesylate (+)-S1: To a room temperature solution ($\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.1 \mathrm{M}\right)$ of alcohol (+)-3(30 mg, 0.032 mmol$)$ was added triethylamine ($7.0 \mu \mathrm{~L}, 0.048 \mathrm{mmol}$), then methansulfonylchloride ($4 \mu \mathrm{~L}, 0.048 \mathrm{mmol}$) dropwise via syringe. The reaction was then stirred for 1 h and quenched with 1 mL saturated NaHCO_{3} solution. The mixture was then extracted $\left(2 x, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated. The crude material was then purified by flash chromatography (25 \% EtOAc/hexanes) to afford $29 \mathrm{mg}(91 \%)$ of (+)-S1 as a clear oil; [D$]_{\mathrm{D}}^{23}+10\left(c 0.54, \mathrm{CHCl}_{3}\right.$); IR (film, NaCl$) 2946,2854,1512$, 1466, 1352, 1250, 1173, 1034, 957, 834, 772, $700 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $7.59(\mathrm{~d}, J=7.3$ $\mathrm{Hz}, 6 \mathrm{H}), 7.31(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~m}, 6 \mathrm{H}), 7.05(\mathrm{app} \mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 6.82(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.28$ (app t, $J=10.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.15 (ddd, $J=10.3,10.3,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.16(\mathrm{~d}, J=5.1$ $\mathrm{Hz}, 2 \mathrm{H}), 3.71(\mathrm{dd}, J=6.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{dd}, J=6.7,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{dd}, J=8.8,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.32$ (dd, $J=6.8,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 3.07(\operatorname{app} \mathrm{t}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{~s}$, $3 H), 2.04(\mathrm{~m}, 1 \mathrm{H}), 1.97(\mathrm{~m}, 1 \mathrm{H}), 1.92(\mathrm{~m}, 1 \mathrm{H}), 1.80(\mathrm{~m}, 1 \mathrm{H}), 1.33(\mathrm{~m}, 1 \mathrm{H}), 1.17(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.12$ (d, $J=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H}), 0.96(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 0.92(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.14(\mathrm{~s}$, $3 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) [159.9, 145.1, 135.0, 131.1, 129.4, 129.2, 128.3, 127.9, 127.1, 114.2, 86.9, 82.2, 78.3, 77.0, 75.1, 72.0, 66.6, 54.8, 40.5, 39.8, 38.0, $37.0,36.5,35.9,33.0,26.5,26.3,18.8,18.5,18.0,15.0,14.2,13.9,11.4,-3.1,-3.2,-3.7,-3.7$; high resolution mass spectrum (ES^{+}) $\mathrm{m} / \mathrm{z} 1023.5636\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\left.\mathrm{C}_{58} \mathrm{H}_{88} \mathrm{O}_{8} \mathrm{NaSi}_{2} \mathrm{~S}: 1023.5703\right]$.

(+)-S2

Trityl ether (+)-S2: To a $0^{\circ} \mathrm{C}$ ethereal solution (0.1 M) of mesylate (+)-S1 (27 mg, 0.0269 mmol) was added $\mathrm{LiAlH}_{4}(\mathrm{~s}, 1 \mathrm{mg}, 0.0263 \mathrm{mmol})$. After 1 h the reaction was warmed to ambient temperature and another aliquot of LiAlH_{4} was added. The reaction was quenched with Rochelle's solution and the resultant mixture extracted $\left(2 \mathrm{x}, \mathrm{Et}_{2} \mathrm{O}, 2 \mathrm{x} \mathrm{CH} \mathrm{Cl}_{2}\right)$. The combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated. The crude material was then purified by flash chromatography (10\% EtOAc/hexanes) to furnish $19 \mathrm{mg}(+)-\mathrm{S} 2(80 \%)$ as a yellow oil. $[\square]_{\mathrm{D}}^{23}+20(c 0.60$, CHCl_{3}); IR (film, NaCl) 2930, 1454, 1614, 1251, 1037, 834, $760 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 7.68$ (d, $J=8.2 \mathrm{~Hz}, 6 \mathrm{H}), 7.52(\mathrm{~m}, 8 \mathrm{H}), 7.46(\mathrm{app} \mathrm{dt}, J=7.6,1.1 \mathrm{~Hz}, 3 \mathrm{H}), 7.12(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.32(\mathrm{appt} \mathrm{J}$ $=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{ddd}, J=10.0,10.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{ABq}, J=10.8, \square \square=24.6,2 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H})$, $3.74(\mathrm{~m}, 2 \mathrm{H}), 3.43(\mathrm{dd}, J=8.8,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{app} \mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{app} \mathrm{t}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.73$ $(\mathrm{m}, 1 \mathrm{H}), 2.40(\mathrm{~m}, 1 \mathrm{H}), 2.10(\mathrm{~m}, 4 \mathrm{H}), 1.85(\mathrm{~m}, 1 \mathrm{H}), 1.22(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.19$ (d, $J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.18(\mathrm{~s}, 9 \mathrm{H}), 1.13(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H}), 1.03(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.32(\mathrm{~s}$, $3 \mathrm{H}), 0.28(\mathrm{~s}, 3 \mathrm{H}), 0.26(\mathrm{~s}, 3 \mathrm{H}), 0.21(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl Cl_{3}) $\square 159.0,144.6,134.5,131.5$, 128.9, 128.8, 127.6, 127.2, 126.7, 113.7, 86.3, 85.8, 77.7, 76.6, 74.8, 66.3, 55.3, 40.0, 39.4, 38.0, 35.2, $32.3,31.0,26.3,26.1,20.5,18.6,18.2,17.7,17.5,14.3,13.7,11.2,-3.4,-3.4,-3.9,-4.0$; high resolution mass spectrum (ES $\left.{ }^{+}\right) \mathrm{m} / \mathrm{z} 929.5887\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\mathrm{C}_{57} \mathrm{H}_{86} \mathrm{O}_{5} \mathrm{NaSi}_{2}$: 929.5912].

(+)-S3
Alcohol (+)-S3: Anhydrous $\mathrm{MeOH}(32 \square \mathrm{~L})$ was added to a cold $\left(0^{\circ} \mathrm{C}\right)$ solution of chlorocatecholborane (199 mg, 1.288 mmol) in 2.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The resulting solution was added in 0.25 mL (0.161 mmol) aliquots at 10 min intervals to a 0.1 M solution $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ of trityl ether $(+)-\mathrm{S} 2(146 \mathrm{mg}, 0.161 \mathrm{mmol})$ at 0 ${ }^{\circ} \mathrm{C}$ until TLC (20\% EtOAc/hexanes) indicated ca. 90% reaction completion, at which point the reaction was quenched via dropwise addition of 5 mL of saturated NaHCO_{3}. The resulting mixture was stirred for

15 min , diluted with 10 mL Et 2 O , stirred an additional 30 min , and the layers were separated. The aqueous layer was extracted (3 $\mathrm{Et}_{2} \mathrm{O}$), and the resulting organic layers were combined, washed (water and saturated brine solution), dried (MgSO_{4}), filtered, added to 3 g of SiO_{2} and concentrated. Flash chromatography (gradient elution: 2% EtOAc/hexanes $\square 10 \% \mathrm{EtOAc} /$) provided (+)-S3 (82 mg, 77\%) as a colorless oil. $[\square]]_{D}^{23}+18\left(c 0.58 \mathrm{CHCl}_{3}\right)$; IR (film, NaCl$) 3476,2953,1512,1461,1247,1033,832,767$ cm^{-1}; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 7.25(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.23(\mathrm{~m}, 2 \mathrm{H}), 4.47$ (ABq, $J=10.8, \square \square=40,2 H), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{dd}, J=11.0,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{app} \mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.51(\mathrm{dd}, J=4.9,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{dd}, J=6.7,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{appt}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{~m}, 1 \mathrm{H})$, $2.30(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.99(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{~m}, 1 \mathrm{H}), 1.84(\mathrm{~m}, 2 \mathrm{H}), 1.66(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}$, $3 \mathrm{H}), 0.96(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H}), 0.94(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 18 \mathrm{H}), 0.81(\mathrm{~d}, J=$ $6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl3) $\square 159.0$, $134.1,131.5,129.0,128.5,113.8,85.8,81.3,77.0,74.8,65.3,55.3,39.3,38.4,38.0,36.9,32.5,31.0$, $26.3,26.2,20.8,18.6,18.3,17.8,17.4,15.9,14.2,11.3,-3.4,-3.5,-3.6,-3.8$; high resolution mass spectrum (ES^{+}) $m / z 687.4804\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\left.\mathrm{C}_{38} \mathrm{H}_{72} \mathrm{O}_{5} \mathrm{NaSi}_{2}: 687.4816\right]$.

(+)-4
Phosphonium Salt (+)-4: To a $0^{\circ} \mathrm{C}$ solution (benzene/Et $\mathrm{t}_{2} \mathrm{O}, 1: 1,0.1 \mathrm{M}$)) of alcohol (+)-S3 (75 mg, 0.1128 mmol) was added triphenylphosphine ($86 \mathrm{mg}, 0.327 \mathrm{mmol}$), imidazole ($21 \mathrm{mg}, 0.3146 \mathrm{mmol}$), and $\mathrm{I}_{2}(80 \mathrm{mg}, 0.315 \mathrm{mmol})$. The resultant yellow suspension was stirred 5 min at $0^{\circ} \mathrm{C}$, then warmed to ambient temperature. The reaction was then poured into 10 mL of saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and diluted with $\mathrm{Et}_{2} \mathrm{O}$. The layers were separated, and the organic layer was washed (saturated NaHCO_{3}, brine), dried (MgSO4), added to SiO_{2} and concentrated. The crude material was then purified by flash
chromatography ($10 \% \mathrm{EtOAc} /$ hexanes, $1 \% \mathrm{Et}_{3} \mathrm{~N}$) to afford the corresponding iodide (contaminated with ca. $20 \% \mathrm{PPh}_{3}$) which was taken onto the next step without further purification.

To a mixture of the iodide and diisopropylethylamine ($0.2 \mathrm{~mL}, 1.14 \mathrm{mmol}$) was added triphenylphosphine ($100 \mathrm{mg}, 0.381 \mathrm{mmol}$). The resulting mixture was heated to $100^{\circ} \mathrm{C}$ for 6 h , cooled, and chromatographed $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ load, then $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} \square 20 \% \mathrm{CH}_{3} \mathrm{CN}_{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to provide (+)-4 as a light yellow solid (92 mg, 80\% yield from alcohol (+)-S3. [$]_{\mathrm{D}}^{23}+14\left(c 0.4, \mathrm{CHCl}_{3}\right)$; $\mathrm{IR}($ film, NaCl$) 2922,2044$, 1433, 1250, 1111, $830 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 7.81$ (m, 9 H), 7.69 (ddd, $J=7.7,7.7,3.4 \mathrm{~Hz}$, $6 \mathrm{H}), 7.25(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.56(\mathrm{appt}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{ddd}, J=10.5$, $10.5,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{ABq}, J=10.8, \square \square=28.8,2 \mathrm{H}), 3.79(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{app} \mathrm{t}, J=4.4 \mathrm{~Hz}$, 1 H), 3.32 (ddd, $J=15.5,11.2,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\operatorname{app} t, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{app} \mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{~m}, 3 \mathrm{H}), 1.81(\mathrm{dd}, J=11.9,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.60(\mathrm{~m}, 1 \mathrm{H}), 0.96(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~d}$, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 0.78(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.73(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}),-0.02(\mathrm{~s}, 3 \mathrm{H}),-0.05(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \square 195.0,135.2,135.1,134.2,133.7,133.6,132.1,132.0,131.9,131.4,130.7,130.6$, $129.0,128.5,128.4,128.2,118.9,118.1,113.8,85.7,77.0,76.6,74.9,55.3,39.2,38.1,35.7,34.1,32.2$, $30.8,29.3,26.2,26.0,20.6,18.5,18.3,17.4,17.2,16.8,14.6,11.2,-3.3,-3.4,-3.9(2)$; high resolution mass spectrum (ES $\left.{ }^{+}\right) m / z 909.5813\left[(\mathrm{M}-\mathrm{I})^{+}\right.$; calcd for $\left.\mathrm{C}_{56} \mathrm{H}_{86} \mathrm{O}_{4} \mathrm{PSi}_{2}: 909.5813\right]$.

(+)-6
Diene (+)-6: Phosphonium salt (+)-4 (70 mg, 0.0675 mmol), was azeotropically dried with benzene (3 $\square 1.0 \mathrm{~mL}$) using a double manifold and further dried by heating to $50^{\circ} \mathrm{C}$ under vacuum (0.2 torr) for 12 h . The salt was back-filled with argon, dissolved in $300 \mu \mathrm{~L}$ of freshly distilled THF, sparged with argon for 15
min, and cooled to $-20^{\circ} \mathrm{C}$. The resultant solution was treated with sodium bis(trimethylsilyl)amide (1.0 M in THF, $64 \mu \mathrm{~L}$), stirred 15 min , warmed to $0^{\circ} \mathrm{C}$, stirred 30 min , and re-cooled to $-20^{\circ} \mathrm{C}$. To this orange/red solution was transferred via cannula a degassed solution of aldehyde (-)-5 (30 mg, 0.0675 $\mathrm{mmol})$ in THF $(300 \mu \mathrm{~L})$ over 1 min . The orange solution was allowed to slowly warm to $-8{ }^{\circ} \mathrm{C}$ over 3.0 h . The resulting light yellow solution was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and diluted $\left(\mathrm{E}_{2} \mathrm{O}_{2} / \mathrm{H}_{2} \mathrm{O}\right)$. The layers were separated, and the aqueous layer was extracted (3 $\square \mathrm{Et} 2 \mathrm{O}$). The combined organic layers were dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), concentrated, and chromatographed (gradient elution: 2\% EtOAc/hexanes $\square 50 \%$ EtOAc/hexanes; then $40 \% \mathrm{CH}_{3} \mathrm{CN}^{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford cis isomer (+)-6 (22 mg, 43\%), and phosphonium salt (+)-4 (30 mg, 43\%). [[]$\left._{\mathrm{D}}^{23}+26\left(c 0.50 \mathrm{CHCl}_{3}\right)\right]$; IR (film, NaCl$) 2929,2851,1738,1458,1246,1045$, 832, $776 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 7.25(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.31(\mathrm{~m}$, 2H), $5.22(\operatorname{appt}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(d d d, J=10.9,8.9,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\operatorname{app} t, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.49$ (app t, $J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{ABq}, J=10.8, \square \square=14.1,2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.60(\operatorname{app} \mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.52(\operatorname{app} t, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\operatorname{appt}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\operatorname{app} t, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{~m}, 3 \mathrm{H}), 1.97$ (m, 2H), $1.90(\mathrm{dd}, J=12.4,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{dd}, J=12.4,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{ddd}, J=9.7,6.7,2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 1.72(\mathrm{appt}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{~m}, 1 \mathrm{H}), 1.56(\mathrm{~m}, 1 \mathrm{H}), 1.20(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=6.4$ $\mathrm{Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.93(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}$, $9 H), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.81(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 6 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H}), 0.03(\mathrm{~s}, 6 \mathrm{H}), 0.02(\mathrm{~s}$, $3 \mathrm{H}), 0.00(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 173.2,158.2,135.5,133.6,132.5,131.5,129.0,127.1$, $113.8,85.8,80.0,77.0,76.8,74.9,74.8,64.6,55.3,44.1,42.9,39.4,38.1,37.5,35.0,34.2,32.5,31.0$, $30.4,29.7,26.3,26.2,25.9,25.7,20.5,18.6,18.4,18.1,18.0,17.7,17.2,16.4,16.0,14.3,14.1,11.2,-$ 3.1, $-3.4,-4.2,-4.3,-4.5,-4.8$; high resolution mass spectrum $\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 1097.7469\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\left.\mathrm{C}_{60} \mathrm{H}_{114} \mathrm{O}_{8} \mathrm{Si}_{4} \mathrm{Na}: 1097.7489\right]$.

(+)-S4
Alcohol (+)-S4 To a room temperature solution of PMB ether (+)-6 (20 mg, 0.0186 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0$ $\mathrm{mL})$ was treated with $\mathrm{H}_{2} \mathrm{O}(100 \mu \mathrm{~L})$ and DDQ $(5.1 \mathrm{mg}, 0.0223 \mathrm{mmol})$. The mixture was stirred for 30 min and quenched with 5.0 mL saturated NaHCO_{3}, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and washed with $\mathrm{H}_{2} \mathrm{O}$ and saturated brine solution. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. Flash chromatography (5\% EtOAc/hexanes) provided (+)-S4 (14.0 mg, 78\%) and recovered starting material $\left.(+)-6(4.0 \mathrm{mg}, 22 \%) .[\square]_{\mathrm{D}}^{23}+26\left(c 0.43, \mathrm{CHCl}_{3}\right)\right]$; IR (film, NaCl$) 3522,2920,2851,1727,1458,1251$, $1044,832,771 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 5.36(\mathrm{app} \mathrm{t}, \mathrm{J}=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{dd}, J=11.1,7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 5.24(\operatorname{app} t, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{ddd}, J=9.9,9.9,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\operatorname{app} t, J=9.0,1 \mathrm{H}), 4.51$ (app t, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\operatorname{app~t}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\operatorname{app~t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{dd}, J=5.6,4.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.20(\mathrm{~m}, 1 \mathrm{H}), 2.62(\mathrm{~m}, 3 \mathrm{H}), 2.08(\mathrm{~m}, 1 \mathrm{H}), 1.98(\mathrm{~m}, 1 \mathrm{H}), 1.81(\mathrm{~m}, 2 \mathrm{H}), 1.72(\mathrm{~m}, 4 \mathrm{H}), 1.59(\mathrm{ddd}, \mathrm{J}=$ 13.8, 11.2, 2.0 Hz, 1H), $1.22(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H}), 0.92(\mathrm{~d}$, $J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$, $0.86(\mathrm{~s}, 9 \mathrm{H}), 0.83(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.05(\operatorname{app} \mathrm{~s}$, $6 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \square 173.2,135.7,133.6,132.5,127.3,80.0$, $79.9,79.0,77.1,74.9,64.7,44.1,42.9,38.8,37.5,35.1,34.2,31.6,31.3,30.3,29.3,26.3,26.2,25.9$, $25.7,19.3,18.8,18.4,18.1,18.0,17.3,16.4,15.8,14.6,14.1,8.8,-3.1,-3.3,-4.0,-4.2,-4.3,-4.5,-4.9$; high resolution mass spectrum $\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 977.6865\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\left.\mathrm{C}_{52} \mathrm{H}_{106} \mathrm{O}_{7} \mathrm{Si} 4 \mathrm{Na}: 977.6913\right]$

(+)-S5
Carbamate (+)-S5. A solution of alcohol (+)-S4 (13 mg, 0.0136 mmol$)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ was treated with $\mathrm{Cl}_{3} \mathrm{CCON}=\mathrm{C}=\mathrm{O}(100 \mathrm{~L}, 1 \mathrm{M}$ solution) at room temperature for 30 min . The solution was loaded directly onto neutral $\mathrm{Al}_{2} \mathrm{O}_{3}$ plug. After 4 h , the material was flushed from the $\mathrm{Al}_{2} \mathrm{O}_{3}$ ($\mathrm{EtOAc}, 50 \mathrm{~mL}$), concentrated, and purified by flash chromatography (10% ethyl acetate/hexanes) providing 10 mg of (+)$\mathbf{S 5}(71 \%) .[\square]_{\mathrm{D}}^{23}+21\left(c 0.075, \mathrm{CHCl}_{3}\right)$; IR (film, NaCl$) 3362$, 2922, 2857, 1732, 1250, 1045, $836 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $5.33(\mathrm{appt} \mathrm{t}, \mathrm{J}=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~m}, 1 \mathrm{H}), 5.17(\mathrm{~m}, 1 \mathrm{H}), 4.79(\mathrm{appt} \mathrm{t}, J=9.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.56(\mathrm{appt}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~m}, 4 \mathrm{H}), 3.63(\mathrm{appt}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{dd}, J=5.3,3.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.29(\mathrm{appt}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{~m}, 1 \mathrm{H}), 2.59(\mathrm{dd}, J=8.1,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{~m}, 1 \mathrm{H}), 1.97(\mathrm{~m}, 2 \mathrm{H})$, 1.89 (m, 2H), $1.80(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{~m}, 2 \mathrm{H}), 1.56$ (ddd, $J=13.6,10.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.21(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$, 0.95 (d, J = $6.6 \mathrm{~Hz}, 6 \mathrm{H}$), 0.92 (s, 9H), 0.92 (d, obscured, 3H), $0.90(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.88$ (s, 9H), $0.88(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 6 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.81(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 6 \mathrm{H}), 0.04(\mathrm{~s}$, $3 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.00(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $173.3,157.1,135.4,133.6$, 132.5, 127.1, 80.4, 80.0, 77.1, 76.4, 74.9, 64.7, 44.1, 42.9, 38.0, 37.8, 37.6, 35.0, 34.2, 32.3, 30.0, 26.3, $26.2,25.9,25.7,19.5,18.5,18.4,18.1,18.0,17.6,17.2,16.4,15.9,14.1,13.9,10.5,-3.1,-3.5,-3.7,-4.2$, $-4.3,-4.5,-4.9$; high resolution mass spectrum $\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 1020.6937\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\left.\mathrm{C}_{53} \mathrm{H}_{107} \mathrm{NO}_{8} \mathrm{Si}_{4} \mathrm{Na}: 1020.6972\right]$.

$(+)-7$
Tetra-ol (+)-7. Carbamate (+)-S5 (9.0 mg, 0.009 mmol) was dissolved in $\mathrm{MeOH}(2.0 \mathrm{~mL})$ and stirred for 15 min at room temperature. Aqueous hydrochloric acid ($3 \mathrm{~N}, 5.0 \mathrm{~mL}$) was added in $200-400 \mu \mathrm{~L}$ portions over 4 hours at a rate which minimized precipitation (ca. 10 to 15 min intervals). An additional 2 mL of 3 N aq HCl was added over 1 h at 15 min intervals, and the sides of the flask/stir bar were rinsed with 2.0 mL of MeOH . After 12 h the solution was quenched with NaHCO_{3} (s), diluted with 30 mL of water and extracted 3 x with EtOAc. The combined organic extracts were dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), filtered, and concentrated. Flash chromatography using washed SiO_{2} (hexanes then $10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ then 5% $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) via gradient elution ($2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} \mathrm{Z} 10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave (+)-7 (3.0 mg, 61% yield). $[\square]_{\mathrm{D}}^{23}+50(c 0.08, \mathrm{MeCN})$; IR (film, NaCl$) 3354,2928,1704,1381,1030 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \mathrm{C} 5.45(\mathrm{app} \mathrm{t}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{dd}, J=11.1,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~m}, 2 \mathrm{H}), 5.07(\mathrm{br} \mathrm{s}$, 2H), 4.54 (app t, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}$), 4.50 (dd, $J=6.6,5.1 \mathrm{~Hz}, 1 \mathrm{H}$), 4.46 (dd, $J=10.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.65 (br s, $1 \mathrm{H}), 3.58$ (br s, 1H), 3.32 (br s, 1H), 3.22 (dd, $J=11.1,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.17$ (dd, $J=10.2,5.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.84 (br s, 1H), $2.65(\mathrm{~m}, 2 \mathrm{H}), 2.57(\mathrm{dd}, J=7.3,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{~m}, 1 \mathrm{H}), 2.51$ (dddd, $J=13.4,8.6,6.7,6.7$, $1 \mathrm{H}), 2.02$ (ddd, $J=14.2,4.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{~m}, 3 \mathrm{H}), 1.75(\mathrm{dd}, J=12.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.72$ (dd, $J=10.2$, $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.59(\mathrm{ddd}, J=14.4,10.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.21(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.99$ (d, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) \square 174.5, 158.3, 134.9, 133.8, 133.5, $128.1,80.2,79.1,77.9,75.9,72.9,63.8,43.8,42.2,37.8,36.5,36.3,36.1,36.0,32.4,30.6,19.5,18.8$, 17.6, 16.2, 15.5, 14.5, 12.8, 9.3; high resolution mass spectrum (ES $\left.{ }^{+}\right) \mathrm{m} / \mathrm{z} 564.3505\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\left.\mathrm{C}_{29} \mathrm{H}_{51} \mathrm{NO}_{8} \mathrm{Na}: 564.3512\right]$.

(+)-S7
lodide (+)-S7: To a $0^{\circ} \mathrm{C}$ solution (benzene/Et $\mathrm{O}_{2} \mathrm{O}, 1: 1,40 \mathrm{~mL}$) of alcohol (+)-8 (1.39 g, 2.05 mmol) was added triphenylphosphine ($1.39 \mathrm{~g}, 5.30 \mathrm{mmol}$), imidazole ($0.350 \mathrm{~g}, 5.14 \mathrm{mmol}$), and $\mathrm{I}_{2}(1.09 \mathrm{~g}, 4.29$ $\mathrm{mmol})$. The resultant canary yellow suspension was stirred 45 min at $0^{\circ} \mathrm{C}$, then warmed to ambient temperature. The reaction was then poured into 75 mL of water and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The layers were separated, and the organic layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{~mL})$, and then washed ($2 \times$ saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}, 1 \times$ saturated $\mathrm{NaHCO}_{3}, 1 \times$ brine $)$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. Flash chromatography (6\% ether / hexanes) afforded iodide (+)-S7 (1.45 g, 90\%). [$\square]_{D}^{23}+46.7\left(c 1, \mathrm{CHCl}_{3}\right)$; IR (film, NaCl) 2957, 2940, 2856, 1617, 1462, 1387, 1250, 1169, 1085, 1032, 836, $773 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \square 7.61$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.46-5.36(\mathrm{~m}, 2 \mathrm{H}), 5.40(\mathrm{~s}, 1 \mathrm{H}), 3.94(\mathrm{dd}, J=11.2,4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.87(\mathrm{dd}, J=7.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.51-3.45(\mathrm{~m}, 1 \mathrm{H}), 3.50(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.34,(\mathrm{dd}, J=9.7,4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}), 3.25(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{dd}, J=9.7,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{ddddd}, J=8.9,6.7,6.7$, $6.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.19(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.88(\mathrm{~m}, 3 \mathrm{H}), 1.89-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.15(\mathrm{~d}, \mathrm{~J}=7.1$ $\mathrm{Hz}, 3 \mathrm{H}), 1.055(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.050(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H}), 0.95$ $(\mathrm{s}, 9 \mathrm{H}), 0.42(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.086(\mathrm{~s}, 3 \mathrm{H}), 0.080(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 160.4,134.4,132.2,128.8,127.9,113.8,101.6,83.3,79.5,77.8,73.3,54.7,41.6,38.7$, $36.9,36.0,33.8,31.0,26.5,26.3,18.8,18.6,17.8,17.4,13.6,13.2,12.0,11.3,-3.4,-3.7,-3.5,-3.7$; high resolution mass spectrum (ES $\left.{ }^{+}\right) \mathrm{m} / \mathrm{z} 789.3832\left[(\mathrm{M}+\mathrm{H})^{+}\right.$; calcd for $\mathrm{C}_{38} \mathrm{H}_{70} \mathrm{O}_{5} \mathrm{Si}_{2} \mathrm{Na}$: 789.3807]

(+)-S8

Phosphonium salt (+)-S8: To a mixture of iodide (+)-S7 (1.45 g, 1.84 mmol) and diisopropylethylamine ($3.5 \mathrm{~mL}, 20.1 \mathrm{mmol}$) was added triphenylphosphine $(5.5 \mathrm{~g}, 20.9 \mathrm{mmol})$. The resulting mixture was heated to $100^{\circ} \mathrm{C}$ for 36 h , cooled, and chromatographed $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ load, then $100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to 40% $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to provide (+)-S8 as a white foam (1.58 g, 82\% yield): [[]$_{\mathrm{D}}^{23}+32.0\left(c 1.0, \mathrm{CHCl}_{3}\right)$; IR (film, NaCl) 2954, 2855, 1614, 1516, 1438, 1249, 1111, 1073, 1029, 834, $751 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \square 7.82-7.76(\mathrm{~m}, 9 \mathrm{H}), 7.72-7.67(\mathrm{~m}, 6 \mathrm{H}), 7.37-7.34(\mathrm{~m}, 2 \mathrm{H}), 6.86-6.82(\mathrm{~m}, 2 \mathrm{H}), 5.54(\mathrm{dd}, J=10.8$, $10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~s}, 1 \mathrm{H}), 5.28(\mathrm{ddd}, J=10.8,10.8,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{dd}, J=11.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}$, $3 H$), 3.76-3.72 (m, 2H), 3.61 (dd, $J=7.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.50-3.45(\mathrm{~m}, 2 \mathrm{H}), 3.27$, (ddd, $J=15.6,11.2$, 11.2 $\mathrm{Hz}, 1 \mathrm{H}), 2.59-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.12-1.98(\mathrm{~m}, 3 \mathrm{H}), 1.84(\mathrm{dddd}, J=7.4,7.1,7.1,7.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.80-1.66$ $(\mathrm{m}, 2 \mathrm{H}), 0.98(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 0.78(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, $3 \mathrm{H}), 0.72(\mathrm{app} \mathrm{d}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}),-0.05(\mathrm{~s}, 3 \mathrm{H}),-0.07(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 159.7,135.2$ (d), 133.9, 133.6 (d), 131.4, 130.6 (d), 128.3, 127.3, 118.8 (d), 113.4, 100.8, $82.9,79.5$ (d), 77.2 (d), $73.2,55.3,37.99,36.3,35.8,35.9$ (2), 33.2, 26.1, 26.0, 25.6 (d), 18.4, 18.2, 17.0 (d), 13.1, 12.1, 10.9, -3.4, -3.6 (2), -3.9; high resolution mass spectrum (ES ${ }^{+}$) m/z $923.5591\left[(\mathrm{M}-\mathrm{I})^{+}\right.$; calcd for $\mathrm{C}_{56} \mathrm{H}_{84} \mathrm{O}_{5} \mathrm{PSi}: 923.5595$

$(+)-9$
Diene (+)-9: Phosphonium salt (+)-S8 (1.40 g, 1.33 mmol), was azeotropically dried with benzene (3 $\square 1.0 \mathrm{~mL}$) using a double manifold and further dried by heating to $50^{\circ} \mathrm{C}$ under vacuum (0.2 torr) for 12 h . The salt was back-filled with argon, dissolved in 6 mL of freshly distilled THF, sparged with argon for 15 min, and cooled to $-20^{\circ} \mathrm{C}$. The resultant solution was treated with sodium bis(trimethylsilyl)amide (1.0 M in THF, $666 \mu \mathrm{~L}$), stirred 15 min , warmed to $0^{\circ} \mathrm{C}$, stirred 30 min , and re-cooled to $-20^{\circ} \mathrm{C}$. To this orange/red solution was transferred via cannula a degassed solution of aldehyde (-)-5 (712 mg, 1.60
$\mathrm{mmol})$ in THF (1 mL) over 1 min . The orange solution was allowed to slowly warm to $-8{ }^{\circ} \mathrm{C}$ over 3.0 h . The resulting light yellow solution was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and diluted ($\mathrm{Et} 2 \mathrm{O} / \mathrm{H}_{2} \mathrm{O}$). The layers were separated, and the aqueous layer was extracted with $\mathrm{Et} 2 \mathrm{O}(3 \square 30 \mathrm{~mL})$. The combined organic layers were dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), concentrated, and chromatographed (gradient elution: 2\% EtOAc/hexanes $\square 50 \%$ EtOAc/hexanes; then $30 \% \mathrm{CH}_{3} \mathrm{CN}^{2} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford cis isomer (+)-9 (420 mg, 31%), and phosphonium salt (+)-S8 (750 mg, 54\%). [[]$_{\mathrm{D}}^{23}+37.6\left(c 1, \mathrm{CHCl}_{3}\right)$; IR (film, NaCl$) 2956,2929$, 2886, 2856, 1734, 1471, 1250, 1045, 835, $775 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 7.37(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H})$, $6.87(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.39(\mathrm{~s}, 1 \mathrm{H}), 5.36-5.28(\mathrm{~m}, 2 \mathrm{H}), 5.21(\mathrm{dd}, J=10.4,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.21-5.16(\mathrm{~m}$, $1 \mathrm{H}), 4.79(\mathrm{dd}, J=9.3,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{dd}, J=10.4,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{dd}, J=11.1,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.80$ (s, 3H), 3.67 (dd, $J=7.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{dd}, J=2.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{dd}, J=10.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.48$ (dd, $J=10.8,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{dd}, J=4.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.67-2.55(\mathrm{~m}, 3 \mathrm{H}), 2.11-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.95-1.84$ $(\mathrm{m}, 2 \mathrm{H}), 1.82-1.70(\mathrm{~m}, 3 \mathrm{H}), 1.59(\mathrm{ddd}, J=13.8,11.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.20(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{~d}, J=$ $6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.92-0.89(\mathrm{~d}$, obscured, 3 H$), 0.91(\mathrm{~s}, 9 \mathrm{H})$, $0.89(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.83(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.74(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H})$, $0.06(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{apps}, 6 \mathrm{H}), 0.044(\mathrm{~s}, 3 \mathrm{H}), 0.036(\mathrm{~s}, 3 \mathrm{H}), 0.022(\mathrm{~s}, 3 \mathrm{H}), 0.00(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 173.2,156.7,135.3,133.6,132.4,131.4,127.2,127.1,113.4,100.8,83.0,79.9,77.1$, $76.9,74.8,73.2,64.6,55.2,44.1,42.8,28.0,37.4,36.5,34.9,34.0,33.1,30.7,26.2,26.1,25.8,25.6$, $18.42,18.36,18.0,17.8,17.1,16.3,15.8,14.0,13.1,12.1,10.8,-3.1,-3.6,-3.7,-4.2,-4.4,-4.6,-4.9(2)$; high resolution mass spectrum $\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 1111.7260\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\left.\mathrm{C}_{60} \mathrm{H}_{112} \mathrm{O}_{9} \mathrm{Si}_{4} \mathrm{Na}: 1111.7281\right]$

$(+)-10$
Aldehyde (+)-10: To a $0{ }^{\circ} \mathrm{C}$ solution of acetal (+)-9 (370 $\left.\mathrm{mg}, 0.34 \mathrm{mmol}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added DIBAL-H ($0.61 \mathrm{~mL}, 3.40 \mathrm{mmol})$. The resulting solution was warmed to room temperature and stirred for

20 min . The reaction was quenched via dropwise addition of saturated aqueous Rochelle's salt (20 mL), diluted with ether (40 mL)., the aqueous layer extracted with ether ($4 \times 30 \mathrm{~mL}$), and the layers separated. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ and brine $(15 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated. Flash chromatography ($10 \% \mathrm{EtOAc} /$ hexanes) provided the corresponding diol as a mixture of epimers at the lactol stereocenter, which was taken directly to the next step. To a $0^{\circ} \mathrm{C}$ solution of the diol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(11 \mathrm{~mL})$ were added Dess-Martin periodinane ($297 \mathrm{mg}, 0.702 \mathrm{mmol}$) and NaHCO_{3} (145 $\mathrm{mg}, 2.00 \mathrm{mmol}$). The resulting solution was stirred for 2.5 h and quenched with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution (15 mL) and saturated NaHCO_{3} solution (15 mL). The mixture was then extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x}$ $30 \mathrm{~mL})$ and the layers separated. The organic solution was then washed with $\mathrm{H}_{2} \mathrm{O}$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated. Flash chromatography (5\% ethyl acetate / hexanes) yielded aldehyde (+)-10 (145 mg, 66\%). [[]$_{\mathrm{D}}^{23}+18.8$ (c 1, CHCl_{3}); IR (film, NaCl) 2956, 2929, 2884, 2856, 1739, 1732, 1514, 1472, 1464, 1360, 1250, 1047, 833, $775 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $9.73(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.21$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.66-5.58(\mathrm{~m}, 2 \mathrm{H}), 5.51(\mathrm{dd}, J=10.4,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.34$ (ddd, $J=10.4,10.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{dd}, J=9.7,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{dd}, J=10.4,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}$, $J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{dd}, J=6.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{dd}, J=10.8,5.6 \mathrm{~Hz}, 2 \mathrm{H})$, 3.38 (dd, $J=2.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.33$ (s, 3H), 3.20-2.95 (m, 1H), 2.90-2.82 (m, 1H), 2.66 (dddd, $J=7.8,7.4$, $7.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.57 (dddd, $J=13.8,6.7,6.7,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.28$ (ddd, $J=14.1,9.7,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.12$ (d, $J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.73(\mathrm{ddd}, J=13.4,11.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.70-1.64$ ($\mathrm{m}, 1 \mathrm{H}$), $1.218(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.216(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.12(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.12(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, $3 \mathrm{H}), 1.07$ (s, 9H), $1.04(\mathrm{~s}, 9 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H}), 0.97(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~s}$, 9 H), $0.82(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.31(\mathrm{~s}, 3 \mathrm{H}), 0.29(\mathrm{~s}, 3 \mathrm{H}), 0.23(\mathrm{~s}, 3 \mathrm{H}), 0.22(\mathrm{~s}, 3 \mathrm{H}), 0.14(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}$, 3H), 0.06 (app s, 6H); ${ }^{13} \mathrm{C}$ NMR (125 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$) [203.1, 171.7, 159.8, 137.0, 134.2, 132.9, 130.8, 129.4, 127.3, 114.1, 82.40, 80.39, 76.9, 76.5, 75.3, 74.4, 65.0, 54.8, 49.6, 44.5, 43.6, 40.4, 38.7, 38.1, 35.8, 34.8, 33.1, 26.5 (2), 26.2, 25.9, 18.8, 18.7, 18.4, 18.1, 17.2, 16.9, 16.4, 14.1 (2), 12.0, 11.7, -3.0, -3.1, 3.3, $-4.0,-4.1,-4.5,-4.6,-4.8$; high resolution mass spectrum (ES^{+}) $\mathrm{m} / \mathrm{z} 1111.7394\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\left.\mathrm{C}_{60} \mathrm{H}_{112} \mathrm{O}_{9} \mathrm{Si}_{4} \mathrm{Na}: 1111.7281\right]$

(+)-S9
Triene (+)-S9: Methyltriphenylphosphonium bromide ($262 \mathrm{mg}, 0.733 \mathrm{mmol}$) was suspended in THF (3 $\mathrm{mL})$ and cooled to $-78{ }^{\circ} \mathrm{C}$. n-BuLi ($2.5 \mathrm{M}, 0.264 \mathrm{~mL}$) was added dropwise via syringe, and the resulting orange/red solution was warmed to room temperature and stirred for 40 min . In a separate flask, aldehyde (+)-10 (40 mg, 0.037 mmol$)$ was dissolved in THF $(1.0 \mathrm{~mL})$ and cooled to $-78{ }^{\circ} \mathrm{C}$. The orange ylide solution was added to the clear aldehyde solution by syringe until the orange color persisted. The reaction was then warmed to $0^{\circ} \mathrm{C}$, stirred for 30 min , and quenched with saturated $\mathrm{NH}_{4} \mathrm{CI}$ solution (10 $\mathrm{mL})$. The mixture was then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and the layers separated. The aqueous layer was extracted $\left(3 \square \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, and the combined organic layers were dried (MgSO 4$)$, concentrated, and chromatographed (3% EtOAc/hexanes) to afford cis isomer (+)-S9 (37 mg, 68\%). [$]_{\mathrm{D}}^{23}+31.8$ (c 1, CHCl_{3}); IR (film, NaCl) 2956, 2929, 2886, 2856, 1739, 1514, 1471, 1360, 1250, 1047, $835 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 7.27(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.90(\mathrm{dddd}, J=9.3,9.3,8.6,8.6 \mathrm{~Hz}$, 1 H), $5.37-5.20(\mathrm{~m}, 3 \mathrm{H}), 5.14(\mathrm{ddd}, J=10.8,8.9,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~s}, 1 \mathrm{H}), 4.80$ (dd, $J=9.3,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{dd}, J=10.4,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=10.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{dd}, J=2.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{dd}, J=4.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{dd}, J=5.2,5.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.20(\mathrm{dd}, J=6.3,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.70-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.56(\mathrm{ddd}, J=10.8,5.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.50$ (dddd, J $=11.9,7.1,7.1,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.98-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.79(\mathrm{ddd}, J=10.0,6.7,2.2 \mathrm{~Hz}, 1 \mathrm{H})$, $1.74(\mathrm{dd}, J=12.6,12.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.65-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.22(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.09(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.98$ (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.965(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.955(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, $3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.82(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.064(\operatorname{app}$ $\mathrm{s}, 6 \mathrm{H}), 0.062(\mathrm{~s}, 3 \mathrm{H}), 0.052(\mathrm{~s}, 3 \mathrm{H}), 0.047(\mathrm{~s}, 3 \mathrm{H}), 0.019(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl $\left.\mathrm{N}_{3}\right) \square 173.2$, $158.9,140.9,135.3,133.5,132.4,131.2,129.0,127.1,114.7,113.6,84.3,79.9,77.0,76.4,74.8,74.6$,
$64.5,55.2,44.1,42.8,41.4,39.7,38.2,37.4,34.9,34.1,32.1,26.20,26.19,25.8,25.6,18.5,18.4,18.05$, $18.03,17.9,17.1,16.3,15.9,14.7,14.0,10.7,-3.2,-3.4,-3.5,-4.3,-4.4,-4.6,-4.9(2)$; high resolution mass spectrum $\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 1109.7530\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\left.\mathrm{C}_{61} \mathrm{H}_{114} \mathrm{O}_{8} \mathrm{Si}_{4} \mathrm{Na}: 1109.7489\right]$

(+)-S10
Alcohol (+)-S10: A room temperature solution of PMB ether (+)-S9 (26 mg, 0.024 mmol$)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0$ mL) was treated with $\mathrm{H}_{2} \mathrm{O}(100 \mu \mathrm{~L})$ and DDQ ($10 \mathrm{mg}, 0.044 \mathrm{mmol}$). The mixture was stirred for 30 min and quenched with 5.0 mL saturated NaHCO_{3}, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and washed with $\mathrm{H}_{2} \mathrm{O}$ and saturated brine solution. The combined organic layers were dried (MgSO4), filtered and concentrated. Preparative TLC (15\% EtOAc/hexanes) provided (+)-S10 (20 mg, 87\%). [[]$_{\mathrm{D}}^{23}+26.4$ (c 1, CHCl_{3}); IR (film, NaCl) 2972, 2929, 2857, 1734, 1471, 1360, 1252, 1047, 836, $774 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 5.90$ (ddd, $J=16.4,11.2,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.38-5.12(\mathrm{~m}, 5 \mathrm{H}), 5.11(\mathrm{~s}, 1 \mathrm{H}), 4.80(\mathrm{dd}, J=8.9,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{ddd}, \mathrm{J}$ $=10.4,10.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{dd}, J=6.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{dd}, J=2.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~m}, 2 \mathrm{H})$, 2.69$2.53(\mathrm{~m}, 3 \mathrm{H}), 2.28(\mathrm{dddd}, \mathrm{J}=15.3,7.4,7.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.69(\mathrm{~m}, 4 \mathrm{H}), 1.60(\mathrm{ddd}, \mathrm{J}=$ 13.4, 11.2, 2.2 Hz, 1H), 1.22 (d, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.975(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.96$ (d, $J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.918(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.912(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}$, $9 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.82(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.086(\mathrm{~s}, 3 \mathrm{H}), 0.078(\mathrm{~s}, 3 \mathrm{H}), 0.074(\mathrm{~s}, 3 \mathrm{H}), 0.069(\mathrm{~s}, 3 \mathrm{H}), 0.059$ $(\mathrm{s}, 3 \mathrm{H}), 0.056(\mathrm{~s}, 3 \mathrm{H}), 0.047(\mathrm{~s}, 3 \mathrm{H}), 0.020(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \square 172.3,141.3,135.4$, $133.5,132.3,127.3,116.3,80.0,78.3,76.9,75.5,74.8,64.6,44.0,42.8,42.4,37.7,37.5,37.4,35.0$, $34.1,32.2,26.2,26.1,25.8,25.6,18.4,18.37,18.03,17.9,17.2,16.6,16.3,15.8,14.0,13.7,9.2,-3.2,-$ $3.4,-3.8,-4.3,-4.4,-4.6,-4.9(2)$; high resolution mass spectrum $\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 989.6887\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\left.\mathrm{C}_{53} \mathrm{H}_{106} \mathrm{O}_{7} \mathrm{Si}_{4} \mathrm{Na}: 989.6913\right]$

(+)-S11
Carbamate (+)-S11: A solution of alcohol (+)-S10 (7.0 mg, 0.0073 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (0.5 mL) was treated with $\mathrm{Cl}_{3} \mathrm{CCON}=\mathrm{C}=\mathrm{O}(29 \square \mathrm{~L}, 1 \mathrm{M}$ solution) at room temperature for 30 min . The solution was loaded directly onto a neutral $\mathrm{Al}_{2} \mathrm{O}_{3}$ plug. After 4 h , the material was flushed from the $\mathrm{Al}_{2} \mathrm{O}_{3}$ ($\mathrm{EtOAc}, 50$ mL), concentrated, and purified by flash chromatography (8% ethyl acetate/hexanes) providing 7.0 mg (+)-S11 (96\%). [$\square]_{\mathrm{D}}^{23}+25.0\left(c\right.$ 0.5, CHCl_{3}); IR (film, NaCl$)$ 2957, 2928, 2857, 1732, 1603, 1472, 1381, 1253, 1099, $1047 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 5.74$ (ddd, $\left.J=16.4,11.2,8.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.40-5.21(\mathrm{~m}$, $3 \mathrm{H}), 5.17$ (ddd, $J=14.9,5.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~s}, 1 \mathrm{H}), 4.80(\mathrm{dd}, J=9.3,8.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.70(\mathrm{dd}, J=6.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{ddd}, J=10.4,10.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.64(\mathrm{dd}, J=$ 2.6, 2.3 Hz, 1H), 3.50 (dd, $J=4.5,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{dd}, J=5.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.70-2.52(\mathrm{~m}, 3 \mathrm{H})$, 2.52$2.44(\mathrm{~m}, 1 \mathrm{H}), 2.06-1.85(\mathrm{~m}, 3 \mathrm{H}), 1.85-1.65(\mathrm{~m}, 3 \mathrm{H}), 1.60(\mathrm{ddd}, J=13.4,11.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.22(\mathrm{~d}, J=7.4$ $\mathrm{Hz}, 3 \mathrm{H}), 1.01(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.955(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.91-$ 0.87 (obscured, 6H), $0.90(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.81(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.070$ $(\mathrm{s}, 3 \mathrm{H}), 0.069(\mathrm{~s}, 3 \mathrm{H}), 0.063(\mathrm{~s}, 3 \mathrm{H}), 0.059(\mathrm{~s}, 3 \mathrm{H}), 0.055(\mathrm{~s}, 3 \mathrm{H}), 0.046(\mathrm{~s}, 3 \mathrm{H}), 0.018(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 173.3,156.8,139.8,135.3,133.5,132.4,127.0,115.5,79.9,78.5,76.9,76.0,74.8$, 64.6, 44.1, 42.8, 40.7, 38.2, 37.8, 37.5, 34.9, 34.0, 32.0, 26.2, 26.1, 25.8, 25.6, 18.5, 18.4, 18.0, 17.9, $17.5,17.1,16.3,15.8,14.3,14.0,10.2,-3.2,-3.6,-3.8,-4.3,-4.4,-4.6,-4.9(2)$; high resolution mass spectrum (ES^{+}) m/z $1032.6962\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\mathrm{C}_{54} \mathrm{H}_{107} \mathrm{NO}_{8} \mathrm{Si}_{4} \mathrm{Na}$: 1032.6972]

(+)-11

Tetra-ol (+)-11: Carbamate (+)-S11 (7.0 mg, 0.007 mmol$)$ was dissolved in $\mathrm{MeOH}(3.0 \mathrm{~mL})$ and stirred for 15 min at room temperature. Aqueous hydrochloric acid ($4 \mathrm{~N}, 3.0 \mathrm{~mL}$) was added in $200-400 \mu \mathrm{~L}$ portions over 3 hours at a rate which minimized precipitation (ca. 10 to 15 min intervals). An additional 1 mL of 4 N aq HCl was added over 1 h at 15 min intervals, and the sides of the flask/stir bar were rinsed with 1.0 mL of MeOH . After 7 h the solution was diluted with EtOAc (25 mL) and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, and quenched with NaHCO_{3} (s) until gas evolution ceased. The layers were separated and the aqueous layer extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated. Flash chromatography gradient elution $\left(2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} \square 10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ gave $(+)-11(1.9 \mathrm{mg}, 50 \%$ yield $) \cdot[\square]_{\mathrm{D}}^{23}+24.0(c 0.33, \mathrm{MeOH})$; IR (film, NaCl$) 3382,2967,2925,1708,1603$, 1387, 1324, 1242, 1100, 1034, $970 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \square 5.79$ (ddd, $J=17.5,10.4,9.3 \mathrm{~Hz}$, 1 H), $5.53(\mathrm{dd}, J=10.4,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{dd}, J=10.8,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.32-5.27(\mathrm{~m}, 2 \mathrm{H}), 5.08-5.01(\mathrm{~m}$, $2 \mathrm{H}), 4.75(\mathrm{dd}, J=7.1,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{dd}, J=9.3,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{ddd}, J=10.8,9.3,1.9 \mathrm{~Hz}, 1 \mathrm{H})$, 3.66 (dd, $J=4.1,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{dd}, J=7.8,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.77-2.66(\mathrm{~m}, 1 \mathrm{H}), 2.64(\mathrm{ddd}, J=14.9,7.4$, $4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.63-2.53(\mathrm{~m}, 1 \mathrm{H}), 2.46(\mathrm{dddd}, J=14.9,7.2,7.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.97(\mathrm{ddd}, J=13.8,4.5,4.5$ $\mathrm{Hz}, 1 \mathrm{H}), 1.92-1.74(\mathrm{~m}, 4 \mathrm{H}), 1.69(\mathrm{~m}, 1 \mathrm{H}), 1.62(\mathrm{ddd}, J=13.4,11.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.27(\mathrm{~d}, \mathrm{~J}$ $=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{~d}, J=6.7$ $\mathrm{Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CD $\left.{ }_{3} \mathrm{OD}\right) \square 175.5,158.8$, $139.7,133.7,132.4,132.2,127.1,114.6,78.8,77.9,77.5,74.7,72.1,62.6,43.0,41.3,40.0,37.1,35.7$, 35.6 (2), $35.2,31.3,17.8,16.7,15.8,14.5,14.1,11.8,8.3$; high resolution mass spectrum (ES ${ }^{+}$) m/z $576.3502\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\left.\mathrm{C}_{30} \mathrm{H}_{51} \mathrm{NO}_{8} \mathrm{Na}: 576.3512\right]$

(+)-S12

Triene (+)-S12: Ethyltriphenylphosphonium bromide ($273 \mathrm{mg}, 0.735 \mathrm{mmol}$) was suspended in THF (3 $\mathrm{mL})$ and cooled to $-78{ }^{\circ} \mathrm{C}$. n - $\mathrm{BuLi}(2.5 \mathrm{M}, 0.264 \mathrm{~mL})$ was added dropwise via syringe, and the resulting orange/red solution warmed to room temperature and stirred for 40 min . In a separate flask, aldehyde $(+)-10(37 \mathrm{mg}, 0.034 \mathrm{mmol})$ was dissolved in THF (1.0 mL) and cooled to $-78{ }^{\circ} \mathrm{C}$. The orange ylide solution was added to the clear aldehyde solution by syringe until the orange color persisted. The reaction was then warmed to $0^{\circ} \mathrm{C}$, stirred for 30 min , and quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (10 $\mathrm{mL})$. The mixture was then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and the layers separated. The aqueous layer was extracted $\left(3 \square \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and chromatographed (3% EtOAc/hexanes) to afford cis isomer (+)-S12 (28 mg, 75\%). [C$]_{\mathrm{D}}^{23}+35.4$ (c 1, CHCl_{3}); IR (film, NaCl) 2957, 2928, 2856, 1734, 1514, 1471, 1464, 1250, 1096, 1047, 835, $775 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, C $\left.{ }_{6} \mathrm{D}_{6}\right) \square 7.41(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.79(\mathrm{dddd}, J=11.2,9.7,3.4$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.73-5.67(\mathrm{~m}, 2 \mathrm{H}), 5.65-5.57(\mathrm{~m}, 2 \mathrm{H}), 5.46(\mathrm{ddd}, J=10.8,7.1,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{dd}, J=9.3$, $9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{dd}, J=10.8,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.80$ (dd, $J=4.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{dd}, J=4.8,4.8,1 \mathrm{H}), 3.47(\mathrm{dd}, J=2.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.46-3.41(\mathrm{~m}, 1 \mathrm{H})$, $3.44(\mathrm{~s}, 3 \mathrm{H}), 3.14-3.02(\mathrm{~m}, 2 \mathrm{H}), 2.95(\mathrm{dddd}, J=13.3,7.4,7.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.76$ (dddd, $J=7.8,7.4,7.4$, $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~m}, 2 \mathrm{H}), 2.13(\mathrm{dddd}, J=13.4,6.7,6.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\mathrm{ddd}, J=13.8,10.8,1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 1.95-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.73(\mathrm{dd}, J=6.7,1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.36(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.31$ (app d, $J=6.7 \mathrm{~Hz}, 6 \mathrm{H}), 1.23(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.17(\operatorname{app~s}, 18 \mathrm{H}), 1.15(\mathrm{~s}, 9 \mathrm{H})$, $1.14(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H}), 0.92(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.41(\mathrm{~s}, 3 \mathrm{H}), 0.40(\mathrm{~s}, 3 \mathrm{H}), 0.34(\mathrm{app} \mathrm{s}, 6 \mathrm{H})$, $0.32(\mathrm{~s}, 3 \mathrm{H}), 0.28(\mathrm{~s}, 3 \mathrm{H}), 0.037(\mathrm{~s}, 3 \mathrm{H}), 0.035(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 173.2,158.9,135.2$, $133.5,132.8,132.3,131.4,128.9,127.1,123.4,113.6,84.5,79.9,76.9,76.6,74.8,74.7,64.5,55.2,44.1$, $42.8,40.0,38.1,37.4,34.9,34.5,34.1,32.0,26.22,26.18,25.83,25.65,18.5,18.4,18.3,18.0,17.9$, $17.0,16.3,15.9,14.9,14.0,13.1,10.7,-3.1,-3.4(2),-4.3,-4.4,-4.6,-4.9(2)$; high resolution mass spectrum (ES $\left.{ }^{+}\right) \mathrm{m} / \mathrm{z} 1123.7645\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\mathrm{C}_{62} \mathrm{H}_{116} \mathrm{O}_{8} \mathrm{Si}_{4} \mathrm{Na}$: 1123.7656]

(+)-S13
Alcohol (+)-S13: A room temperature solution of PMB ether (+)-S12 (28 mg, 0.025 mmol$)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2.0 mL) was treated with $\mathrm{H}_{2} \mathrm{O}(100 \mu \mathrm{~L})$ and DDQ (14 mg, 0.061 mmol). The mixture was stirred for 30 min and quenched with 5.0 mL saturated NaHCO_{3}, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and washed with $\mathrm{H}_{2} \mathrm{O}$ and saturated brine solution. The combined organic layers were dried (MgSO_{4}), filtered and concentrated. Preparative TLC (15\% EtOAc/hexanes) provided (+)-S13 (21 mg, 84\%) [[]$_{\mathrm{D}}^{23}+24.0\left(c 1, \mathrm{CHCl}_{3}\right)$; IR (film, $\mathrm{NaCl}) 2957,2901,2840,1734,1471,1354,1252,1098,1047,836,775 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\square 5.64$ (dddd, $J=10.8,6.7,6.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.37-5.16(\mathrm{~m}, 5 \mathrm{H}), 4.80(\mathrm{dd}, J=8.9,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{dd}, J$ $=10.4,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.67-3.63(\mathrm{~m}, 2 \mathrm{H}), 3.31(\mathrm{dd}, J=5.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{br} \mathrm{d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.70-$ $2.54(\mathrm{~m}, 4 \mathrm{H}), 2.07-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.70(\mathrm{~m}, 4 \mathrm{H}), 1.66(\mathrm{dd}, J=7.0,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.63-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.22$ (d, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~s}$, $9 \mathrm{H}), 0.91(\mathrm{~d}$, obscured, 3 H$), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.82(\mathrm{~d}, \mathrm{~J}=$ $6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.074(\mathrm{~s}, 3 \mathrm{H}), 0.070(\mathrm{~s}, 3 \mathrm{H}), 0.059(\mathrm{~s}, 3 \mathrm{H}), 0.057(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}$, $3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \square$ 173.2, 135.3, 133.5, 133.3, 132.3, 127.3, 126.3, 79.9, $78.3,77.0,75.9,74.8,64.6,44.0,42.8,37.8,37.4,37.1,35.3,35.0,34.1,32.5,26.2(2), 25.8,25.7,18.5$, $18.4,18.0,17.9,17.2,16.8,16.3,15.9,14.0,13.4,13.2,9.4,-3.1,-3.3,-3.6,-4.3,-4.4,-4.6,-4.9(2)$; high resolution mass spectrum (ES^{+}) $\mathrm{m} / \mathrm{z} 1003.7054\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\mathrm{C}_{54} \mathrm{H}_{108} \mathrm{O}_{7} \mathrm{Si}_{4} \mathrm{Na}$: 1003.7069]

(+)-S14

Carbamate (+)-S14: A solution of alcohol (+)-S13 (10 mg, 0.010 mmol$)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ was treated with $\mathrm{Cl}_{3} \mathrm{CCON}=\mathrm{C}=\mathrm{O}(31 \mathrm{~L}, 1 \mathrm{M}$ solution in toluene) at room temperature for 30 min . The solution was loaded directly onto a neutral $\mathrm{Al}_{2} \mathrm{O}_{3}$ plug. After 4 h , the material was flushed from the $\mathrm{Al}_{2} \mathrm{O}_{3}$ (EtOAc, 50 mL), concentrated, and purified by flash chromatography (10% ethyl acetat e/hexanes) providing 9.2 mg (+)-S14 (86\%). [[]$_{\mathrm{D}}^{23}+31.2\left(c 0.5, \mathrm{CHCl}_{3}\right.$); IR (film, NaCl) 2957, 2929, 2886, 2858, 1732, 1472, 1360, $1252 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 5.48$ (dddd, $\left.J=10.8,6.7,6.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.37-5.21(\mathrm{~m}, 4 \mathrm{H})$, 5.16 (ddd, $J=10.8,9.3,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{dd}, J=8.9,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{dd}, J=5.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.51$ (dd, $J=10.8,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.64(\mathrm{dd}, J=2.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{dd}, J=4.5,4.5 \mathrm{~Hz}, 1 \mathrm{H})$, 3.29 (dd, $J=5.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.83 (ddddd, $J=10.0,6.7,6.7,6.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.68-2.59 (m, 2H), 2.55 (dddd, $J=13.8,7.1,7.1,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.02-1.85(\mathrm{~m}, 3 \mathrm{H}), 1.81$ (ddd, $J=10.0,7.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}$), 1.74 (ddd, $J=12.5,12.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.70-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.63(\mathrm{dd}, J=6.7,1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.57(\mathrm{~m}, 1 \mathrm{H}), 1.23(\mathrm{~d}, J=$ $7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.93$ (s, 9H), 0.910.87 (obscured, 6H), $0.90(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.81(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.073$ (s, 3H), 0.069 (s, 3H), 0.066 (s, 3H), 0.061 (s, 3H), $0.056(\mathrm{~s}, 3 \mathrm{H}), 0.045(\mathrm{~s}, 3 \mathrm{H}), 0.018(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 173.3,156.9,135.2,133.5,132.4,131.8,127.0,124.3,79.9,79.1,76.9,76.2,74.8$, 64.6, 44.1, 42.8, 38.1, 38.0, 37.5, 34.9, 34.0, 33.4, 31.9, 26.2, 26.1, 25.8, 25.6, 18.5, 18.4, 18.0, 17.9, 17.5, 17.1, 16.3, 15.8, 14.3, 14.0, 12.9, 10.2, -3.2, -3.6, -3.7, -4.3, -4.4, -4.6, -4.9 (2); high resolution mass spectrum (ES^{+}) m/z $1046.7147\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\mathrm{C}_{55} \mathrm{H}_{109} \mathrm{NO}_{8} \mathrm{Si}_{4} \mathrm{Na}$: 1046.7128]

$(+)-12$
Tetra-ol (+)-12: Carbamate (+)-S14 ($9.0 \mathrm{mg}, 0.0092 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(2.5 \mathrm{~mL})$ and stirred for 15 min at room temperature. Aqueous hydrochloric acid ($4 \mathrm{~N}, 3.0 \mathrm{~mL}$) was added in $200-400 \mu \mathrm{~L}$
portions over 3 hours at a rate which minimized precipitation (ca. 10 to 15 min intervals). An additional 1 mL of 4 N aq HCl was added over 1 h at 15 min intervals, and the sides of the flask/stir bar were rinsed with 1.0 mL of MeOH . After 7 h the solution was diluted with EtOAc (25 mL) and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, and quenched with NaHCO_{3} (s) until gas evolution ceased. The layers were separated and the aqueous layer extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated. Flash chromatography gradient elution $\left(2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} \square 10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ gave (+)-12 (3.7 mg, 70\% yield). [[]$_{\mathrm{D}}^{23}+17.4$ (c 0.33, CHCl_{3}); IR (film, NaCl) 3364, 2964, 2921, 1699, 1600, 1456, 1386, 1323, 1030, $967 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \square 5.50-5.43(\mathrm{~m}, 2 \mathrm{H}), 5.41-5.22(\mathrm{~m}, 4 \mathrm{H})$, $5.07(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.66(\mathrm{dd}, J=6.7,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{dddd}, J=10.4,7.8,5.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{ddd}, J=$ $10.4,10.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{dd}, J=8.2,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.21-3.14(\mathrm{~m}, 2 \mathrm{H}), 2.93-$ $2.85(\mathrm{~m}, 1 \mathrm{H}), 2.86(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{~m}, 1 \mathrm{H}), 2.61(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H})$, 2.58 (ddd, $J=14.5,7.4,4.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.45 (dddd, $J=15.6,6.7,6.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.98-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.87$ (dddd, $J=16.7,7.1,7.1,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.84-1.69(\mathrm{~m}, 3 \mathrm{H}), 1.63(\mathrm{dd}, J=7.1,1.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.57(\mathrm{ddd}, J=$ $13.4,10.8,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.21(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~d}$, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \square 173.7,159.4,134.0,133.0,132.5,131.8,127.3,124.0,78.2$ (2), 76.9, 74.7, 72.1, 62.8, $42.9,41.3,37.4,35.7,35.6,35.3$ (2), 33.0, 31.3, 18.1, 17.0, 15.5, 14.7, 14.4, 12.3, 12.0, 8.4; high resolution mass spectrum (ES $\left.{ }^{+}\right) \mathrm{m} / \mathrm{z} 590.3668\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\mathrm{C}_{31} \mathrm{H}_{53} \mathrm{NO}_{8} \mathrm{Na}$: 590.3669].

(+)-S15
Triene (+)-S15: Propyltriphenylphosphonium bromide ($389 \mathrm{mg}, 1.01 \mathrm{mmol}$) was suspended in THF (5 mL) and cooled to $-78{ }^{\circ} \mathrm{C}$. n-BuLi ($2.5 \mathrm{M}, 0.364 \mathrm{~mL}$) was added dropwise via syringe, and the resulting orange/red solution warmed to room temperature and stirred for 40 min . In a separate flask, aldehyde
$(+)-10(55 \mathrm{mg}, 0.050 \mathrm{mmol})$ was dissolved in THF (2.0 mL) and cooled to $-78{ }^{\circ} \mathrm{C}$. The orange ylide solution was added to the clear aldehyde solution by syringe until the orange color persisted. The reaction was then warmed to $0^{\circ} \mathrm{C}$, stirred for 30 min , and quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (10 $\mathrm{mL})$. The mixture was then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and the layers separated. The aqueous layer was extracted $\left(3 \square \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, and the combined organic layers were dried (MgSO 4$)$, concentrated, and chromatographed (3\% EtOAc/hexanes) to afford cis isomer (+)-S15 (41 mg, 73\%). [$[\mathrm{l}]_{\mathrm{D}}^{23}+39.2$ (c 1, CHCl_{3}); IR (film, NaCl) 2956, 2929, 2856, 1740, 1514, 1462, 1359, 1250, 1096, 1046, 836, $775 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \square 7.26(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.44(\mathrm{dd}, J=10.1,9.7 \mathrm{~Hz}$, 1 H), 5.37 (dd, $J=7.1,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{dd}, J=7.1,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.34-5.20(\mathrm{~m}, 2 \mathrm{H}), 5.12(\mathrm{ddd}, J=10.4$, $9.3,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{dd}, J=9.3,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{dd}, J=10.4,10.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.44(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{dd}, J=2.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{dd}, J=4.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.29$ (dd, $J=5.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{dd}, J=6.3,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.84-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.63-2.59(\mathrm{~m}, 2 \mathrm{H}), 2.59-2.50$ (m, 1H), 2.08 (ddddd, $J=14.9,7.4,7.4,7.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.70(\mathrm{~m}, 5 \mathrm{H}), 1.66-1.54$ (m, 2H), $1.22(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.00-0.96$ (obscured, 9 H$), 0.94(\mathrm{~s}, 9 \mathrm{H}), 0.92-$ 0.88 (obscured, 6 H), $0.90(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.80(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}$, $3 \mathrm{H}), 0.066(\mathrm{app} \mathrm{s}, 9 \mathrm{H}), 0.050(\mathrm{~s}, 3 \mathrm{H}), 0.047(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \square 173.2$, 158.9, 135.2, 133.5, 132.3, 131.4, 131.2, 129.0, 128.9, 127.1, 113.6, 84.4, 79.9, 77.0, 76.6, 74.8, 74.7, $64.5,55.2,44.1,42.8,39.9,38.0,37.4,34.9(2), 34.1,32.0,26.22,26.18,25.8,25.7,20.9,18.8,18.5$, $18.4,18.0,17.9,17.0,16.3,16.0,14.8,14.4,14.0,10.7,-3.2,-3.4(2),-4.3,-4.4,-4.6,-4.9(2) ;$ high resolution mass spectrum (ES^{+}) $\mathrm{m} / \mathrm{z} 1137.7826\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\left.\mathrm{C}_{63} \mathrm{H}_{118} \mathrm{O}_{8} \mathrm{Si}_{4} \mathrm{Na}: 1137.7802\right]$

(+)-S16

Alcohol (+)-S16: A room temperature solution of PMB ether (+)-S15 (40 mg, 0.036 mmol$)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3.0 \mathrm{~mL})$ was treated with $\mathrm{H}_{2} \mathrm{O}(150 \mu \mathrm{~L})$ and DDQ ($16 \mathrm{mg}, 0.070 \mathrm{mmol}$). The mixture was stirred for 30 min and quenched with 5.0 mL saturated NaHCO_{3}, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and washed with $\mathrm{H}_{2} \mathrm{O}$ and saturated brine solution. The combined organic layers were dried (MgSO_{4}), filtered and concentrated. Flash chromatography (5\% EtOAc/hexanes) provided (+)-S16 (37 mg, 100\%) [[] $]_{\mathrm{D}}^{23}+29.2\left(c 1, \mathrm{CHCl}_{3}\right)$; IR (film, NaCl) 2958, 2929, 2857, 1739, 1473, 1464, 1360, 1252, 1098, 1048, 984, 836, $775 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $] 5.56$ (ddd, $J=10.8,7.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}$), $5.38-5.24(\mathrm{~m}, 3 \mathrm{H}), 5.23-5.14$ (m, 2H), 4.80 (dd, $J=8.9,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{ddd}, J=10.8,10.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.67-3.62(\mathrm{~m}, 2 \mathrm{H}), 3.30(\mathrm{dd}, J=5.6,4.8 \mathrm{~Hz}$, 1 H), 3.26 (ddd, $J=8.6,2.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.69-2.53 ($\mathrm{m}, 4 \mathrm{H}$), 2.15-1.95 (m, 4H), 1.85-1.69 (m, 4H), 1.64$1.56(\mathrm{~m}, 1 \mathrm{H}), 1.22(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.00-0.95(\mathrm{~m}, 9 \mathrm{H}), 0.93(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.92-0.89$ (obscured, 6H), $0.89(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.81(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.072$ (app $\mathrm{s}, 6 \mathrm{H}$), $0.068(\mathrm{~s}, 3 \mathrm{H}), 0.060(\mathrm{~s}, 3 \mathrm{H}), 0.055(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) \square 173.2, 135.2, 134.2, 133.5, 132.3, 131.7, 127.3, 80.0, 78.4, 77.0, 75.6, 74.8, 64.6, 44.0, 42.8, 37.8, 37.4, 37.0, 35.8, 35.0, 34.0, 32.6, 26.2 (2), 25.8, 25.6, 21.0, 18.5, 18.4, 18.0, 17.9, 17.2, 17.0, 16.3, 15.9, 14.3, 14.0, 13.3, 9.5, -3.1, -3.3, -3.6, -4.3 (2), -4.6, -4.9 (2); high resolution mass spectrum (ES+) m/z 1017.7211 $\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\left.\mathrm{C}_{55} \mathrm{H}_{110} \mathrm{O}_{7} \mathrm{Si}_{4} \mathrm{Na}: 1017.7226\right]$

(+)-S17
Carbamate (+)-S17: A solution of alcohol (+)-S16 (17 mg, 0.017 mmol$)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ was treated with $\mathrm{Cl}_{3} \mathrm{CCON}=\mathrm{C}=\mathrm{O}(68 \mathrm{~L}, 1 \mathrm{M}$ solution in toluene) at room temperature for 30 min . The solution was loaded directly onto a neutral $\mathrm{Al}_{2} \mathrm{O}_{3}$ plug. After 4 h , the material was flushed from the $\mathrm{Al}_{2} \mathrm{O}_{3}$ ($\mathrm{EtOAc}, 50$ mL), concentrated, and purified by flash chromatography (10% ethyl acetate/hexanes) providing 13 mg
(+)-S17 (77\%). (71\%). [$\square]_{\mathrm{D}}^{23}+47.8$ (c 1.0, CHCl_{3}); IR (film, NaCl$)$ 2958, 2929, 2857, 1733, 1473, 1464, 1361, 1253, 1097, 1047, $836 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 5.45-5.22(\mathrm{~m}, 5 \mathrm{H}), 5.16$ (ddd, $J=10.8$, 9.3, 5.2 Hz, 1H), $4.80(\mathrm{dd}, J=8.9,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{dd}, J=5.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.55-4.47(\mathrm{~m}, 3 \mathrm{H}), 3.64(\mathrm{dd}$, $J=2.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{dd}, J=4.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{dd}, J=5.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{dddd}, J=16.0$, $6.7,6.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.68-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.63(\mathrm{dd}, J=7.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.59-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.15-1.85(\mathrm{~m}$, $5 H$), 1.81 (ddddd, $J=10.0,6.7,6.7,6.7,2.2 \mathrm{~Hz}, 1 H), 1.74(d d d, J=14.1,11.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.67$ (dddd, J $=13.0,6.7,6.7,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.59(\mathrm{dddd}, J=11.5,11.5,2.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.23(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{~d}$, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.98-0.94(\mathrm{~m}, 9 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.93-0.89(\mathrm{~m}, 6 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~s}$, $9 \mathrm{H}), 0.81(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.071(\mathrm{~s}, 3 \mathrm{H}), 0.068(\mathrm{~s}, 3 \mathrm{H}), 0.062(\mathrm{~s}, 3 \mathrm{H}), 0.059(\mathrm{~s}, 3 \mathrm{H}), 0.054$ $(\mathrm{s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \square 173.2,156.9,135.2,133.5,132.4,132.0$, $130.2,127.0,79.9,78.9,77.0,76.2,74.8,64.6,44.1,42.8,38.0,37.5,34.9,34.0(2), 33.9,32.0,26.2$, $26.1,25.8,25.6,20.7,18.5,18.4,18.0,17.9$ (2), 17.1, 16.6, 15.9, 14.4, 14.3, 14.0, 10.2, -3.2, -3.6, -3.7, 4.3 (2), -4.6, -4.9 (2); high resolution mass spectrum (ES ${ }^{+}$) m/z $1060.7257\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\left.\mathrm{C}_{56} \mathrm{H}_{111} \mathrm{NO}_{8} \mathrm{Si}_{4} \mathrm{Na}: 1060.7285\right]$

$(+)-13$
Tetra-ol (+)-13: Carbamate (+)-S17 (13 mg, 0.012 mmol$)$ was dissolved in $\mathrm{MeOH}(3.5 \mathrm{~mL})$ and stirred for 15 min at room temperature. Aqueous hydrochloric acid ($4 \mathrm{~N}, 4.0 \mathrm{~mL}$) was added in $200-400 \mu \mathrm{~L}$ portions over 3 hours at a rate which minimized precipitation (ca. 10 to 15 min intervals). An additional 1 mL of 4 N aq HCl was added over 1 h at 15 min intervals, and the sides of the flask/stir bar were rinsed with 1.0 mL of MeOH . After 7 h the solution was diluted with EtOAc $(25 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, and quenched with NaHCO_{3} (s) until gas evolution ceases. The layers were separated and the aqueous layer extracted with EtOAc (3 x 10 mL). The combined organic extracts were dried (MgSO_{4}), filtered, and concentrated.

Flash chromatography gradient elution $\left.\left(2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right] 10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ gave (+)-13 (7.3 mg, 97\% yield). $[\square]_{\mathrm{D}}^{23}+38.2(c 0.5, \mathrm{MeOH})$; IR (film, NaCl$) 3362,2967,2923,2871,1700,1456,1390,1323$, 1235, 1097, 1041, $974 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \square 5.54(\mathrm{dd}, J=10.8,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.44-5.33(\mathrm{~m}$, $3 \mathrm{H}), 5.32-5.23(\mathrm{~m}, 2 \mathrm{H}), 4.76(\mathrm{dd}, J=7.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{dd}, J=9.3,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{ddd}, J=10.8$, $10.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{dd}, J=4.1,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{dd}, J=7.1,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{dd}, J=7.8,4.1 \mathrm{~Hz}$, 1 H), 2.93 (dddd, $J=16.0,6.7,6.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.71$ (ddd, $J=16.4,10.8,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{dddd}, J=7.4$, $7.4,7.4,4.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.45 (dddd, $J=14.5,8.19,6.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.15-2.05 (m, 2H), 1.95 (ddd, $J=14.1$, $3.7,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.90-1.73(\mathrm{~m}, 4 \mathrm{H}), 1.70-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.063(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$, $1.055(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.91$ (d, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \square 176.9,160.4,135.2,133.9$, $133.7,133.1,131.1,128.6,80.2,80.0,78.9,76.2,73.6,64.0,44.5,42.8,38.9,37.2,37.1,37.0,36.7$, $34.6,32.7,21.8,19.3,18.6,17.3,16.0,15.9,14.9,13.2,9.7$; high resolution mass spectrum $\left(E S^{+}\right) \mathrm{m} / \mathrm{z}$ $604.3853\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\left.\mathrm{C}_{32} \mathrm{H}_{55} \mathrm{NO}_{8} \mathrm{Na}: 604.3825\right]$

(-)-S18

Alkene (-)-S18: A solution of alcohol (-)-16 (0.768 g, 4 mmol) and imidazole ($0.544 \mathrm{~g}, 8.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C}$ and treated with tert-butyldimethylsilyl chloride ($900 \mathrm{mg}, 6 \mathrm{mmol}$). The resultant solution was stirred 12 h at ambient temperature, diluted with ether (75 mL), washed with $\mathrm{H}_{2} \mathrm{O}$ (2 x 100 mL) and saturated brine (100 mL), dried over MgSO_{4}, and concentrated. Flash chromatography (5\% ethyl acetate/hexanes) afforded alkene (-)-S18 (1.18 g, 95\%) as a colorless oil. [[]$_{D}^{23}-25$ (c 0.48, CHCl_{3}); IR (neat) 2954, 2928, 2897, 2856, 1613, 1514, 1472, 1249, 1105, 1038, $835 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 7.26(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.83(\mathrm{dddd}, J=17.0,10.2,7.2,7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.06(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=12.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.88(\mathrm{ddd}, J=11.2,5.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{dd}, J=9.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{dd}, J=9.6$, $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{ddd}, J=13.4,6.3,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{ddd}, J=13.4,6.3,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.06$ (s, 3H), $0.06(\mathrm{~s}, 3 \mathrm{H}) ;\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 335.2029\left[(\mathrm{M}+\mathrm{Na})^{+} ;\right.$calcd for $\left.\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{NaO}_{3} \mathrm{Si}: 335.2042\right]$

$$
(-)-17
$$

Alcohol (-)-17. Alkene (-)-S18 (1.7 g, 5.5 mmol) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(55 \mathrm{~mL})$ and bubbled O_{3} at $78^{\circ} \mathrm{C}$ for 20 minutes, then the solution was degassed with argon and PPh_{3} (excess) was added. After 1 hour the mixture was evaporated and filtered quickly to provide the intermediate aldehyde. In an other flask, n-BuLi (2.4 M in hexanes, 3.3 mL) was added dropwise to a cloudy solution of potassium tertbutoxide ($925.8 \mathrm{mg}, 8.25 \mathrm{mmol}$) and trans-2-butene (excess, 1 mL) in THF (12 mL) at $-78{ }^{\circ} \mathrm{C}$. The resulting yellow mixture was stirred at $-45^{\circ} \mathrm{C}$ for 20 min . The reaction mixture was recooled to $-78{ }^{\circ} \mathrm{C}$ and a solution of (+)- \square-methoxydiisopinocampheylborane ($2.96 \mathrm{~g}, 9.35 \mathrm{mmol}$) in THF (5 mL) was added. The resulting colorless reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for $35 \mathrm{~min} . \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(1.4 \mathrm{~mL}, 11 \mathrm{mmol})$ was added rapidly followed immediately by a solution of the above aldehyde ($1.7 \mathrm{~g}, 5.5 \mathrm{mmol}$) in 2.5 mL of THF. The resulting cloudy reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 4 h . The reaction was then quenched by addition of 3 N aqueous $\mathrm{NaOH}(5 \mathrm{~mL})$ followed by 30% aqueous $\mathrm{H}_{2} \mathrm{O}_{2}(5 \mathrm{~mL})$. The reaction mixture was warmed to $25^{\circ} \mathrm{C}$ and stirred overnight. The mixture was diluted with ethyl acetate and saturated aqueous NaCl . The layers were separated and the aqueous layer was extracted with ethyl acetate. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and then concentrated in vacuo. The homoallylic alcohols were purified by a very careful column chromatography on silica gel to obtain alcohol (-)-17 (1.21 g, 75\% yield). [[]$_{\mathrm{D}}^{23}-12.2$ (c $0.36, \mathrm{CHCl}_{3}$); IR (neat) 3474, 2957, 2929, 2856, 1514, 1472, 1250, 1172, 1089, 1036, $836 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 7.24(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.79$ (ddd, $J=16.5,11.2,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.05-5.03(\mathrm{~m}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}$, $J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.11$ (brddd, $J=11.9,5.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{ddd}, J=10.3,5.4,2.1 \mathrm{~Hz}$, 1 H), 3.45 (dd, $J=9.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{dd}, J=9.4,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(b r d d d, J=13.7,6.9,6.7 \mathrm{~Hz}, 2 \mathrm{H})$, 1.67 (ddd, $J=14.4,5.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.60(\mathrm{ddd}, J=14.4,10.3,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.01(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.87$ (s, 9H), $0.07(\mathrm{~s}, 3 \mathrm{H}), 0.005(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \square$ 159.1, 140.5, 130.1, 129.2, 115.2,
113.6, 73.1, 72.9, 71.3, 70.1, 55.2, 44.1, 37.6, 25.8, 17.9, 15.7, -4.6, -5.0; (ES $\left.{ }^{+}\right) \mathrm{m} / \mathrm{z} 417.2430\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{NaO}_{4} \mathrm{Si}$: 417.2437]

(-)-S19
Diene (-)-S19: To a stirred solution of (-)-17 ($0.70 \mathrm{~g}, 1.77 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$, a catalytic amount of DMAP ($\sim 15 \mathrm{mg}$) was added at room temperature The reaction mixture was cooled to $-78^{\circ} \mathrm{C} . \mathrm{Et}_{3} \mathrm{~N}$ ($0.61 \mathrm{~mL}, 4.42 \mathrm{mmol}$) was added dropwise, immediately followed by acryloyl chloride (0.29 mL , $3.55 \mathrm{mmol})$. After 2 h of stirring at $-78^{\circ} \mathrm{C}$, the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, quenched with brine $(30 \mathrm{~mL})$ and warmed rapidly to room temperature. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The organic layer was dried over MgSO_{4}, filtered and concentrated in vacuo. Flash chromatography (AcOEt/Hexanes 5\%) provided diene (-)-S19 in 80\% (640 mg). [C$]_{\mathrm{D}}^{23}-32$ (c 1, CHCl_{3}); IR (film, CHCl_{3}) 2959, 2928, 2895, 1723, 1513, 1249, 1193, $1101 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 7.24$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.37(\mathrm{dd}, J=17.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{dd}, J=17.3,10.4 \mathrm{~Hz}, 1 \mathrm{H})$, 5.78 (dd, $J=10.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.74$ (ddd, $J=17.4,10.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.09$ (ddd, $J=9.9,4.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.06 (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{brs}, 1 \mathrm{H}), 4.43(\mathrm{~s}, 2 \mathrm{H}), 3.85-3.76(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{dd}, J=9.7,5.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.29(\mathrm{dd}, J=9.7,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-2.52(\mathrm{~m}, 1 \mathrm{H}), 1.79(\mathrm{ddd}, J=14.5,9.9,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{ddd}$, $J=14.5,9.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.98(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}),-0.001$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\quad 165.5,159.1,139.2,130.3,130.1,129.1,128.9,115.4,113.5,74.6,74.1,72.8,68.4$, $55.1,41.4,36.1,25.8,18.0,14.7,-4.2,-5.0$; (ES^{+}) $\mathrm{m} / \mathrm{z} 471.2533\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{NaO}_{5} \mathrm{Si}$: 471.2542]

(-)-18

Lactone (-)-18: (4,5-DihydrolMES) $\left(\mathrm{PCy}_{3}\right) \mathrm{Cl}_{2} \mathrm{Ru}=\mathrm{CHPh}\left(8.0 \mathrm{mg}, 9.5 \times 10^{-3} \mathrm{mmol}\right)$ was added in one portion at room temperature to a stirred solution of (-)-S19 (0.042 g, 0.095 mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The reaction mixture was heated at reflux for 3 h (oil bath temperature: $58{ }^{\circ} \mathrm{C}$), cooled to room temperature, concentrated in vacuo and purified by flash chromatography (AcOEt/Hexanes 20\%). Lactone (-)-18 was isolated in 75% yield $(37 \mathrm{mg})[\square]_{\mathrm{D}}^{23}-46.5\left(c 0.5, \mathrm{CHCl}_{3}\right)$; $\mathrm{IR}\left(\right.$ film, $\left.\mathrm{CHCl}_{3}\right)$ 2959, 2927, 2855, 1732, 1513, 1248, 1098, $823 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.24(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, \mathrm{~J}$ $=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.63(\mathrm{dd}, J=9.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{dd}, J=9.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.43$ (d, $J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{ddd}, J=10.6,10.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{ddd}, J=10.1,5.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}$, $3 H), 3.40(\mathrm{dd}, J=9.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{dd}, J=9.7,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.47-2.40(\mathrm{~m}, 1 \mathrm{H}), 1.87(\mathrm{ddd}, J=14.2$, $10.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{ddd}, J=14.2,10.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.11(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.066(\mathrm{~s}$, $3 \mathrm{H}), 0.060(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \square 163.7,159.1,151.5,130.3,129.1,120.1,113.6,79.8$, $74.4,72.8,66.7,55.2,38.2,33.6,25.8,17.9,16.4,-4.3,-4.9 ;\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 443.2224\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\left.\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{NaO}_{5} \mathrm{Si}: 443.2229\right]$

(-)-S20
Alcohol (-)-S20: At $0{ }^{\circ} \mathrm{C}$, a solution of PMB ether (-)-18 (240 mg, 0.57 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5.7 mL) was treated with $\mathrm{H}_{2} \mathrm{O}(0.25 \mathrm{~mL})$ and DDQ (143 $\left.\mathrm{mg}, 0.63 \mathrm{mmol}\right)$ and stirred for 3 h . The mixture was quenched with 10 mL of saturated NaHCO_{3}, washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$ and separated. The aqueous layer was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated from hexanes to provide a colorless oil. Purification using flash chromatography (AcOEt/Hexanes 30\%) afforded 150 mg of alcohol (-)-S20 (89\%); [$\square]_{D}^{23}-65.6$ (c 0.32, CHCl_{3}); IR (film, CHCl_{3}) 3446, 2953, 2928, 2895, 2856, 1697, 1465, 1389, 1257, 1085, 1014, $837 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \square 6.33(\mathrm{dd}, J=9.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{dd}, J=9.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{ddd}, J=10.4,10.4,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.12$ (dd, $J=6.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{dd}, J=11.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{dd}, J=11.3,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.44$
(m, 1H), $1.96(\mathrm{ddd}, J=14.4,10.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{brs}, 1 \mathrm{H}), 1.74(\mathrm{ddd}, J=14.4,10.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.11$ $(\mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \square 163.6,151.6$, $120.0,80.1,68.1,66.8,37.4,33.6,25.7,17.9,16.3,-4.4,-4.9$; $\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 323.1645\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\left.\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{NaO}_{4} \mathrm{Si}: 323.1654\right]$

$(-)-19$
Aldehyde (-)-19: To a $0{ }^{\circ} \mathrm{C}$ solution of alcohol (-)-S20 (28 mg, 0.094 mmol$)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ were added Dess-Martin periodinane ($39.7 \mathrm{mg}, 0.103 \mathrm{mmol}$) and $\mathrm{NaHCO}_{3}(24 \mathrm{mg}, 0.28 \mathrm{mmol})$. The resulting solution was stirred for 2.5 h and quenched with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution (15 mL) and saturated NaHCO_{3} solution (15 mL). The mixture was then extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$ and separated. The organic solution was then washed with $\mathrm{H}_{2} \mathrm{O}$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated. The resulting aldehyde (-)19 (26 mg, 85\%) was used without further purification: $[\square]_{\mathrm{D}}^{23}-62.2\left(c 1.05, \mathrm{CHCl}_{3}\right)$; $\mathrm{IR}\left(\right.$ film, $\left.\mathrm{CHCl}_{3}\right) 2959$, 2929, 2856, 1735, 1464, 1388, 1252, 1118, 1084, $1009 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 9.66(\mathrm{~d}, \mathrm{~J}=0.7$ $\mathrm{Hz}, 1 \mathrm{H}), 6.67(\mathrm{dd}, J=9.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{dd}, J=9.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{dd}, J=10.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.22$ (ddd, $J=10.4,10.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(d d d d, J=9.8,7.3,2.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{ddd}, J=14.1,10.6,2.5$ $\mathrm{Hz}, 1 \mathrm{H}), 1.81(\mathrm{ddd}, J=14.1,10.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.13(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \square 202.7,163.1,151.3,120.1,78.7,73.3,35.4,33.5,25.5,18.0,16.2$, 4.6, -5.2; $\left(\mathrm{ES}^{+}\right) m / z\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{NaO}_{4} \mathrm{Si}$: $]$.

(+)-S21

PMB ether (+)-S21: Phosphonium salt (+)-20 ($220 \mathrm{mg}, 0.22 \mathrm{mmol}$), was azeotropically dried with benzene ($3 \square 1.0 \mathrm{~mL}$) using a double manifold and further dried by heating to $50^{\circ} \mathrm{C}$ under vacuum (0.2 torr) for 12 h . The salt was back-filled with argon, dissolved in 1 mL of freshly distilled THF, sparged with argon for 15 min , and cooled to $-78^{\circ} \mathrm{C}$. The resultant solution was treated with methyl lithium Vithium bromide complex (2.2 M in $\mathrm{Et}_{2} \mathrm{O}, 0.11 \mathrm{~mL}$), stirred 15 min , warmed to $0^{\circ} \mathrm{C}$, stirred 30 min , and re-cooled to $-20^{\circ} \mathrm{C}$. To this orange/red solution was transferred via cannula a degassed solution of aldehyde (-)$19(70 \mathrm{mg}, 0.24 \mathrm{mmol})$ in THF $(500 \mu \mathrm{~L})$ over 1 min . The orange solution was allowed to slowly warm to $8{ }^{\circ} \mathrm{C}$ over 3.0 h . The resulting light yellow solution was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and diluted $\left(\mathrm{Et}_{2} \mathrm{O} / \mathrm{H}_{2} \mathrm{O}\right)$. The layers were separated, and the aqueous layer was extracted ($3 \square \mathrm{Et}_{2} \mathrm{O}$). The combined organic layers were dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), concentrated, and chromatographed (gradient elution: 2\% EtOAc/hexanes $\quad 50 \% \mathrm{EtOAc} /$ hexanes; then $40 \% \mathrm{CH}_{3} \mathrm{CN}^{2} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford cis isomer (+)- $\mathbf{S 2 1}(65 \mathrm{mg}$, 31%), and phosphonium salt (+)-20 ($120 \mathrm{mg}, 38 \%$). [$]_{\mathrm{D}}^{23}+52.8$ (c $0.7, \mathrm{CHCl}_{3}$); IR (film, NaCl) 2956, 1738, 1250, $1060 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.26(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, $6.62-6.55(\mathrm{~m}, 2 \mathrm{H}), 6.02(\mathrm{appt} \mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{dd}, J=2.3,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{app} \mathrm{t}, J=10.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.30-5.28(\mathrm{~m}, 3 \mathrm{H}), 5.19(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.13-5.09(\mathrm{~m}, 2 \mathrm{H}), 4.79-4.75(\mathrm{~m}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=10.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.23(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{app} \mathrm{t}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{app}$ $\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{dd}, J=3.9,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.00-2.97(\mathrm{~m}, 1 \mathrm{H}), 2.64-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.49(\mathrm{~m}, 1 \mathrm{H})$, 2.37-2.35 (m, 1H), 1.92-1.73 (m, 5H), 1.61-1.57 (m, 1H), $1.10(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, $0.98(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.78(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}), 0.09$ (s, 3H), 0.08 (s, 3H), 0.07 (s, 3H), 0.06 (s, 3H), 0.04 (s, 3H), 0.02 (s, 3H); ${ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 163.6,158.9,151.4,134.9,134.4,133.0,132.5,132.2,131.2,129.2,129.0,127.3,120.2$, 117.4, 113.6, 84.4, 80.0, 79.7, 76.4, 74.9, 64.4, 55.2, 41.9, 40.1, 38.1, 37.4, 35.4, 35.2, 33.6, 31.8, 30.3, 26.2, 26.1, 25.8, 18.7, 18.6, 18.4, 18.0, 17.3, 16.4, 15.2, 10.6, -3.2, -3.4, -3.5, -4.1, -4.3, -4.9; high resolution mass spectrum (ES') m/z 989.6524. $\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\mathrm{C}_{56} \mathrm{H}_{98} \mathrm{O}_{7} \mathrm{Si}_{3} \mathrm{Na}: 989.6518$.

(+)-S22
Alcohol (+)-S22: To a room temperature solution of PMB ether (+)-S21 (59 mg, 0.061 mmol$)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3.0 \mathrm{~mL})$ was treated with $\mathrm{H}_{2} \mathrm{O}(50 \mu \mathrm{~L})$ and DDQ $(20 \mathrm{mg}, 0.087 \mathrm{mmol})$. The mixture was stirred for 30 min and quenched with 5.0 mL saturated NaHCO_{3}, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and washed with $\mathrm{H}_{2} \mathrm{O}$ and saturated brine solution. The combined organic layers were dried (MgSO_{4}), filtered and concentrated. Flash chromatography (5\% EtOAc/hexanes) provided (+)-S22 (47 mg, 90\%). [$]_{\mathrm{D}}^{23}+41.5$ (c 0.2, CHCl_{3}); IR (film, NaCl) 2960, 1737, 1259, 1093, $799 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 6.65-6.59(\mathrm{~m}, 2 \mathrm{H}), 6.15$ (app t, $J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{dd}, J=2.3,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.34-5.15(\mathrm{~m}, 7 \mathrm{H}), 4.79-4.75(\mathrm{~m}, 1 \mathrm{H}), 4.28-4.24$ (m, 1H), $3.64(\mathrm{dd}, \mathrm{J}=2.9,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.34-3.31(\mathrm{~m}, 2 \mathrm{H}), 2.81-2.77(\mathrm{~m}, 1 \mathrm{H}), 2.63-2.52(\mathrm{~m}, 2 \mathrm{H})$ 2.40-2.36 $(\mathrm{m}, 1 \mathrm{H}), 2.02-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.70(\mathrm{~m}, 4 \mathrm{H}), 1.58(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.11(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{~d}, J$ $=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H})$, $0.90(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.81(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H})$, $0.04(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \square 163.7,151.4,135.1,134.7,133.1,132.5,132.0,131.0,127.5$, $120.3,118.4,80.0,79.7,78.2,76.0,64.5,41.9,37.9,37.3,37.2,36.3,35.3,33.6,32.4,26.2,26.1,25.8$, $18.5,18.4,18.0,17.4,17.0,16.5,16.2,13.6,9.4,-3.2,-3.3,-3.6,-4.1,-4.3,-4.9$; high resolution mass spectrum $\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 869.5944$. $\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\mathrm{C}_{48} \mathrm{H}_{90} \mathrm{O}_{6} \mathrm{Si}_{3} \mathrm{Na}$: 869.5943.

(+)-S23

Carbamate (+)-23: A solution of alcohol (+)-S22 ($40 \mathrm{mg}, 0.047 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0 \mathrm{~mL})$ was treated with $\mathrm{Cl}_{3} \mathrm{CCON}=\mathrm{C}=\mathrm{O}(100 \mathrm{LL}, 1 \mathrm{M}$ solution) at room temperature for 30 min . The solution was loaded directly onto a neutral $\mathrm{Al}_{2} \mathrm{O}_{3}$ plug. After 4 h , the material was flushed from the $\mathrm{Al}_{2} \mathrm{O}_{3}$ ($\mathrm{EtOAc}, 50 \mathrm{~mL}$), concentrated, and purified by flash chromatography (10% ethyl acetate/hexanes) providing $42 \mathrm{mg}(+)$-S23 (99\%). [[] $]_{\mathrm{D}}^{23}+51.3$ (c 0.6, CHCl_{3}); IR (film, NaCl) 3364, 2959, 1731, 1386, $1259 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \square 6.65-6.58(\mathrm{~m}, 2 \mathrm{H}), 6.03(\mathrm{appt} \mathrm{t}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{dd}, J=2.0,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{app} \mathrm{t}, J=$ $10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.32-5.27(\mathrm{~m}, 3 \mathrm{H}), 5.26-5.12(\mathrm{~m}, 3 \mathrm{H}), 4.79-4.76(\mathrm{~m}, 1 \mathrm{H}), 4.69(\mathrm{app}, \mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.52$ (br, s, 2H), 4.27-4.24 (m, 1H), 3.45 (app, t, $J=3.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.31 (app, t, $J=4.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.99-2.96 (m, $1 \mathrm{H}), 2.62-2.37(\mathrm{~m}, 3 \mathrm{H}) 1.94-1.87(\mathrm{~m}, 3 \mathrm{H}), 1.76-1.62(\mathrm{~m}, 3 \mathrm{H}), 1.11(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 0.97$ (d, J=7.0 Hz, 3H), 0.93 (s, 9H), 0.92 (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H})$, 0.86 (s, 9H), 0.79 (d, J = $7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.09$ (s, 3H), 0.08 (s, 3H), 0.06 (s, 3H), 0.059 (s, 3H) 0.05 (s, 3H), 0.04 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $163.7,156.8,151.4,135.0,133.5,133.0,132.5,132.0,129.8$, 127.2, 120.2, 117.8, 80.0, 79.7, 78.7, 76.2, 64.4, 41.8, 37.9, 37.4, 35.2, 34.4, 33.6, 32.0, 30.3, 26.2, 26.1, $25.8,18.5,18.4,18.0,17.5,17.3,16.5,16.3,14.1,10.2,-3.2,-3.5,-3.7,-4.2,-4.4,-4.9$; high resolution mass spectrum (ES^{+}) m / z 912.6019. $\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\mathrm{C}_{49} \mathrm{H}_{91} \mathrm{NO}_{7} \mathrm{Si}_{3} \mathrm{Na}: 912.6001$.

(+)-21
Triol (+)-21: Carbamate (+)-S23 ($42 \mathrm{mg}, 0.047 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(18 \mathrm{~mL})$ and stirred for 15 min at room temperature. Aqueous hydrochloric acid ($4 \mathrm{~N}, 6.0 \mathrm{~mL}$) was added in $200-400 \mu \mathrm{~L}$ portions over 4 hours at a rate which minimized precipitation (ca. 10 to 15 min intervals). An additional 4 mL of 4 N aq HCl was added over 1 h at 15 min intervals, and the sides of the flask/stir bar were rinsed with 2.0 mL of MeOH . After 12 h the solution was quenched with NaHCO_{3} (s), diluted with 30 mL of water and
extracted $3 x$ with EtOAc. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated. Flash chromatography using washed SiO_{2} (hexanes then $10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ then 5% $\left.\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ via gradient elution $\left(2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} \square 10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ gave (+)-21(23 mg, 92% yield). $[\square]_{\mathrm{D}}^{23}+51.1$ (c $0.367, \mathrm{MeOH}$); IR (film, NaCl) 3419, 2965, 1706, $1396 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \square 6.84(\mathrm{dd}, J=2.7,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{ddd}, J=16.9,10.7,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{app} \mathrm{t}, J=11.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.94(\mathrm{dd}, J=2.3,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\operatorname{appt}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\operatorname{app~t}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{dd}, J$ $=8.8,19.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.25-5.21(\mathrm{~m}, 3 \mathrm{H}), 5.15(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.64(\mathrm{dd}, J=4.0,8.2 \mathrm{~Hz}$, $1 \mathrm{H})$, 4.39-4.37 (m, 1H), $3.23(\mathrm{dd}, J=3.6,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{dd}, J=3.5,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.15-3.12(\mathrm{~m}, 1 \mathrm{H})$, 2.73-2.70 (m, 1H), 2.48-2.37 (m, 2H), 1.95-1.80 (m, 2H), 1.77-1.60 (m, 5H), 1.16 (d, J=7.1 Hz, 3H), 1.07 $(\mathrm{d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \square 164.8,158.8,152.8,133.4,132.7,132.6,132.0,131.9,129.5$, $127.4,118.9,117.0,80.2,78.8,78.7,74.5,62.2,40.9,37.6,35.77,35.78,35.5,33.6,33.5,30.97,18.0$, 16.8, 16.1, 15.4, 14.7, 8.1; high resolution mass spectrum (ES^{+}) $\mathrm{m} / \mathrm{z} 570.3396 .\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\mathrm{C}_{31} \mathrm{H}_{49} \mathrm{NO}_{7} \mathrm{Na}: 570.3407$.

(+)-22
Triol (+)-22: NaHMDS (1.0 M in THF, $27.8 \mathrm{~mL}, 27.8 \mathrm{mmol}$) was added to a solution of tetra-TBS carbamate (not shown) ($4.8 \mathrm{mg}, 4.64 \mu \mathrm{~mol})$ in THF $(0.46 \mathrm{~mL})$ over 10 min at rt . The mixture was stirred for 15 min further, then quenched with $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$, and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ and aq $\mathrm{HCl}(3 \mathrm{~N}, 2$ $\mathrm{mL})$. The resulting layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5 \mathrm{~mL})$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give tri-TBS $\square, 7-$ unsaturated lactone as a oil which was used without further purification. Tri-TBS \square, \square-unsaturated lactone
was dissolved in $\mathrm{MeOH}(2.0 \mathrm{~mL})$. Aqueous $\mathrm{HCl}(3 \mathrm{~N}, 2.0 \mathrm{~mL})$ was added dropwise over 4 hr at rt. The reaction mixture was stirred for 1 h further, diluted with $\mathrm{H}_{2} \mathrm{O}(6 \mathrm{~mL})$ and EtOAc (10 mL). The resulting mixture was neutralized by solid NaHCO_{3}, and separated. The aqueous layer was extracted with EtOAc $(2 \times 8 \mathrm{~mL})$. The combined organic extracts were washed with saturated aq brine solution ($1 \times 10 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Preparative TLC $\left(9 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ furnished 1.0 mg \square, \square-unsaturated lactone (+)-22 (39\%, 2 steps) as a colorless solid. $[\square]_{D}^{23}+57(c 0.08, \mathrm{MeOH})$; IR (film, $\mathrm{NaCl}) 3374,2927,1700,1388,1038 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\square 6.66$ (ddd, $J=16.9,10.7,10.7$ $\mathrm{Hz}, 1 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}), 6.04(\mathrm{app} \mathrm{t}, \mathrm{J}=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{ddd}, J=10.3,10.3,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{~m}, 2 \mathrm{H})$, $5.22(\mathrm{~m}, 3 \mathrm{H}), 5.13(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.69(\mathrm{dd}, J=7.4,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~m}, 1 \mathrm{H}), 4.26$ (ddd, $J=9.7,9.7,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{~m}, 1 \mathrm{H}), 3.13(\mathrm{~m}, 1 \mathrm{H}), 3.05(\mathrm{~m}, 1 \mathrm{H}), 2.80(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{~m}$, $1 \mathrm{H}), 2.55(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~m}, 2 \mathrm{H}), 1.90(\mathrm{appt}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{~m}, 1 \mathrm{H}), 1.67$ (m, 2H), $1.56(\mathrm{~m}, 1 \mathrm{H}), 1.07(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}$, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.82(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.80(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \square 166.1$, $158.1,146.9,134.8,134.5,133.8,133.7,133.3,130.5,128.6,127.5,118.8,80.8,79.3,79.2,75.5,63.5$, $41.8,38.5,36.9,36.5,36.4,34.9,34.7,32.0,19.2,18.2,17.0,16.9,16.7,15.7,9.2$; high resolution mass spectrum (ES ${ }^{+}$) m/z $562.3769\left[(\mathrm{MH})^{+}\right.$; calcd for $\left.\mathrm{C}_{32} \mathrm{H}_{52} \mathrm{NO}_{7}: 562.3744\right]$.

24
Olefin 24: To a $0^{\circ} \mathrm{C}$ solution of benzyl bromide $23(1.18 \mathrm{~g}, 3.95 \mathrm{mmol})$ in THF ($40 \mathrm{~mL}, 0.1 \mathrm{M}$) was added 11.84 mL of allylmagnesium bromide (1 M solution in $\mathrm{Et}_{2} \mathrm{O}$). Reaction was stirred for 3.5 h and quenched with ammonium chloride (saturated aqueous solution). Mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$, washed with $\mathrm{H}_{2} \mathrm{O}$, sodium bicarbonate (saturated aqueous solution), and brine (saturated aqueous solution). Organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated directly onto SiO_{2}. Flash chromatography (hexanes) provided 24, 842 mg (81\%) of a clear oil: IR (film, NaCl) 2919, 2049, 1584, 1484, 1276, 1155, 844, 779
$\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 7.15(\mathrm{appt}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~m}, 2 \mathrm{H})$, 5.87 (ddt, $J=16.9,10.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{ddt}, J=17.1,1.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~m}, 1 \mathrm{H}), 2.68(\mathrm{app} \mathrm{t}, J=$ $7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{~m}, 2 \mathrm{H}) 1.02(\mathrm{~s}, 9 \mathrm{H}), 0.22(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 155.6,143.4,138.1$, 129.0, 121.5, 120.2, 117.5, 114.9, 35.4, 35.3, 25.8, 18.7, -4.4.

25
Aldehyde 25: A solution of olefin $24(660 \mathrm{mg}, 2.52 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25.2 \mathrm{~mL}, 0.1 \mathrm{M})$ was cooled to -78 ${ }^{\circ} \mathrm{C}$ and treated with a stream of ozone and oxygen until the colorless solution became steel-blue in appearance. The reaction mixture was purged with a stream of argon for 10 min , followed by the cautious addition of triphenylphosphine ($727 \mathrm{mg}, 2.77 \mathrm{mmol}$). The cooling bath was removed, and the solution was stirred at ambient temperature for 1 h , concentrated, and chromatographed (0 to 5% ethyl acetate/hexanes, gradient elution) to afford 25 ($518 \mathrm{mg}, \mathbf{7 8 \%}$) as a colorless oil: IR (film, NaCl) 2934, 2860, 1725, 1583, 1486, 1280, 1156, $836 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $9.80(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{app} \mathrm{t}, J$ $=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 2.88(\operatorname{appt}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, 2.73 (app t, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), $0.96(\mathrm{~s}, 9 \mathrm{H}), 0.17(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 201.3,155.8$, 141.8, 129.4, 121.2, 120.1, 117.9, 45.1, 28.0, 25.7, 18.2, -4.4; high resolution mass spectrum (ES ${ }^{+}$) m / z $287.1450\left[(\mathrm{M}+\mathrm{Na})^{+} ;\right.$calcd for $\left.\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{NaSi}: 287.1443\right]$

(+)-S24

Tetraene (+)-S24: Phosphonium salt (+)-20 (140 mg, 0.120 mmol ; 6:1 Z/E ratio of diene isomers), was azeotropically dried with benzene ($3 \times 1.5 \mathrm{~mL}$) using a double manifold and further dried by heating to 50 ${ }^{\circ} \mathrm{C}$ under vacuum (0.2 torr) for 12 h . The salt was back-filled with argon, dissolved in 1.0 mL of freshly distilled THF, sparged with argon for 15 min , and cooled to $-20^{\circ} \mathrm{C}$. The resultant solution was treated with methyl lithium/lithium bromide complex (2.2 M in ether, 55 L), stirred 15 min , warmed to $0{ }^{\circ} \mathrm{C}$, stirred 30 min , and re-cooled to $-20^{\circ} \mathrm{C}$. To this orange/red solution was transferred via cannula a degassed solution of aldehyde $\mathbf{2 5}(32 \mathrm{mg}, 0.120 \mathrm{mmol})$ in THF ($0.5 \mathrm{~mL}+1 \times 0.5 \mathrm{~mL}$ rinse) over 15 min . The orange solution was allowed to slowly warm to $-8^{\circ} \mathrm{C}$ over 3 h . The resulting light yellow solution was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and diluted $\left(\mathrm{Et}_{2} \mathrm{O} / \mathrm{H}_{2} \mathrm{O}\right)$. The layers were separated, and the aqueous layer was extracted ($3 \times \mathrm{Et}_{2} \mathrm{O}, 3 \times \mathrm{CH}_{2} \mathrm{Cl}_{2}$). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and chromatographed (gradient elution: 2\% EtOAc/hexanes to 5\% EtOAc/hexanes) to afford (+)-S24 (61 mg, 55\%; clear oil, 6:1 ratio of Z / E diene isomers. [[$]_{\mathrm{D}}^{23}+54.3^{\circ}$ (c 1.0, CHCl_{3}); IR (film, NaCl) 2954, 2857, 1604, 1511, 1465, 1369, 1253, 1157, 1041, 968, 836, $775,424 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, major diastereomer) $\quad 7.28-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.09(\mathrm{~m}, 1 \mathrm{H}), 6.89-6.85(\mathrm{~m}, 2 \mathrm{H}), 6.78-$ $6.75(\mathrm{~m}, 1 \mathrm{H}), 6.68-6.63(\mathrm{~m}, 2 \mathrm{H}), 6.60(\mathrm{ddd}, J=16.7,10.8,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{dd}, J=11.2,11.2 \mathrm{~Hz}, 1 \mathrm{H})$, 5.57 (dd, $J=10.4,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{dd}, J=10.8,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.38-5.31(\mathrm{~m}, 1 \mathrm{H}), 5.26-5.08(\mathrm{~m}, 4 \mathrm{H})$, $4.55(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{dd}, J=4.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{dd}$, $J=7.1,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{dd}, J=7.1,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.99$ (ddddd, $J=10.8,6.7,6.7,6.7,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.66-$ $2.44(\mathrm{~m}, 4 \mathrm{H}), 2.37-2.19(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.77(\mathrm{~m}, 3 \mathrm{H}), 1.66-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.09(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{~s}$, $9 \mathrm{H}), 0.94(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $0.79(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.19(\mathrm{app} \mathrm{s}, 6 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.050(\mathrm{~s}, 3 \mathrm{H}), 0.048(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$, major diastereomer) $[158.9$, 155.5, 143.7, 134.7, 134.6, 132.9, 132.3, 131.2, 129.07, 129.03, 129.00, 128.2, 127.5, 121.4, 120.2, 117.4, 117.3, 113.6, 84.5, 80.3, 76.4, 74.9, 55.2, 40.0, 38.2, 36.6, 36.3, 36.0, 35.4, 31.9, 29.5, 26.22, 26.16, 25.7, 18.67, 18.56, 18.4, 18.1, 17.7, 17.5, 15.0, 10.6, $-3.41,-3.45(2),-3.68,-4.4(2)$; high resolution mass spectrum (ES^{+}) $\mathrm{m} / \mathrm{z} 955.6489\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\mathrm{C}_{56} \mathrm{H}_{96} \mathrm{O}_{5} \mathrm{NaSi}_{3}$: 955.6463].

(+)-S25
Alcohol (+)-S25: At $0{ }^{\circ} \mathrm{C}$, a solution of PMB ether (+)-S24 (51 mg, $0.054 \mathrm{mmol}, 6: 1$ mixture of Z / E diene isomers) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was treated with $\mathrm{H}_{2} \mathrm{O}(600 \mu \mathrm{~L})$ and DDQ (19 $\left.\mathrm{mg}, 0.084 \mathrm{mmol}\right)$. The mixture was stirred for 10 min at $0^{\circ} \mathrm{C}$, warmed to rt and stirred an additional 15 min . The mixture was quenched with saturated NaHCO_{3}, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$, washed with $\mathrm{H}_{2} \mathrm{O}(1 \times 10 \mathrm{~mL})$ and saturated brine solution ($1 \times 10 \mathrm{~mL}$). The combined organic layers were dried $(\mathrm{MgSO} 4)$, filtered and concentrated. Flash chromatography (5\% EtOAc/hexanes) provided (+)-S25 (36 mg, 80\%) as a clear oil. $[\square]_{\mathrm{D}}^{22}+57$ (c 1, CHCl_{3}); IR (film, NaCl) 3580, 2958, 2930, 2889, 2857, 1605, 1584, 1473, 1257, 1158, 1099, 966, 837, $773 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 7.12(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.67-6.58(\mathrm{~m}$, $3 H), 6.14(\mathrm{dd}, J=10.8,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{dd}, J=10.8,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.40-5.13(\mathrm{~m}, 6 \mathrm{H}), 3.70-3.63(\mathrm{~m}$, 1 H), 3.35-3.28 (m, 2H), $2.80(\mathrm{ddddd}, J=8.9,8.9,6.7,6.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.66-2.48(\mathrm{~m}, 4 \mathrm{H}), 2.38-2.19(\mathrm{~m}$, 2 H), 2.07-1.93 (m, 2H), 1.79 (ddddd, $J=6.7,6.7,6.7,6.3,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.75-1.67(\mathrm{~m}, 1 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H})$, $0.955(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.951(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\operatorname{app} \mathrm{~s}, 18 \mathrm{H}), 0.87(\mathrm{~d}, J$ $=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.19(\mathrm{app} \mathrm{s}, 6 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{app} \mathrm{s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \square 155.5,143.7,134.8,134.7,132.9,132.0,130.9,129.0,128.2,127.6,121.4$, $120.2,118.3,117.3,80.3,78.3,76.1,37.9,37.3,36.6,36.4,36.3,35.9,32.4,29.4,26.18,26.15,25.6$, $18.5,18.45,18.38,17.85,17.4,17.0,13.7,9.3,-3.5(2),-3.65,-3.68,-4.5(2)$; high resolution mass spectrum (ES $\left.{ }^{+}\right) m / z 835.5910\left[(\mathrm{M}+\mathrm{Na})^{+} ;\right.$calcd for $\left.\mathrm{C}_{48} \mathrm{H}_{88} \mathrm{O}_{4} \mathrm{NaSi}_{3}: 835.5888\right]$

(+)-S26
Carbamate (+)-S26 A solution of alcohol (+)-S25 (30 mg, 0.036 mmol$)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ was treated with $\mathrm{Cl}_{3} \mathrm{CCON}=\mathrm{C}=\mathrm{O}(55 \square \mathrm{~L}, 1 \mathrm{M}$ solution in toluene) at room temperature for 30 min . The solution was loaded directly onto a neutral $\mathrm{Al}_{2} \mathrm{O}_{3}$ plug. After 4 h , the material was flushed from the $\mathrm{Al}_{2} \mathrm{O}_{3}$ ($\mathrm{EtOAc}, 100$ mL), concentrated, and purified by flash chromatography (10% ethyl acetate/hexanes) providing 22 mg (+)-S26 (78\%) as a clear oil: $[\square]_{\mathrm{D}}^{23}+63.6\left(c 0.5, \mathrm{CHCl}_{3}\right)$; IR (film, NaCl) 3509, 3340, 3264, 2957, 2929, 2857, 1730, 1652, 1472, 1326, 1257, 1037, 837, $773 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 7.12(\mathrm{dd}, J=$ $7.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.68-6.63(\mathrm{~m}, 2 \mathrm{H}), 6.59(\mathrm{ddd}, J=16.8,10.4,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.02$ (dd, $J=11.2,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.37-5.30(\mathrm{~m}, 1 \mathrm{H}), 5.25-5.15(\mathrm{~m}, 3 \mathrm{H}), 5.12(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{dd}, J=$ $5.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.45(\mathrm{dd}, J=4.1,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{dd}, J=6.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.04-2.94$ $(\mathrm{m}, 1 \mathrm{H}), 2.65-2.45(\mathrm{~m}, 4 \mathrm{H}), 2.36-2.18(\mathrm{~m}, 2 \mathrm{H}), 1.95-1.85(\mathrm{~m}, 3 \mathrm{H}), 1.71-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.00(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}$, $3 H), 0.98(s, 9 H), 0.92(d, o b s c u r e d, 3 H), 0.919(s, 9 H), 0.916(s, 9 H), 0.90(d, J=6.7 \mathrm{~Hz}, 3 H), 0.86(d, J$ $=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.79(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.19(\mathrm{app} \mathrm{s}, 6 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{app} \mathrm{s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \square 156.8,155.6,143.8,134.7,133.6,133.0,132.1,129.8,129.0,128.2,127.6$, $121.4,120.3,117.8,117.4,80.4,78.9,76.3,38.1,38.0,36.7,36.4,36.0,34.5,32.0,29.4,26.21,26.20$, $25.7,18.53,18.49,18.45,18.20,17.6,17.5,14.4,10.2,-3.4,-3.55,-3.61,-3.63,-4.4(2)$; high resolution mass spectrum $\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 878.5943\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\left.\mathrm{C}_{49} \mathrm{H}_{89} \mathrm{NO}_{5} \mathrm{NaSi}_{3}: 878.5946\right]$.

(+)-32
Triol (+)-32: Carbamate (+)-S26 (11 mg, 0.013 mmol$)$ was dissolved in $\mathrm{MeOH}(3 \mathrm{~mL})$ and stirred for 15 min at room temperature. Aqueous hydrochloric acid (3N) was added in 100-200 $\mu \mathrm{L}$ portions over 4 hours at a rate which minimized precipitation (ca. 10 to 15 min intervals). An additional 1.0 mL of 3 N aq HCl was added over 1 h at 15 min intervals, and the sides of the flask/stir bar were rinsed with 2 mL of MeOH . After stirring for 12 h , the reaction was quenched by addition of NaHCO_{3} (s), until gas evolution stopped. The mixture was then diluted with 20 mL of water and extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organic layers were dried (MgSO4), filtered, and concentrated. Flash chromatography (5\% $\left.\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ gave (+)-32 (5.7 mg, 82% yield) as a clear oil. $[\square]_{\mathrm{D}}^{23}+56.0\left(c 0.5, \mathrm{CHCl}_{3}\right) ; \mathrm{IR}($ film, NaCl$)$ 3348, 2964, 2921, 2872, 1700, 1588, 1456, 1393, 1327, 1152, 1044, $970 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \square 7.06(\mathrm{dd}, J=7.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.70-6.56(\mathrm{~m}, 3 \mathrm{H}), 6.02(\mathrm{dd}, J=10.8,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.46-5.35$ $(\mathrm{m}, 3 \mathrm{H}), 5.26-5.15(\mathrm{~m}, 4 \mathrm{H}), 5.12(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.82-4.77(\mathrm{~m}, 1 \mathrm{H}), 3.23(\mathrm{dd}, J=7.8,4.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.13(\mathrm{dd}, \mathrm{J}=8.6,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.12-3.07(\mathrm{~m}, 1 \mathrm{H}), 2.63-2.48(\mathrm{~m}, 3 \mathrm{H}), 2.42(\mathrm{dddd}, J=15.3,8.6,6.7,6.7 \mathrm{~Hz}$, 1 H), 2.36-2.25 (m, 1H), 2.25-2.16 (m, 1H), $1.89(\mathrm{ddd}, J=14.1,3.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{ddd}, J=7.8,7.1$, $3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.79-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.58(\mathrm{~m}, 1 \mathrm{H}), 0.99(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.90$ $(\mathrm{d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CD3OD) \square $158.4,156.9,143.5,133.8,132.7,132.0,130.98,129.4,128.8,128.7,127.1,119.3,116.9,115.9,112.3$, $79.4,78.6,74.6,37.5,35.9,35.8,35.7,34.9,33.7,31.0,29.3,17.9,16.8,16.2,14.6,8.0$; high resolution mass spectrum (ES $\left.{ }^{+}\right) m / z 536.3330\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\left.\mathrm{C}_{31} \mathrm{H}_{47} \mathrm{NO}_{5} \mathrm{Na}: 536.3352\right]$.

27
Olefin 27: To a solution of benzyl bromide 26 ($247 \mathrm{mg}, 0.8666 \mathrm{mmol}$ in 9 mL THF) was added allyl magnesium bromide ($2.60 \mathrm{~mL}, 1 \mathrm{M}$ solution in $\mathrm{Et}_{2} \mathrm{O}$). The reacton was stirred for 3 h and added to a saturated aq $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The mixture was diluted ($\mathrm{Et}_{2} \mathrm{O}$) and separated. The organic layer was washed (saturated NaHCO_{3}, brine), dried (MgSO_{4}), filtered, and concentrated. The crude residue was then purified by flash chromatography (10\% EtOAc/hexanes) to afford 192 mg of 27 (90\%). IR (film, $\mathrm{NaCl}) 3333,2978,1699,1541,1237,1161 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 7.25(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.17(\mathrm{app}$ $\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.84(\mathrm{ddt}, J=16.8$, $10.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{app} \mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.35$ (app dt, $J=7.1,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.51(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 152.8,142.8,138.3,137.9$, $128.8,123.0,118.5,116.0,114.9,80.3,35.4,35.3,28.3$; high resolution mass spectrum (CI) m / z $247.1565\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\left.\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{2}: 247.1572\right]$.

28

Aldehyde 28: A solution of olefin $27(192 \mathrm{mg}, 0.777 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8.0 \mathrm{~mL}, 0.1 \mathrm{M})$ was cooled to -78 ${ }^{\circ} \mathrm{C}$ and treated with a stream of ozone and oxygen until the colorless solution became steel-blue in appearance. The reaction mixture was purged with a stream of argon for 10 min , followed by the cautious addition of triphenylphosphine ($224 \mathrm{mg}, 0.855 \mathrm{mmol}$). The cooling bath was removed, and the solution was stirred at ambient temperature for 1 h , concentrated, and chromatographed (20\% ethyl acetate/hexanes, gradient elution) to afford $28(87 \mathrm{mg}, 66 \%)$ as a white solid. Melting point: $80-83^{\circ} \mathrm{C}$; IR
(film, NaCl) $3336,2978,1719,1541,1236,1158 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 9.80(\mathrm{~s}, 1 \mathrm{H}), 7.31$ (s, 1H), $7.19(\operatorname{appt}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $2.92(\operatorname{app} t, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.76(\operatorname{appt}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.51(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(125 \mathrm{MHz}, \mathrm{CDCl} 3) \square$ 201.4, 152.7, 141.3, 138.6, 129.0, 122.9, 118.3, 116.5, 80.5, 45.1, 28.3, 28.1 ; high resolution mass spectrum (CI) $m / z 249.1364\left[(\mathrm{M})^{+}\right.$; calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{3}$: 249.1365]

(+)-S27
Tetraene (+)-S27: Phosphonium salt (+)-20 (259 mg, $0.241 \mathrm{mmol} ; 12: 1$ Z/E ratio of diene isomers), was azeotropically dried with benzene $(3 \times 1.5 \mathrm{~mL})$ using a double manifold and further dried by heating to 50 ${ }^{\circ} \mathrm{C}$ under vacuum (0.2 torr) for 12 h . The salt was back-filled with argon, dissolved in 3 mL of freshly distilled THF, sparged with argon for 15 min , and cooled to $-78{ }^{\circ} \mathrm{C}$. The resultant solution was treated with methyl lithium•lithium bromide (2.2 M in THF, $108 \square \mathrm{~L}$), stirred 15 min , and warmed to $-20^{\circ} \mathrm{C}$. To this orange/red solution was transferred via cannula a degassed solution of aldehyde 28 ($63 \mathrm{mg}, 0.253 \mathrm{mmol}$) in THF ($0.5 \mathrm{~mL}+1 \times 0.5 \mathrm{~mL}$ rinse) over 5 min . The orange solution was allowed to slowly warm to $-8^{\circ} \mathrm{C}$ over 3 h . The resulting light yellow solution was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and diluted $\left(\mathrm{Et} 2 \mathrm{O} / \mathrm{H}_{2} \mathrm{O}\right)$. The layers were separated, and the aqueous layer was extracted $\left(3 \times \mathrm{Et}_{2} \mathrm{O}, 3 \times \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. The combined organic layers were dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), concentrated, and chromatographed (gradient elution: 2\% EtOAc/hexanes to 50% EtOAc/hexanes; then $40 \% \mathrm{CH}_{3} \mathrm{CN}^{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford (+)-S27 (44 mg, 10\%, $12: 1$ ratio of Z / E diene isomers. $\left.[\square]_{D}^{23}+54\left(c 0.38, \mathrm{CHCl}_{3}\right)\right]$; IR (film, NaCl$) 3342,2928,1734,1249,836 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, major diastereomer) $\square 7.24(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.13$ $(\mathrm{m}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~m}, 2 \mathrm{H}), 6.57(\mathrm{ddd}, J=17.1,10.6,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $5.99(\operatorname{app} t, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\operatorname{app} t, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{ddd}, J=10.5,10.5,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.31$
$(\mathrm{m}, 1 \mathrm{H}), 5.06-5.19(\mathrm{~m}, 3 \mathrm{H}), 4.47(\mathrm{ABq}, J=10.6, \square \square=45.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{app} \mathrm{t}, J=4.4 \mathrm{~Hz}$, 1 H), $3.27(\mathrm{dd}, J=6.8,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{dd}, J=6.8,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{~m}, 1 \mathrm{H}), 2.59(\mathrm{~m}, 3 \mathrm{H}), 2.45(\mathrm{app}$ dq, $J=6.9,16.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~m}, 3 \mathrm{H}), 1.85(\mathrm{~m}, 3 \mathrm{H}), 1.58(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H}), 1.06(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$, $0.96(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.76$ $(\mathrm{d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.062(\mathrm{~s}, 3 \mathrm{H}), 0.045(\mathrm{~s}, 3 \mathrm{H}), 0.023(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, major diastereomer) $\square 143.2,138.3,134.7,134.6,133.0,132.3,131.3,129.2,129.1,129.1,128.8,128.8$, $128.1,127.6,123.2,118.6,117.4,116.1,113.7,84.6,80.6,80.4,76.3,74.8,55.3,40.1,38.2,36.7,36.4$, $36.1,35.5,32.0,29.4,28.4,26.3,26.2,18.7,18.7,18.5,18.4,17.5,15.0,10.6,-3.4$ (2), -3.6 (2); high resolution mass spectrum $\left(\mathrm{ES}^{+}\right) m / z 940.6243\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\mathrm{C}_{55} \mathrm{H}_{91} \mathrm{NO}_{6} \mathrm{NaSi}_{2}$: 940.6283].

(+)-S28
Alcohol (+)-S28: At $0{ }^{\circ} \mathrm{C}$, a solution of PMB ether (+)-S27 (15 mg, $0.0164 \mathrm{mmol}, 12: 1$ mixture of Z / E diene isomers) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was treated with $\mathrm{H}_{2} \mathrm{O}(100 \mu \mathrm{~L})$ and DDQ (4.1 mg, 0.0180 mmol$)$. The mixture was stirred for 10 min at $0^{\circ} \mathrm{C}$, warmed to rt and stirred an additional 5 min . The mixture was quenched with saturated NaHCO_{3}, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$, and washed with $\mathrm{H}_{2} \mathrm{O}$ and saturated brine solution. The combined organic layers were dried (MgSO_{4}), filtered and concentrated. Flash chromatography (10\% EtOAc/hexanes) provided (+)-S28 (12 mg, 90\%) as a yellow oil. $[\square]_{D}^{23}+54(c 0.20$, CHCl_{3}); IR (film, NaCl) $3342,2928,1734,1251,1161,772 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 7.16(\mathrm{~m}$, $3 \mathrm{H}), 6.84(\mathrm{~m}, 1 \mathrm{H}), 6.61$ (ddd, $J=16.8,10.8,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.12(\operatorname{app} \mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.44(\operatorname{app} t, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~m}, 2 \mathrm{H}), 5.19(\mathrm{~m}, 3 \mathrm{H}), 5.13(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~d}, J=2.7 \mathrm{~Hz}$, 1 H), 3.61 (dd, $J=6.2,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.30$ (dddd, $J=18.9,8.6,8.6,3.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.77(\mathrm{~m}, 1 \mathrm{H}), 2.58(\mathrm{~m}, 3 \mathrm{H})$, $2.46(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{~m}, 1 \mathrm{H}), 2.25(\mathrm{~m}, 1 \mathrm{H}), 1.96(\mathrm{~m}, 1 \mathrm{H}), 1.88(\mathrm{ddd}, J=14.6,3.8,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.76(\mathrm{dddd}, J$
$=13.3,6.8,6.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H}), 0.94(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$, $0.89(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.78(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$, $0.059(\mathrm{~s}, 3 \mathrm{H}), 0.034(\mathrm{~s}, 3 \mathrm{H}), 0.027(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \square 143.1,138.3,134.8,134.7$, $133.7,132.8,132.1,131.1,128.8,128.1,127.8,123.2,118.6,118.4,116.1,80.5,78.3,77.3,76.2,38.0$, $37.1,36.6,36.6,36.3,36.1,32.6,29.3,28.4,26.2,26.2,18.7,18.5,17.9,17.6,17.1,13.6,9.5,-3.4,-3.5$, -3.6 (2); high resolution mass spectrum (ES $\left.{ }^{+}\right) \mathrm{m} / \mathrm{z} 820.5835\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\mathrm{C}_{47} \mathrm{H}_{83} \mathrm{NO}_{5} \mathrm{NaSi}_{2}$: 820.5708]

(+)-S29
Carbamate (+)-S29. A solution of alcohol (+)-S28 (12.0 mg, 0.015 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3.0 mL) was treated with $\mathrm{Cl}_{3} \mathrm{CCON}=\mathrm{C}=\mathrm{O}$ (100 $\square \mathrm{L}, 1 \mathrm{M}$ solution) at room temperature for 30 min . The solution was loaded directly onto a neutral $\mathrm{Al}_{2} \mathrm{O}_{3}$ plug. After 4 h , the material was flushed from the $\mathrm{Al}_{2} \mathrm{O}_{3}$ ($\mathrm{EtOAc}, 100$ mL), concentrated, and purified by flash chromatography (10\% ethyl acetate/hexanes) providing 9.0 mg (+)-S29 (72\%) as a clear oil: $[\square]_{\mathrm{D}}^{23}+70\left(c 0.26, \mathrm{CHCl}_{3}\right)$; IR (film, NaCl$) 3328,2929,1716,1161,836,772$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 7.25(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.17(\mathrm{app} \mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J$ $=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.58(\mathrm{ddd}, J=17.0,10.5,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{appt}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.47$ (app t, $J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\operatorname{app} t, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~m}, 1 \mathrm{H}), 5.16(\mathrm{~m}, 2 \mathrm{H}), 5.10(\mathrm{~d}, J=10.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.69(\mathrm{appt}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.43(\mathrm{dd}, J=5.0,3.8 \mathrm{~Hz} 1 \mathrm{H}), 3.27(\mathrm{dd}, J=7.4,2.8 \mathrm{~Hz}$, 1 H), 2.96 (ddd, $J=9.8,6.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{~m}, 3 \mathrm{H}), 2.44(\mathrm{app} \mathrm{dq}, J=15.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~m}, 3 \mathrm{H})$, $1.96(\mathrm{~m}, 1 \mathrm{H}), 1.88(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H}), 0.97(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 18 \mathrm{H}), 0.90(\mathrm{~m}$, $3 \mathrm{H}), 0.87(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.76(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.070(\mathrm{~s}, 3 \mathrm{H}), 0.040(\mathrm{~s}$, $3 \mathrm{H}), 0.029(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \square 157.1$, 152.9, 143.1, 138.4, 134.5, 133.7, 132.6, 132.2,
129.8, 128.8, 128.2, 127.8, 123.1, 118.6, 117.8, 116.1, 80.6, 78.8, 77.3, 76.5, 38.1, 37.8, 36.7, 36.5, 36.1, $34.6,32.5,29.3,28.4,26.2(2), 18.9,18.5,18.2,17.8,17.5,13.8,10.3,-3.4,-3.5,-3.6(2)$; high resolution mass spectrum (ES $\left.{ }^{+}\right) m / z 863.5781\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\left.\mathrm{C}_{48} \mathrm{H}_{84} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{NaSi}_{2}: 863.5766\right]$.

$(+)-33$
Aniline (+)-33: Carbamate (+)-S29 (9.0 mg, 0.011 mmol) was dissolved in $\mathrm{MeOH}(1 \mathrm{~mL})$ and stirred for 15 min at room temperature. Aqueous hydrochloric acid (3N) was added in $100-200 \mu \mathrm{~L}$ portions over 4 hours at a rate which minimized precipitation (ca. 10 to 15 min intervals). An additional 1.0 mL of 3 N aq HCl was added over 1 h at 15 min intervals, and the sides of the flask/stir bar were rinsed with 2 mL of MeOH . After stirring for 12 h , the reaction was quenched by addition of NaHCO_{3} (s), until gas evolution stopped. The mixture was then diluted with 20 mL of water and extracted with EtOAc (3x). The combined organic layers were dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), filtered, and concentrated. Preparative TLC (80\% EtOAc/hexanes) gave (+)-33 (3.0 mg, 58\% yield) as a white amorphous solid. $[\square]_{\mathrm{D}}^{23}+51(c 0.13, \mathrm{MeOH})$; $\mathrm{IR}($ film, NaCl$)$ 3348, 2926, 1712, 1388, 1042, $973 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \square 6.99(\mathrm{app} \mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $6.67(\mathrm{ddd}, J=16.8,10.6,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~m}, 2 \mathrm{H}), 6.46(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{app} \mathrm{t}, J=11.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.40(\mathrm{~m}, 3 \mathrm{H}), 5.23(\mathrm{~m}, 3 \mathrm{H}), 5.13(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.70(\mathrm{dd}, J=7.0,4.9 \mathrm{~Hz}, 1 \mathrm{H})$, 4.03 (br s, 1H), $3.20(\mathrm{~m}, 1 \mathrm{H}), 3.12(\mathrm{~m}, 1 \mathrm{H}), 3.05(\mathrm{~m}, 1 \mathrm{H}), 2.55(\mathrm{~m}, 3 \mathrm{H}), 2.47(\mathrm{~d}, \mathrm{~J}=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~m}$, $1 \mathrm{H}), 2.25(\mathrm{~m}, 3 \mathrm{H}), 1.91(\mathrm{app} \mathrm{dt}, J=13.9,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{~m}, 3 \mathrm{H}), 1.62(\mathrm{~m}, 1 \mathrm{H}), 0.96(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$, $0.92(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CD3CN) $\square 158.2,148.3,144.2,135.1,134.6,133.3,132.6,130.4,130.1,129.9,128.2$, 119-117 (2 carbons, obscured by solvent), 115.5, 113.0, 79.8, 79.1, 75.6, 38.4, 36.8, 36.7, 36.6, 36.0,
34.9, 32.1, 30.2, 19.1, 18.1, 16.9, 15.5, 9.2; high resolution mass spectrum (ES ${ }^{+}$) $m / z 535.3501$ $\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\left.\mathrm{C}_{31} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}: 535.3512\right]$.

S30
Pyridine S30: To a solution of pyridol $29\left(1 \mathrm{~g}, 9.17 \mathrm{mmol}\right.$ in $\left.90 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ was added Hunig's base ($3.37 \mathrm{~mL}, 19.248 \mathrm{mmol}$) followed by MEMCI ($2.085 \mathrm{~mL}, 18.331 \mathrm{mmol}$). The reaction was stirred for 30 min. and poured into a saturated NaHCO_{3} aq. solution. The mixture was extracted $\left(3 \times \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and the combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated onto SiO_{2}. Flash chromatography (50\% EtOAc/hexanes) furnished 1.74 g of $\mathbf{S 3 0}$ (96\%); IR (film, NaCl) 2925, 1599, 1579, 1452, 1113, $975 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 7.46(\mathrm{app} \mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.59(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{app} \mathrm{tt}, J=4.6,0.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.55(\mathrm{tq}, J=3.2,0.9$ $\mathrm{Hz}, 2 \mathrm{H}), 3.36(\mathrm{~d}, \mathrm{~J}=0.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl 3$) \square 161.9,156.2,138.9,116.5$, 107.2, 90.7, $71.5,68.5,58.7,23.8$; high resolution mass spectrum $\left(\mathrm{Cl}^{+}\right) \mathrm{m} / \mathrm{z} 198.1126\left[(\mathrm{MH})^{+}\right.$; calcd for $\left.\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{NO}_{3}: 198.1130\right]$.

30
Olefin 30: To a $-78^{\circ} \mathrm{C}$ THF solution of pyridine $\mathbf{S 3 0}(188 \mathrm{mg}, 0.954 \mathrm{mmol}$ in 9.5 mL$)$ was added 1.049 $\mathrm{mL}(1.049 \mathrm{mmol}) \mathrm{NaHMDS}(1 \mathrm{M}$ in THF). The cooling bath was removed, the solution was warmed to ambient temperature and stirred for 20 min . Allyl bromide ($124 \mu \mathrm{~L}, 1.431 \mathrm{mmol}$) was added to the solution and the mixture was stirred an additional 1.5 h . The resulting cloudy suspension was poured into a saturated NaHCO_{3} aq. solution and extracted $\left(2 \times \mathrm{CH}_{2} \mathrm{Cl}_{2}, 2 \times \mathrm{Et}_{2} \mathrm{O}\right)$. The combined organic extracts were dried (MgSO_{4}), filtered, and concentrated. Flash chromatography (gradient elution: 10\% EtOAc/hexanes to 20\% EtOAc/hexanes) afforded 60 mg 30 (37\%); IR (film, NaCl) 2926, 1597, 1579, $1456,1115,981 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 7.46($ app t, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$,
$6.59(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{ddt}, J=16.9,10.3,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{~s}, 2 \mathrm{H}), 5.01(\mathrm{dd}, J=17.2,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.93(\mathrm{dd}, J=9.5,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\operatorname{appt}, J=4.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.54(\operatorname{appt}, J=4.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H})$, $2.74(\operatorname{app~t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\operatorname{app~dt}, J=15.1,6.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 162.2$, 159.4, 139.0, 138.0, 116.2, 114.8, 107.8, 90.8, 71.6, 68.7, 58.9, 37.0, 33.2; high resolution mass spectrum $\left(\mathrm{Cl}^{+}\right) m / z 238.1452\left[(\mathrm{MH})^{+}\right.$; calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NO}_{3}$: 238.1443].

31
Aldehyde 31: To a solution of olefin $30(135 \mathrm{mg}, 0.5696 \mathrm{mmol})$ in acetone $/ \mathrm{H}_{2} \mathrm{O}(8: 1,5.7 \mathrm{~mL})$ was added NMO (134 mg, 1.139 mmol) and $175 \mu \mathrm{~L} \mathrm{OsO} 4$ (4% wt. in $\mathrm{H}_{2} \mathrm{O}$). The reation was stirred for 2 h , quenched by adding 1 mL saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and stirred for an additional 5 min . The mixture was poured into a saturated NaHCO_{3} aq. solution and extracted ($2 \times \mathrm{CH}_{2} \mathrm{Cl}_{2}, 2 \times \mathrm{Et}_{2} \mathrm{O}$). The combined organic extracts were dried (MgSO4), filtered, and concentrated. The resulting crude diol material was taken on with no additional purification.

To a $0^{\circ} \mathrm{C}$ solution of crude diol $34 \mathrm{mg}(0.1254 \mathrm{mmol})$ in THF $(1.25 \mathrm{~mL})$ was added $\mathrm{Pb}(\mathrm{OAc}) 4$. The reaction was stirred for 30 min., then $100 \mu \mathrm{~L}$ of ethylene glycol was added and the mixture was stirred an additional 5 min . The mixture was poured into a saturated NaHCO_{3} aq. solution and extracted (2 x $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2 \times \mathrm{Et}_{2} \mathrm{O}\right)$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated. Flash chromatography (gradient elution: 33\% to 50\% EtOAc/hexanes) furnished 23 mg (77\%) aldehyde 31. IR (film, NaCl) 2926, 1723, 1597, 1579, 1456, 1115, $981 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 9.86$ (app t, $J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\operatorname{appt}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.55$ (s, 2H), $3.83(\operatorname{appt}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.55(\operatorname{appt}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 3.03(\operatorname{app} \mathrm{t}, J=7.1 \mathrm{~Hz}$, 2H), 2.85 (app dt, $J=1.4,7.1 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 178.9,162.3,157.5,139.3,116.3$, 108.4, 91.0, 71.7, 68.7, 59.0, 42.2, 29.9; high resolution mass spectrum $\left(\mathrm{Cl}^{+}\right) \mathrm{m} / \mathrm{z} 240.1245\left[(\mathrm{MH})^{+}\right.$; calcd for $\left.\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{NO}_{4}: 240.1236\right]$.

(+)-S31
Tetraene(+)-S31: Phosphonium salt (+)-20 (333 mg, $0.3096 \mathrm{mmol} ; 12: 1$ Z/E ratio of diene isomers), was azeotropically dried with benzene $(3 \times 1.5 \mathrm{~mL})$ using a double manifold and further dried by heating to 50 ${ }^{\circ} \mathrm{C}$ under vacuum (0.2 torr) for 12 h . The salt was back-filled with argon, dissolved in 3 mL of freshly distilled THF, sparged with argon for 15 min , and cooled to $-20^{\circ} \mathrm{C}$. The resultant solution was treated with methyllithium lithium bromide complex (1.5 M in $\mathrm{Et}_{2} \mathrm{O}, 217 \mathrm{~L}$), and stirred 30 min . To this orange/red solution was transferred via cannula a degassed solution of aldehyde 31 (74 mg, 0.0.3096 $\mathrm{mmol})$ in THF ($0.5 \mathrm{~mL}+1 \times 0.5 \mathrm{~mL}$ rinse) over 5 min . The orange solution was allowed to slowly warm to $-8{ }^{\circ} \mathrm{C}$ over 3 h . The resulting light yellow solution was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and diluted $\left(\mathrm{Et}_{2} \mathrm{O} / \mathrm{H}_{2} \mathrm{O}\right)$. The layers were separated, and the aqueous layer was extracted $\left(3 \times \mathrm{Et}_{2} \mathrm{O}, 3 \times \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated, and chromatographed (gradient elution: 2\% EtOAc/hexanes to 50% EtOAc/hexanes; then $40 \% \mathrm{CH}_{3} \mathrm{CN}^{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford (+)-S31 (131 $\mathrm{mg}, 47 \%$; yellow oil, $12: 1$ ratio of Z / E diene isomers) and phosphonium salt (+)-20 (153 mg, 46\%). [[]$_{D}^{23}$ $+62\left(c 0.65, \mathrm{CHCl}_{3}\right)$]; IR (film, NaCl$) 2929,1513,1455,1249,835 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, major diastereomer) $\square 7.46(\operatorname{appt}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.72$ $(\mathrm{d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{ddd}, J=16.6,10.6,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{app} \mathrm{t}, J=11.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.61(\mathrm{ABq}, J=6.2 \mathrm{~Hz}, \square \square=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.56(\operatorname{app} \mathrm{t}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\operatorname{app} \mathrm{t}, J=10.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.35(\mathrm{~m}, 1 \mathrm{H}), 5.26-5.13(\mathrm{~m}, 3 \mathrm{H}), 5.10(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{ABq}, J=10.6, \square \square=45.3 \mathrm{~Hz}, 2 \mathrm{H})$, $3.87(\operatorname{appt}, J=4.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.57(\operatorname{appt}, J=4.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.49(\operatorname{appt}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.38$ (s, 3 H) $3.31(\mathrm{dd}, J=6.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{dd}, J=6.7,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.99$ (dddd, $J=6.8,6.8,4.0,4.0$, $1 \mathrm{H}), 2.76-2.60(\mathrm{~m}, 3 \mathrm{H}), 2.49(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.79(\mathrm{~m}, 4 \mathrm{H}), 1.59(\mathrm{~m}, 1 \mathrm{H}), 1.09(\mathrm{~d}, J=6.8 \mathrm{~Hz}$,
$3 H), 0.99(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, $0.79(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl 3 , major diastereomer) $\square 162.2,159.7,159.0,139.0,134.7,134.6,133.0,132.3,131.2,129.2,129.1,128.1,127.6$, $117.4,116.2,113.6,107.8,90.9,84.5,80.3,76.4,74.9,71.7,68.7,59.0,55.2,40.1,38.2,37.9,36.6$, $36.3,35.5,31.9,27.4,26.2,26.17,18.7,18.6,18.5,18.4,17.4,15.0,10.7,-3.40,-3.44,-3.68$ (2); high resolution mass spectrum $\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 930.6075\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\left.\mathrm{C}_{53} \mathrm{H}_{89} \mathrm{NO}_{7} \mathrm{NaSi}_{2}: 930.6065\right]$.

(+)-S32
Alcohol (+)-S32: At $0{ }^{\circ} \mathrm{C}$, a solution of PMB ether (+)-S31 ($23 \mathrm{mg}, 0.0253 \mathrm{mmol}, 12: 1$ mixture of Z / E diene isomers) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was treated with $\mathrm{H}_{2} \mathrm{O}(100 \mu \mathrm{~L})$ and DDQ ($6.3 \mathrm{mg}, 0.0278 \mathrm{mmol}$). The mixture was stirred for 10 min at $0^{\circ} \mathrm{C}$, warmed to rt and stirred an additional 5 min . The mixture was quenched with saturated NaHCO_{3}, diluted with $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$, and washed with $\mathrm{H}_{2} \mathrm{O}$ and saturated brine solution. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated. The crude residue was then dissolved in $\mathrm{EtOAc} / \mathrm{MeOH}(1: 1,1 \mathrm{~mL})$ cooled to $0^{\circ} \mathrm{C}$, treated with $\mathrm{NaBH}_{4}(1 \mathrm{mg}, 0.0253$ mmol) and the mixture was allowed to warm to rt . To the solution was added 1 mL of saturated NaHCO_{3}. The mixture was concentrated, diluted with $\mathrm{H}_{2} \mathrm{O}$, and extracted ($3 \times \mathrm{CH}_{2} \mathrm{Cl}_{2}$, $3 \times \mathrm{Et}_{2} \mathrm{O}$). The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. Flash chromatography (gradient elution: 10\% EtOAc/hexanes to 20% EtOAc/hexanes) provided (+)-S32 (15.0 mg, 75%) as a clear oil: $[\square]_{\mathrm{D}}^{23}+58(c$ $0.30, \mathrm{CHCl}_{3}$); IR (film, NaCl) 2929, 1455, 1251, 1105, 836, $773 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 7.46$ (app t, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{ddd}, J=17.0,10.4,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.11(\mathrm{appt}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{ABq}, J=6.3, \square \square=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.43(\mathrm{app} \mathrm{t}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H})$,
$5.36-5.19(\mathrm{~m}, 4 \mathrm{H}), 5.13(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{app} \mathrm{t}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.62(\mathrm{dd}, J=6.0,2.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.55(\mathrm{app} t, J=4.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{~m}, 2 \mathrm{H}), 2.80-2.58(\mathrm{~m}, 4 \mathrm{H}), 2.52-2.41(\mathrm{~m}, 3 \mathrm{H}), 2.10-1.91$ $(\mathrm{m}, 3 \mathrm{H}), 1.76(\mathrm{~m}, 1 \mathrm{H}), 1.69(\mathrm{dddd}, J=6.8,6.8,3.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}) 1.58(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.93(\mathrm{~d}, J=6.6$ $\mathrm{Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.84(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $3 H), 0.78(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{app} \mathrm{s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}(125 \mathrm{MHz}, \mathrm{CDCl} 3) \square$ 162.3, 159.8, 139.0, 134.83, 134.80, 132.9, 132.1, 131.0, 128.2, 127.8, 118.4, 116.2, 107.8, 91.0, 80.4, $78.3,76.2,71.7,68.8,59.0,38.0,37.9,37.3,36.6,36.5,36.3,32.5,27.4,26.24,26.21,18.7,18.5,18.4$, $17.4,17.1,13.7,9.4,-3.4,-3.57,-3.62(2)$; high resolution mass spectrum (ES ${ }^{+}$) $m / z 810.5479\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\mathrm{C}_{45} \mathrm{H}_{81} \mathrm{NO}_{6} \mathrm{NaSi}_{2}: 810.5500$]

(+)-S33
Carbamate (+)-S33: A solution of alcohol (+)-S32 (15.0 mg, 0.019 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3.0 mL) was treated with $\mathrm{Cl}_{3} \mathrm{CCON}=\mathrm{C}=\mathrm{O}(100 \square \mathrm{~L}, 1 \mathrm{M}$ solution) at room temperature for 30 min . The solution was loaded directly onto a neutral $\mathrm{Al}_{2} \mathrm{O}_{3}$ plug. After 4 h , the material was flushed from the $\mathrm{Al}_{2} \mathrm{O}_{3}$ ($\mathrm{EtOAc}, 100$ mL), concentrated, and purified by flash chromatography (gradient elution: 10% to $20 \% \mathrm{EtOAc} / \mathrm{hexanes}$) providing $7.0 \mathrm{mg}(+)-\mathrm{S} 33(50 \%)$ as a clear oil: $[\square]_{\mathrm{D}}^{23}+64\left(c 0.16, \mathrm{CHCl}_{3}\right)$; $\mathrm{IR}($ film, NaCl$) 2928,1734$, 1457, 1252, $1035 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 7.48(\mathrm{app} \mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.60(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{ddd}, J=16.6,10.4,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\operatorname{app} \mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.58$ (ABq, $J=6.3, \square=3.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.44(\mathrm{~m}, 1 \mathrm{H}), 5.33(\mathrm{~m}, 2 \mathrm{H}), 5.18(\mathrm{~m}, 3 \mathrm{H}), 5.10(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.70$ (app t, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{br} s, 2 \mathrm{H}), 3.85(\operatorname{app} t, J=4.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.55(\operatorname{app} t, J=4.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.42(\operatorname{app}$ $\mathrm{t}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 3.29(\mathrm{dd}, J=7.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{ddd}, J=10.1,6.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.74-$ $2.58(\mathrm{~m}, 3 \mathrm{H}), 2.48-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.30(\mathrm{~m}, 1 \mathrm{H}), 1.86(\mathrm{~m}, 3 \mathrm{H}), 1.65(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.91$
(d, $J=4.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.77(\mathrm{~d}, J$ $=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{app} \mathrm{s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 159.8, 156.9, 139.1, 134.6 (2), 133.6, 132.9, 132.1, 129.8, 128.2, 127.7, 117.8, 116.3, 107.8, 91.0, 80.5, 78.7, 76.4, $71.7,68.7,59.0,38.1,38.0,37.9,36.6,36.5,36.3,34.5,32.1,27.3,26.2,18.7,18.6,18.5,18.4,17.5$, 14.3, 10.2, -3.4 (2), -3.60, -3.61; high resolution mass spectrum (ES $\left.{ }^{+}\right) \mathrm{m} / \mathrm{z} 853.5541\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\mathrm{C}_{46} \mathrm{H}_{82} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{NaSi}_{2}: 853.5558 \mathrm{~J}$.

$(+)-34$
Pyridone (+)-34: Carbamate (+)-S33 ($5.0 \mathrm{mg}, 0.006 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(1 \mathrm{~mL})$ and stirred for 15 min at room temperature. Aqueous hydrochloric acid (3N) was added in $100-200 \mu \mathrm{~L}$ portions over 4 hours at a rate which minimized precipitation (ca. 10 to 15 min intervals). An additional 1.0 mL of 3 N aq HCl was added over 1 h at 15 min intervals, and the sides of the flask/stir bar were rinsed with 2 mL of MeOH . After stirring for 12 h , the reaction was quenched by addition of NaHCO_{3} (s), until gas evolution stopped. The mixture was then diluted with 20 mL of water and extracted with EtOAc (3x). The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated. Preparative $\mathrm{TLC}\left(80 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ gave (+)-34 ($2.1 \mathrm{mg}, 70 \%$ yield) as a white amorphous solid: $[\square]_{\mathrm{D}}^{23}+70(c 0.10, \mathrm{MeOH})$; IR (film, NaCl) $3397,2961,1700,1653,1617,1457,1040 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \square 7.35(\mathrm{dd}, J=9.2,6.8 \mathrm{~Hz}$, 1 H), 6.65 (dddd, $J=16.8,11.1,11.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{~m}, 2 \mathrm{H}), 5.50-5.31(\mathrm{~m}$, $4 \mathrm{H}), 5.23-5.18(\mathrm{~m}, 3 \mathrm{H}), 5.12(\mathrm{dd}, J=10.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{appt}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{~m}, 1 \mathrm{H}), 3.12$ (dd, $J=8.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.03 (ddd, $J=16.1,11.1,5.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.57 (ddd, $J=10.1,6.8,3.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.55 (d, $J=5.0 \mathrm{~Hz}, 1 \mathrm{H}$), $2.52(\mathrm{app} \mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{~m}, 2 \mathrm{H}), 2.26(\mathrm{~m}, 1 \mathrm{H}), 1.84(\mathrm{ddd}, J=14.2,3.5,3.5$ $\mathrm{Hz}, 1 \mathrm{H}), 1.71(\mathrm{~m}, 2 \mathrm{H}), 1.59(\mathrm{~m}, 1 \mathrm{H}), 0.94(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~d}, J=6.7 \mathrm{~Hz}$,
$3 \mathrm{H}), 0.80(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \square 164.4,158.7,150.1,142.5,135.1,134.7$, $133.7,133.4,130.4,128.6,128.2,126.3,117.9,105.0,79.9,78.8,75.5,38.4,36.9,36.0,35.0,33.6,32.4$, 30.6, 26.9, 19.3, 18.1, 17.1, 15.1, 9.4; high resolution mass spectrum (ES ${ }^{+}$) $\mathrm{m} / \mathrm{z} 537.3279\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\left.\mathrm{C}_{30} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}: 537.3304\right]$.

Synthesis of the Previously Reported (+)-14-Normethyldiscodermolide

(+)-N1
Vinyl iodide (+)-N1: lodomethyltriphenylphosphonium iodide ($1.38 \mathrm{~g}, 2.61 \mathrm{mmol}$) was heated ($50^{\circ} \mathrm{C}$) in vacuo for 12 h , cooled, backfilled with Ar , then supended in 6.0 mL of THF. 2.5 mL NaHMDS was added (1.0 M THF, 2.51 mmol) at rt and the mixture was stirred for 10 minutes. The red/brown suspension was cooled to $-60^{\circ} \mathrm{C}, 750 \mu \mathrm{~L}$ of HMPA (freshly distilled) was added, and the orange suspension was cooled to $-78^{\circ} \mathrm{C}$. The substrate aldehyde $\mathbf{N} \mathbf{2}^{1}(795 \mathrm{mg})$ was added as a solution in THF (1.0 mL) via cannula and the cold bath was removed. After stirring for 30 minutes the brown suspension was diluted with hexanes and poured into $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The organic layer was washed $\left(\mathrm{H}_{2} \mathrm{O}\right.$, brine), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated. Flash chromatography (gradient elution: $15 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane to 2% EtOAc/hexanes to 5% EtOAc/hexane) furnished vinyl iodide (+)-N1 as a $7: 1$ Z/E mixture of olefin isomers ($811 \mathrm{mg}, 77 \% 2$ steps $) \cdot[\square]_{\mathrm{D}}^{23}+27\left(c 0.60, \mathrm{CHCl}_{3}\right)$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 2928,2855,1512,1248,1078,837,774$ cm^{-1}; ${ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right): \square 7.26(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.09(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.07(\mathrm{dd}, J=8.7,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{ABq}, J=11.6, \square \square=14.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{app} \mathrm{t}, \mathrm{J}=$ $5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{dd}, J=9.15 .5 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\operatorname{appt}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{dq}, J=13.4,6.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.00(\mathrm{~m}, 1 \mathrm{H}), 1.01(\mathrm{~m}, 1 \mathrm{H}), 0.97(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 1 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR

[^0]$\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 159.0,145.1,130.9,129.4,113.7,80.6,76.2,72.6,72.3,55.2,42.7,38.8,26.1,18.3$, 14.8, 14.4, -3.8, -4.0; high resolution mass spectrum (ES $\left.{ }^{+}\right) m / z 527.1473\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\left.\mathrm{C}_{22} \mathrm{H}_{37} \mathrm{O}_{3} \mathrm{SiNal}: 527.1454\right]$.

(+)-N3
PMP Acetal (+)-N3: A 1.0 M solution of anhydrous $\mathrm{ZnCl}_{2}(1.10 \mathrm{~mL}, 1.10 \mathrm{mmol})$ was added via syringe to a solution of alkyl iodide (+)- $\mathrm{A}^{2}(602 \mathrm{mg}, 1.10 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(4.0 \mathrm{~mL})$, and the resulting solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and degassed $2 x$ (freeze-pump thaw). t-BuLi (1.7 M in pentane, $1.94 \mathrm{~mL}, 3.30 \mathrm{mmol}$) was added via cannula over 5 min . The resultant solution was stirred 5 min further, evacuated (1 $\square 0.1$ Torr) and back-filled with argon. The $-78{ }^{\circ} \mathrm{C}$ bath was removed, and the reaction was stirred at ambient temperature for 1 h . The resulting cloudy suspension was transferred by cannula into an intimate mixture of vinyl iodide (+)-N1 (410 mg, $0.826 \mathrm{mmol} ; 7: 1 \mathrm{Z} / E)$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(48 \mathrm{mg}, 0.0413 \mathrm{mmol})$. The reaction mixture was stirred overnight in the absence of light, and quenched via slow addition of the reaction mixture to water $(200 \mathrm{~mL})$. The mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$, and the layers were separated. The water layer was extracted ($3 \square \mathrm{Et}_{2} \mathrm{O}$), and the combined organic layers were washed (saturated aqueous NaHCO_{3}, brine), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. Flash chromatography (gradient elution: 2\% EtOAc/hexanes $\square 5 \%$ EtOAc/hexanes) furnished (+)-N3 [397 mg, 60% yield); [[]$_{\mathrm{D}}^{23}+34\left(c 1.0, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) 2956,2855,1614,1515,1462,1389,1249,1037,835,773 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\square 7.35(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{app} \mathrm{t}, J=9.0 \mathrm{~Hz}, 4 \mathrm{H}), 5.37(\mathrm{~s}, 1 \mathrm{H}), 5.22(\mathrm{~m}$, $2 \mathrm{H}), 4.35(\mathrm{~s}, 2 \mathrm{H}), 4.07(\mathrm{dd}, J=4.6,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.45$ $(\mathrm{m}, 3 \mathrm{H}), 3.20(\mathrm{app} t, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{app} d d q, J=6.6,9.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{~m}, 3 \mathrm{H}), 1.95(\mathrm{app} \mathrm{t}, \mathrm{J}$

[^1]$=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\operatorname{appt}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\operatorname{appt}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{~m}, 1 \mathrm{H}), 0.99(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}), 0.93(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.81(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$, $0.03(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 159.7,159.0,134.9,131.5,131.0,129.0,127.6,127.3$, $113.7,113.5,100.9,83.1,78.1,77.2,73.3,72.6,72.5,55.2,38.7,38.2,36.6,35.4,33.2,30.8,26.2,26.1$, $18.5,18.4,16.8,14.6,13.2,12.2,10.9,-3.6,-3.7,-3.8,-3.9$; high resolution mass spectrum $\left(E S^{+}\right) \mathrm{m} / \mathrm{z}$ $821.5222\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\left.\mathrm{C}_{46} \mathrm{H}_{78} \mathrm{O}_{7} \mathrm{Si}_{2} \mathrm{Na}: 821.5184\right]$.

$(+)-8$
Alcohol (+)-8: At $0{ }^{\circ} \mathrm{C}$, a solution of PMB ether (+)- $\mathrm{N} 3(358 \mathrm{mg}, 0.448 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was treated with $\mathrm{H}_{2} \mathrm{O}(200 \mu \mathrm{~L})$ and DDQ ($111 \mathrm{mg}, 0.490 \mathrm{mmol}$) and stirred for 60 min . The mixture was quenched with 20 mL of saturated NaHCO_{3}, washed with $\mathrm{H}_{2} \mathrm{O}(4 \square)$ and separated. The aqueous layer was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{\square})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, concentrated, dissolved in $\mathrm{MeOH}(20 \mathrm{~mL})$ and then treated with $\mathrm{NaBH}_{4}(2.24 \mathrm{mmol})$. The reaction mixture was concentrated, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with aqueous saturated ammonium chloride and brine. The organic layer was dried over NaSO_{4}, decanted, concentrated and chromatographed (10\% EtOAc/hexanes) to provide 244 mg of (+)-8(80\%); [$]_{\mathrm{D}}^{23}+41\left(c 1.0, \mathrm{CHCl}_{3}\right) ; \mathrm{IR}($ film, NaCl$) 3476,2957$, 2856, 1614, 1518, 1462, 1250, 1026, $835 \mathrm{~cm}^{-1}$; $\left.{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(500} \mathrm{MHz} \mathrm{CDCl} 3,\right) \square 7.38(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, $6.87(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.38(\mathrm{~s}, 1 \mathrm{H}), 5.25(\mathrm{~m}, 2 \mathrm{H}), 4.08(\mathrm{dd}, J=11.2,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{dd}$, $J=7.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{appt}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{appt}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{~m}, 1 \mathrm{H}), 3.50(\mathrm{app} \mathrm{t}, J$ $=11.4,1 \mathrm{H}), 3.46(\mathrm{dd}, J=6.2,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{app} \mathrm{ddq}, J=6.7,9.0,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{app} \mathrm{t}, J=5.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.10(\mathrm{~m}, 2 \mathrm{H}), 1.98(\mathrm{ddd}, J=4.3,4.3,14 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{ddd}, J=1.4,7.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{~m}$, $1 \mathrm{H}), 1.78(\mathrm{~m}, 1 \mathrm{H}), 1.02(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H})$, $0.92(\mathrm{~s}, 9 \mathrm{H}), 0.85(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.70(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H})$, 0.03 (s, 3H); ${ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \square 159.7,133.9,131.5,128.4,127.3,113.4,100.9,83.0,81.2$,
$76.7,73.3,65.3,55.2,38.4,38.2,36.8,36.5,33.2,30.7,26.2,26.1,18.5,18.3,17.3,15.7,13.3,12.1$, $10.9,-3.6,-3.7,-3.8(2)$; high resolution mass spectrum $\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 701.4582\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\mathrm{C}_{38} \mathrm{H}_{70} \mathrm{O}_{6} \mathrm{NaSi}_{2}:$ 701.4609].

(+)-N4
Trityl protected acetal (+)-N4: To a solution of alcohol (+)-8 (229 mg, 0.337 mmol$)$ in pyridine (3.4 mL) was added trityl chloride ($112.8 \mathrm{mg}, 0.405 \mathrm{mmol}$) and DMAP ($49.4 \mathrm{mg}, 0.405 \mathrm{mmol}$). The mixture was then refluxed for 18 h , cooled to ambient temperature, and added to a solution of 1 M citric acid (50 mL). The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with 1 M citric acid, $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ and saturated NaHCO_{3} solution. The organic layers were separated, dried (NaSO_{4}), filtered, and concentrated in vacuo. Flash chromatography (5\% EtOAc/hexanes) provided (+)-N4 (271 mg, 87\%) as a white foam; $[\square]_{\mathrm{D}}^{23}+36\left(c\right.$ 1.0, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) 2929,2855,1615,1461,1250,1036,835,773,706 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \square 7.61(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\operatorname{app} \mathrm{~d}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H}), 7.16(\mathrm{~m}, 6 \mathrm{H}), 7.05(\operatorname{app} \mathrm{t}$, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 6.83(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.41(\mathrm{~s}, 1 \mathrm{H}) 5.30(\operatorname{app} \mathrm{t}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{ddd}, J=10.9$, $9.2,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{dd}, J=11.1,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{dd}, J=6.8,4.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.48(\mathrm{~m}, 2 \mathrm{H}), 3.28(\mathrm{~m}, 1 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 3.07(\operatorname{appt}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\operatorname{app~ddq}, J=6.7,9.4,6.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.41(\mathrm{~m}, 1 \mathrm{H}), 2.26(\mathrm{ddd}, J=14.1,9.2,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{~m}, 4 \mathrm{H}), 1.18(\mathrm{app} \mathrm{t}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.12$ (d, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H}), 0.95(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.12(\mathrm{~s}$, $3 H$), $0.09(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \square 160.4,145.1,134.8,132.3$, 129.2 (2), 128.3, 127.9, 127.1, 113.8, 101.7, $86.9,83.3,78.5,77.7,73.3,66.5,54.7,40.4,38.6,36.9$, $36.0,33.7,30.9,26.5,26.3,18.8,18.5,18.0,14.4,13.6,12.0,11.3,-3.3,-3.4,-3.7,-3.7$; high resolution mass spectrum (ES $\left.{ }^{+}\right) \mathrm{m} / \mathrm{z} 943.5720\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\left.\mathrm{C}_{57} \mathrm{H}_{84} \mathrm{O}_{6} \mathrm{Si}_{2} \mathrm{Na}: 943.5704\right]$.

$(+)-3$
Trityl protected alcohol (+)-3: To a $0^{\circ} \mathrm{C}$ solution of trityl ether (+)-N4 (267 mg, 0.289 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(4.0 \mathrm{~mL})$ was added DIBAI-H (1M in Toluene, $0.87 \mathrm{~mL}, 0.868 \mathrm{mmol})$. The resulting solution was stirred for 4.5 h , quenched via drop-wise addition of pH 7.0 buffer (20 mL), then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The mixture was then added to saturated sodium potassium tartrate solution, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and separated. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated. Flash chromatography (20\% EtOAc/hexanes) provided (+)-3 (257 mg, 96\%) as a white glass; $[\square]_{D}^{23}+18(c 1.0$, CHCl_{3}); IR (film, NaCl) 2930, 2855, 1613, 1513, 1250, 1036, $836,772,706 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \square 7.58(\operatorname{app~d}, J=8.5 \mathrm{~Hz}, 6 \mathrm{H}), 7.28(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~m}, 6 \mathrm{H}), 7.05(\mathrm{app} \mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$, $6.80(d, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.27(\operatorname{appt}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{ddd}, J=10.3,10.2,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{ABq}, J$ $=10.8, \square \square=13.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.70(\mathrm{ddd}, J=10.1,5.1,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~m}, 2 \mathrm{H}), 3.55(\mathrm{ddd}, J=10.4,5.1,4.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.46(\mathrm{dd}, J=8.8,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{dd}, J=6.5,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 3.06(\mathrm{app} \mathrm{t}, J=8.7 \mathrm{~Hz}$, 1 H), 2.76 (app ddq, $J=6.7,9.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}$), $2.38(\mathrm{~m}, 1 \mathrm{H}), 2.16(\mathrm{ddd}, J=14.1,9.8,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.04$ (app t, $J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{~m}, 3 \mathrm{H}), 1.80(\mathrm{~m}, 1 \mathrm{H}), 1.16(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.10(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.04$ $(\mathrm{s}, 9 \mathrm{H}), 0.95(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 0.95(\mathrm{~s}, 9 \mathrm{H}), 0.14(\mathrm{~s}, 3 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) ~ \square 159.6,144.9,134.7,131.0,129.2,129.1,128.3$ (2), 126.9, 114.0, 86.7, 84.6, $78.0,76.9,74.9,66.4,65.1,54.6,40.3,39.9,38.3,37.9,35.7,32.9,26.4,26.2,18.6,18.3,17.8,15.3$, $14.1,13.8,11.6,-3.3,-3.4,-3.8,-3.9$; high resolution mass spectrum $\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 945.5843\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\left.\mathrm{C}_{57} \mathrm{H}_{86} \mathrm{O}_{6} \mathrm{Si}_{2} \mathrm{Na}: 945.5861\right]$.

N5

Trityl Protected Triene N5: To a $0{ }^{\circ} \mathrm{C}$ solution of alcohol (+)-3 (225 mg, 0.241 mmol$)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0$ mL) were added Dess-Martin periodinane ($307 \mathrm{mg}, 0.724 \mathrm{mmol}$) and NaHCO_{3} ($315 \mathrm{mg}, 4.34 \mathrm{mmol}$). The resulting solution was stirred for 2.5 h and quenched with saturated $\mathrm{NaS}_{2} \mathrm{O}_{3}$ solution and saturated NaHCO_{3} solution. The mixture was then extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x})$ and separated. The organic solution was then washed with $\mathrm{H}_{2} \mathrm{O}$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated. The resulting white foam aldehyde N6 was used without further purification:

Aldehyde [N6]: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \mathrm{C} 9.73(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{app} \mathrm{d}, \mathrm{J}=7.4 \mathrm{~Hz}$, $6 \mathrm{H}), 7.22(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}) 7.16(\mathrm{~m}, 6 \mathrm{H}), 7.06(\mathrm{app} \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 6.79(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.28$ (app $\mathrm{t}, \mathrm{J}=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{ddd}, \mathrm{J}=10.3,10.1,4.61 \mathrm{H}), 4.40(\mathrm{ABq}, \mathrm{J}=10.9, \square \square=22.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.66(\mathrm{~m}$, 2H), $3.55(\operatorname{app} t, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{dd}, \mathrm{J}=8.7,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 3.06(\operatorname{app} \mathrm{t}, \mathrm{J}=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, 2.74 (app ddq, $J=6.7,9.5,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{~m}, 1 \mathrm{H}), 2.39(\mathrm{~m}, 1 \mathrm{H}), 2.13(\mathrm{ddd}, \mathrm{J}=14.1,9.7,9.7 \mathrm{~Hz}, 1 \mathrm{H})$, 1.91 ($\mathrm{m}, 2 \mathrm{H}$), 1.74 (m, 1H), 1.17 (d, J = $6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.11$ (d, J = $6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.10(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H})$, 1.02 (s, 9H), 0.95 (s, 9H), 0.93 (d, J = $7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H})$, 0.07 (s, 6H) ; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) प202.8, 159.7, 144.9, 134.9, 130.6, 129.1, 129.0, 128.3, 128.3, $127.4,126.9,114.0,86.7,82.2,78.2,76.7,74.2,66.4,54.6,49.5,40.3,37.8,35.7,32.8,26.2,26.1,18.6$, 18.3, 17.7, 14.1, 13.9, 11.9, 11.5, -3.4, -3.5, -3.8, -3.9.

To a $-78^{\circ} \mathrm{C}$ solution of freshly distilled allyldiphenylphosphine ($104 \mu \mathrm{~L}, 0.482 \mathrm{mmol}$) in THF (1.0 mL , degassed) was added $283 \mu \mathrm{~L}$ of t-butyllithium (1.7M in pentane, 0.482 mmol) and stirred for 5 min . The solution was warmed to $0{ }^{\circ} \mathrm{C}$, stirred for 30 min and cooled to $-78^{\circ} \mathrm{C}$. The solution was treated with freshly distilled $\mathrm{Ti}(i-\mathrm{OPr}) 4(142 \mu \mathrm{~L}, 0.482 \mathrm{mmol})$ and stirred for 30 min . A precooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of aldehyde $\mathbf{N 6}(0.241 \mathrm{mmol})$ in THF (1.0 mL) was added via cannula (rinse $1 \times 1.0 \mathrm{~mL}$) and stirred for 1 h , then warmed to $0{ }^{\circ} \mathrm{C}$. lodomethane ($225 \mu \mathrm{~L}, 3.62 \mathrm{mmol}$) was added, and the solution was warmed to ambient temperature and stirred for 16 h . The solution was quenched with pH 7.0 buffer and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with saturated brine solution, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated. Flash chromatography (5\% EtOAc/hexanes) provided $\mathbf{N} \mathbf{5}(144 \mathrm{mg}, 63 \%$ from (+)-3, $10: 1$ mixture of diastereomers) as a white foam:

IR $\left(\mathrm{CHCl}_{3}\right) 2956,2855,1613 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right.$, major diastereomer) $7.60(\mathrm{~m}, 6 \mathrm{H}), 7.32$ $(\mathrm{d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~m}, 6 \mathrm{H}), 7.06(\mathrm{~m}, 3 \mathrm{H}), 6.82(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}) 6.70(\mathrm{ddd}, J=16.8,10.7,10.7 \mathrm{~Hz}$, 1H) $6.05(\mathrm{appt}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{appt}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{app} \mathrm{t}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{dd}, J$ $=16.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{ddd}, J=10.1,10.1,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{ABq}, J=10.7$, $\square \square=48.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.65(\mathrm{~m}, 2 \mathrm{H}), 3.46(\mathrm{dd}, J=8.8,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 3.06(\mathrm{~m}, 2 \mathrm{H}), 2.71(\mathrm{~m}, 1 \mathrm{H})$, $2.41(\mathrm{~m}, 1 \mathrm{H}), 1.97(\mathrm{~m}, 4 \mathrm{H}), 1.74(\mathrm{~m}, 1 \mathrm{H}), 1.20(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.16(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.11(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.09(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}), 0.98(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 9 \mathrm{H}), 0.17(\mathrm{~s}, 3 \mathrm{H}), 0.13$ (s, 6H), 0.07 (s, 3H); ${ }^{13} \mathrm{C}$ NMR (125 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$, major diastereomer) $]$ 159.5, 144.9, 134.7, 134.5, $132.6,131.4,129.4,129.2,129.0,128.3,127.8,126.9,117.5,113.9,86.7,84.6,78.2,76.9,75.1,66.4$, $54.6,40.4,40.3,38.3,35.8,35.6,32.3,26.4,26.2,18.7,18.6,18.3,17.7,15.1,14.0,11.1,-3.3,-3.4,-3.8$, -3.9; high resolution mass spectrum (ES^{+}) $\mathrm{m} / \mathrm{z} 967.6086\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\left.\mathrm{C}_{60} \mathrm{H}_{88} \mathrm{O}_{5} \mathrm{Si}_{2} \mathrm{Na}: 967.6068\right]$.

(+)-20
Triene Alcohol N7: Anhydrous $\mathrm{MeOH}(50 \quad \mathrm{~L})$ was added to a cold $\left(0{ }^{\circ} \mathrm{C}\right)$ solution of chlorocatecholborane ($0.769 \mathrm{~g}, 4.97 \mathrm{mmol}$) in 1.5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.2 \mathrm{M})$. The resulting solution was added in $48 \mu \mathrm{~L}(0.153 \mathrm{mmol})$ aliquots at 10 min intervals to a 0.07 M solution $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ of trityl ether N5 $(144 \mathrm{mg}, 0.153 \mathrm{mmol}, 10: 1 \mathrm{dr})$ at 0° until TLC (20\% EtOAc/hexanes) indicated ca. 90% reaction completion (total $=8$ equivalents), at which point the reaction was quenched via drop-wise addition of 20 mL of saturated NaHCO_{3}. The resulting mixture was stirred for 15 min , diluted with $\mathrm{Et}_{2} \mathrm{O}$, stirred an additional 30 min , and the layers were separated. The aqueous layer was extracted ($3 \times \mathrm{Et}_{2} \mathrm{O}$), and the resulting organic layers were combined, washed (water and saturated brine solution), dried (MgSO_{4}), filtered, added to SiO_{2} and concentrated. Flash chromatography (gradient elution: 5\% EtOAc/hexanes to 10% EtOAc/hexanes; 2nd column: $100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$; then $20 \% \mathrm{EtOAc} /$ hexanes) provided $\mathbf{N 7}$ ($85 \mathrm{mg}, 79 \%$, $10: 1 \mathrm{dr}$) as a white foam and starting ether N 5 (8% starting material): NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, major
diastereomer) $7.25(d, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, \mathrm{j}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.60(\mathrm{ddd}, \mathrm{J}=16.8,10.6,10.6,1 \mathrm{H})$, $6.03(\operatorname{app~t}, \mathrm{~J}=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\operatorname{app} \mathrm{t}, \mathrm{J}=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~m}, 1 \mathrm{H}), 5.20(\mathrm{~d}, \mathrm{~J}=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.19$ $(\mathrm{m}, 1 \mathrm{H}), 5.10(\mathrm{~d}, \mathrm{~J}=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{ABq}, \mathrm{J}=10.7, \square \square=52.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{ddd}, \mathrm{J}=$ $10.3,4.7,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{ddd}, \mathrm{J}=11.2,5.8,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(a p p \mathrm{t}, \mathrm{J}=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{dd}, \mathrm{J}=6.9$, $3.7 \mathrm{~Hz}, 1 \mathrm{H}$), $3.23(\mathrm{dd}, \mathrm{J}=6.8,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{app} d d q, J=6.8,7.3,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{~m}, 1 \mathrm{H}), 2.34$ (app t, J = 5.6 Hz, 1H), $1.92(\mathrm{~m}, 2 \mathrm{H}), 1.83(\mathrm{~m}, 2 \mathrm{H}), 1.60(\mathrm{~m}, 1 \mathrm{H}), 1.09(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{~d}, \mathrm{~J}=7.1$ $\mathrm{Hz}, 3 \mathrm{H}), 0.99(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~m}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 9 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.80(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.11(\mathrm{~s}$, $3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}, major diastereomer) 159.1, $134.7,134.0,132.4,131.3,129.2,129.0,128.5,117.4,113.6,84.5,81.3,76.4,74.9,65.3,55.3,40.2$, $38.4,38.2,36.8,35.5,32.1,26.3,26.2,18.7,18.6,18.4,17.5,15.8,15.0,10.8,-3.3,-3.4,-3.6,-3.8$.

Phosphonium Salt (+)-20: A solution of iodine ($138 \mathrm{mg}, 0.545 \mathrm{mmol}$) in 1.0 mL of $\mathrm{Et}_{2} \mathrm{O}$ was added drop-wise to a vigorously stirred solution of alcohol $\mathbf{N} 7(38 \mathrm{mg}, 0.054 \mathrm{mmol} ; 10: 1 \mathrm{mix}$ of cis/trans diene isomers), $\mathrm{PPh}_{3}(142 \mathrm{mg}, 0.54 \mathrm{mmol})$ and imidazole ($44 \mathrm{mg}, 0.648 \mathrm{mmol}$) in benzene/ether (1:1, 1.4 mL) at $0^{\circ} \mathrm{C}$. The resultant canary yellow suspension was stirred 30 min at $0^{\circ} \mathrm{C}$ and poured into $1: 1$ water/hexanes. The layers were separated, and the aqueous layer was extracted with hexanes. The combined organic layers were washed with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(2 x)$, water and brine. The clear, colorless organic layer was dried over MgSO_{4}, filtered and concentrated. The resulting white slurry was loaded onto a plug of SiO_{2} with a minimal amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and rapidly eluted off the column (0.05% $E t_{3} \mathrm{~N} / 2 \% \mathrm{Et} 2 \mathrm{O} /$ hexanes) to afford iodide N 8 as colorless oil (10:1 mixture of diene isomers; contaminated with ca. $20 \% \mathrm{PPh}_{3}$) which was taken on to the next step without further purification. ${ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, $\mathrm{C}_{6} \mathrm{D}_{6}$, major diastereomer) $\square 7.30(\mathrm{dd}, J=8.4,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{dd}, J=8.5,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.72(\mathrm{ddd}, J=$ $16.8,10.5,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\operatorname{app} t, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\operatorname{app} t, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{~m}, 2 \mathrm{H}), 5.18$ $(\mathrm{d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{ABq}, J=10.7, \square \square=51 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{~m}, 1 \mathrm{H}), 3.46$ $(\mathrm{m}, 1 \mathrm{H}), 3.35(\mathrm{~m}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.10(\mathrm{~m}, 1 \mathrm{H}), 3.05(\mathrm{ddd}, J=9.5,9.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{~m}, 1 \mathrm{H}), 2.13$ (m, 2H), $2.00(\mathrm{ddd}, J=12.0,12.0,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{~m}, 2 \mathrm{H}), 1.77(\mathrm{~m}, 1 \mathrm{H}), 1.22(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.11$
$(\mathrm{d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}), 1.03(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H}), 0.85(\mathrm{~d}, J$ $=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.17(\mathrm{~s}, 3 \mathrm{H}), 0.16(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H})$.

To an intimate mixture of crude iodide N8 (0.054 mmol) and triphenylphosphine ($28 \mathrm{mg}, 0.108$ mmol) was added diisopropylethylamine $(100 \mu \mathrm{~L})$. The resulting mixture was heated $\left(95^{\circ} \mathrm{C}\right)$ for 8 h , cooled and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Flash chromatography (gradient elution, $\mathrm{CH}_{2} \mathrm{Cl}_{2} \mathrm{\square} 20 \% \mathrm{MeCN} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) furnished (+)-20 as a white solid $[55 \mathrm{mg}, 95 \%$ yield from alcohol N 7$]$: $[\square]_{\mathrm{D}}^{23}+18\left(c 1.0, \mathrm{CHCl}_{3}\right)$; IR (CHCl_{3}) 2928, 1513, 1438, 1249, 1070, $837 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, major diastereomer) $\square 7.75(\mathrm{~m}, 15 \mathrm{H}), 7.23(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.53(\mathrm{ddd}, J=16.8,10.6,10.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.90(\operatorname{app~t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\operatorname{app} t, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\operatorname{app} t, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{dd}, J=$ $9.8,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{ABq}, J=10.5, \square \square=56 \mathrm{~Hz}$, 2 H), $3.75(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~m}, 2 \mathrm{H}), 3.43(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{~m}, 2 \mathrm{H}), 2.94(\mathrm{app} d d q, J=6.7,6.8,6.7 \mathrm{~Hz}, 1 \mathrm{H}) 2.49$ $(\mathrm{m}, 1 \mathrm{H}), 2.01(\mathrm{~m}, 1 \mathrm{H}), 1.80(\mathrm{~m}, 2 \mathrm{H}), 1.72(\mathrm{~m}, 1 \mathrm{H}), 1.55(\mathrm{~m}, 1 \mathrm{H}), 1.07(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=6.9$ $\mathrm{Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.82(\mathrm{~s}, 9 \mathrm{H}), 0.73(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.69(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}),-0.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}, major diastereomer) $] 159.1,135.3,135.2,134.5,134.0,13.7,133.6,132.2,131.2,130.8,130.7,129.2,129.1$, 129.0, 128.2, 118.8, 118.1, 117.6, 113.8, 84.5, 79.6, 79.5, 76.4, 75.1, 40.0, 38.2, 35.8, 35.4.34.2, 34.1, $31.7,26.3,26.1,26.0,25.6,18.8,18.6,18.3,16.8,15.5,10.9,-3.2,-3.3,-3.4,-3.8$; high resolution mass spectrum (ES $\left.{ }^{+}\right) m / z 947.5959\left[(\mathrm{M}-\mathrm{I})^{+}\right.$; calcd for $\mathrm{C}_{59} \mathrm{H}_{88} \mathrm{O}_{4} \mathrm{PSi}_{2}$: 947.5950].

(+)-N9
Tetraene (+)-N9: Phosphonium salt (+)-20 ($80 \mathrm{mg}, 0.074 \mathrm{mmol} ; 10: 1$ ratio of diene isomers), was azeotropically dried with benzene ($3 \times 1.5 \mathrm{~mL}$) using a double manifold and further dried by heating to 50
${ }^{\circ} \mathrm{C}$ under vacuum (0.2 torr) for 12 h . The salt was back-filled with argon, dissolved in $540 \mu \mathrm{~L}$ of freshly distilled THF, sparged with argon for 15 min , and cooled to $-20^{\circ} \mathrm{C}$. The resultant solution was treated with sodium bis(trimethylsilyl)amide (1.0 M in $\mathrm{THF}, 70 \mu \mathrm{~L}$), stirred 15 min , warmed to $0^{\circ} \mathrm{C}$, stirred 30 min , and re-cooled to $-24^{\circ} \mathrm{C}$. To this orange/red solution was transferred via cannula a degassed solution of aldehyde (-)-C ${ }^{3}$ (29 mg, 0.066 mmol) in THF ($0.5 \mathrm{~mL}+1 \times 0.2 \mathrm{~mL}$ rinse) over 7 min . The orange solution was allowed to slowly warm to $-8{ }^{\circ} \mathrm{C}$ over 3.25 h . The resulting light yellow solution was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and diluted $\left(\mathrm{Et}_{2} \mathrm{O} / \mathrm{H}_{2} \mathrm{O}\right)$. The layers were separated, and the aqueous layer was extracted (3 $\times \mathrm{Et}_{2} \mathrm{O}$). The combined organic layers were dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), concentrated, and chromatographed (gradient elution: 2\% EtOAc/hexanes to 50\% EtOAc/hexanes; then 40\% $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford cis isomer (+)-N9 (27 mg, 36\%, 10:1 ratio of diene isomers) and phosphonium salt (+)-20 (28 mg, 35\%; 10:1 ratio of diene isomers); [$\square]_{\mathrm{D}}^{23}+31\left(c 1.0, \mathrm{CHCl}_{3}\right) ; \mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 2928,2856$, 1738, 1462, 1250, 1044, 836, $775 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(500} \mathrm{MHz}$,CDCl 3 , major diastereomer) $7.24(\mathrm{~d}, \mathrm{~J}=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.58(\mathrm{ddd}, J=16.8,10.6,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{app} \mathrm{t}, J=11.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.56(\mathrm{appt}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{dd}, J=11.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~m}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.19(\mathrm{dd}, J=16.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\operatorname{app} \mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{app} \mathrm{t}, \mathrm{J}=$ $10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{ABq}, J=10.6, \square \square=45 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.62(\operatorname{app} \mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\operatorname{app} \mathrm{t}$, $J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\operatorname{appt}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{dd}, J=7.1,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{app} \mathrm{ddq}, J=6.8,7.1$, $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{~m}, 2 \mathrm{H}), 2.52(\mathrm{~m}, 1 \mathrm{H}), 1.83(\mathrm{~m}, 6 \mathrm{H}), 1.58(\mathrm{~m}, 1 \mathrm{H}), 1.57(\mathrm{dd}, \mathrm{J}=11.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.21$ (d, $J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.79(\mathrm{~d}, J=6.7$ $\mathrm{Hz}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}, major diastereomer) [173.2, 159.1, 135.2, 134.5, 133.6, 132.4, 132.3, 131.2, $129.1,127.1,117.5,113.7,84.5,80.1,77.0,76.5,75.1,75.0,64.6,55.3,44.1,42.9,40.2,38.3,37.6$, $35.5,35.0,34.2,31.9,26.3,26.2,26.0,25.7,18.7,18.6,18.4,18.1,18.0,17.1,16.4,16.2,15.2,14.1$,

[^2]$10.7,-3.1,-3.3,-3.4,-4.2,-4.3,-4.5,-4.8(2)$; high resolution mass spectrum (ES ${ }^{+}$) $m / z 1113.7826$ [(MH) ${ }^{+}$; calcd for $\mathrm{C}_{63} \mathrm{H}_{117} \mathrm{O}_{8} \mathrm{Si}_{4} \mathrm{Na}: 1113.7916$].

(+)-N10
Alcohol (+)-N10: At $0{ }^{\circ} \mathrm{C}$, a solution of PMB ether (+)-N9 (24 mg, $0.0211 \mathrm{mmol}, 10: 1$ mixture of cis/trans diene isomers) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was treated with $\mathrm{H}_{2} \mathrm{O}(100 \mu \mathrm{~L})$ and DDQ ($72 \mathrm{mg}, 0.0313 \mathrm{mmol}$). The mixture was stirred for 10 min at $0^{\circ} \mathrm{C}$, warmed to rt and stirred an additional 5 min . The mixture was quenched with saturated NaHCO_{3}, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and washed with $\mathrm{H}_{2} \mathrm{O}$ and saturated brine solution. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. Flash chromatography (gradient elution; 5\% EtOAc to 10\% EtOAc/hexanes) furnished (+)-N10 (21 mg, 95\%); [[]$\left._{D}^{23}+44\left(c 1.0 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right]$ IR (film, NaCl$) 2928,2856,2356,1731,1462,1253$, 1047, $836,775 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 6.54$ (ddd, $\left.J=16.8,10.6,10.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.06(\mathrm{app} \mathrm{t}, \mathrm{J}$ $=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~m}, 6 \mathrm{H}), 4.72(\operatorname{app} \mathrm{t}, \mathrm{J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\operatorname{app} \mathrm{t}, \mathrm{J}=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~m}, 2 \mathrm{H})$, $3.24(\mathrm{~m}, 2 \mathrm{H}), 2.71(\mathrm{~m}, 1 \mathrm{H}), 2.52(\mathrm{~m} 3 \mathrm{H}), 1.91(\mathrm{~m}, 2 \mathrm{H}), 1.69(\mathrm{~m}, 4 \mathrm{H}), 1.51(\mathrm{ddd}, \mathrm{J}=13.3,11.1,1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 1.47(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.13(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~m}, 12 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 0.83(\mathrm{~d}$, obscured, 3H), $0.82(\mathrm{~s}, 9 \mathrm{H}), 0.81(\mathrm{~s}, 9 \mathrm{H}), 0.78(\mathrm{~s}, 9 \mathrm{H}), 0.73(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.076(\mathrm{~s}, 3 \mathrm{H}), 0.070(\mathrm{~s}, 3 \mathrm{H})$, $0.066(\mathrm{~s}, 3 \mathrm{H}), 0.058(\mathrm{~s}, 3 \mathrm{H}), 0.053(\mathrm{~s}, 3 \mathrm{H}), 0.043(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl 3$) \square$ $173.2,135.4,134.8,133.6,132.4,132.1,131.1,127.3,118.4,80.1,78.3,77.1,76.1,74.9,64.7,44.1$, $42.9,38.0,37.5,37.4,36.4,35.1,34.2,32.4,26.3(2), 25.9,25.7,18.5,18.4,18.1,18.0,17.3,17.1,16.4$, $16.0,14.1,13.8,9.4,-3.1,-3.3,-3.6,-4.2,-4.3,-4.5,-4.8(2)$; high resolution mass spectrum $\left(E S^{+}\right) \mathrm{m} / \mathrm{z}$ $1015.7070\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\left.\mathrm{C}_{55} \mathrm{H}_{108} \mathrm{O}_{7} \mathrm{Si}_{4} \mathrm{Na}: 1015.7090\right]$.

(+)-N11
Carbamate (+)-N11. A solution of alcohol (+)-N10 (48 mg, 0.0479 mmol$)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.6 \mathrm{~mL})$ was treated with a solution ($1 \mathrm{M}, \mathrm{PhH}$) $\mathrm{Cl}_{3} \mathrm{CCON}=\mathrm{C}=\mathrm{O}(144 \square \mathrm{~L}, 0.144 \mathrm{mmol}$) at room temperature for 30 min . Solution was loaded directly onto neutral $\mathrm{Al}_{2} \mathrm{O}_{3}$. After 4 h , the material was flushed from the $\mathrm{Al}_{2} \mathrm{O}_{3}$ (EtOAc), concentrated, and purified by flash chromatography (10\% ethyl acetate/hexanes) providing 50 $\mathrm{mg}(+)-\mathrm{N} 11$ (99\%); $[\square]_{\mathrm{D}}^{23}+31\left(c 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (film, NaCl$) 3362,2929,2856,1732,1595,1462,1360$, 1253, 1098, 836, $775 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 6.59(\mathrm{ddd}, \mathrm{J}=16.8,10.6,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.02$ (app t, $J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\operatorname{app} \mathrm{t}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~m}, 2 \mathrm{H}), 5.20(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~m}$, $1 \mathrm{H}), 5.12(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\operatorname{appt}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\operatorname{appt}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\operatorname{app} \mathrm{t}, J=$ $10.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.64(\mathrm{app} t, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{app} t, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{app} t, J=5.1$ Hz, 1H), 2.98 (app ddq, $J=6.7,10.0,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{~m}, 2 \mathrm{H}), 2.54(\operatorname{app} \mathrm{ddq}, J=6.6,8.2,6.6 \mathrm{~Hz}, 1 \mathrm{H})$, $1.90(\mathrm{~m}, 3 \mathrm{H}), 1.80(\mathrm{ddd}, J=9.6,6.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.73(\mathrm{~m}, 1 \mathrm{H}), 1.67(\mathrm{~m}, 1 \mathrm{H}), 1.57(\mathrm{~m}, 1 \mathrm{H}), 1.24(\mathrm{~m}, 1 \mathrm{H})$, $1.22(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}), 0.93(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.92$ $(\mathrm{s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.80(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.10(\mathrm{~s}$, $3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \square 173.3,156.9,135.2,133.6,133.5,132.5,132.1,129.9,127.1,117.9,80.0,78.8,77.0,76.3$, $74.9,64.7,44.2,42.9,38.1,38.0,37.6,35.0,34.5,34.2,32.0,26.3,26.2,25.9,25.7,18.6,18.4,18.1$, 18.0, 17.6, 17.2, 16.4, 16.1, 14.3, 14.1, 10.3, $-3.1,-3.5,-3.6,-4.2,-4.3,-4.5,-4.8(2)$; high resolution mass spectrum (ES ${ }^{+}$) $m / z 1058.7114\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\mathrm{C}_{56} \mathrm{H}_{109} \mathrm{NO}_{8} \mathrm{Si}_{4} \mathrm{Na}$: 1058.7128].

(+)-14-normethyIdiscodermolide

(+)-14-normethyldiscodermolide: Carbamate (+)-N11 (11 mg, 0.0105 mmol) was dissolved in MeOH (3.7 mL) and stirred for 15 min at room temperature. Aqueous hydrochloric acid ($3 \mathrm{~N}, 2.2 \mathrm{~mL}$) was added in $100 \mu \mathrm{~L}$ portions over 4 hours at a rate which minimized precipitation (ca. 10 to 15 min intervals). An additional $500 \mu \mathrm{~L}$ of 3 N aq HCl was added over 1 h at 15 min intervals, and the sides of the flask/stir bar were rinsed with 2 mL of MeOH . After 12 h the solution was quenched with NaHCO_{3} (s), diluted with 30 $m L$ of water and extracted $3 x$ with EtOAc. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated. Flash chromatography $\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ using washed $\mathrm{SiO} 2\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ then $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) furnished a white amorphous solid (+)-14-normethyldiscodermolide (5.5 mg , 90% yield) $[\square]]_{D}^{23}+19\left(c 1.0, C D_{3} C N\right) ;$ IR (film, NaCl$) 3390,2926,1704,1391,1030 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \square 6.67(\mathrm{dddd}, J=16.8,11.1,10.1,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{app} \mathrm{t}, \mathrm{J}=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\operatorname{app} \mathrm{t}, J$ $=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\operatorname{appt}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{dd}, J=11.2,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~m}, 3 \mathrm{H}), 5.13(\mathrm{~d}, J=$ $10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.69(\mathrm{dd}, J=7.1,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{dddd}, J=12.9,5.2,5.1,2.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.46(\mathrm{ddd}, J=10.4,10.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{dd}, J=8.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{ddd}, J$ $=6.7,6.7,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{ddd}, J=6.7,5.1,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{app} d d q, J=6.7,8.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.81$ (d, $J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{~m}, 1 \mathrm{H}), 2.63(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{~m}, 1 \mathrm{H}), 2.56(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.42$ (app ddq, $J=9.0,6.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{~m}, 1 \mathrm{H}), 1.86(\mathrm{~m}, 1 \mathrm{H}), 1.79(\mathrm{ddd}, J=4.2,6.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.72$ (m, 2H), $1.61(\mathrm{~m}, 1 \mathrm{H}), 1.56(\mathrm{ddd}, J=2.5,10.7,14.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.20(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $3 \mathrm{H}), 0.99(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$, $0.83(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CD $\left.{ }_{3} \mathrm{CN}\right)$ $]$ 174.5, 158.3, 135.0, 134.5, 134.0, 133.6, 133.4, $130.4,128.3,118.5,79.3,79.1,77.9,75.5,73.1,63.8,44.0,42.3,38.5,36.8,36.6,36.3,36.2,35.0,32.1$,
19.1, 18.2, 16.6, 15.7, 15.6, 13.0, 9.4; high resolution mass spectrum (ES $\left.{ }^{+}\right) \mathrm{m} / z 602.3651\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\left.\mathrm{C}_{32} \mathrm{H}_{53} \mathrm{NO}_{8} \mathrm{Na}: 602.3669\right]$.

[^0]: 1 Structure 19, Smith, A. B., III; Beauchamp, T. J.; LaMarche, M. J.; Kaufman, M. D.; Qiu, Y.; Arimoto, H.; Jones, D. R.; Kobayashi, K. J. Am. Chem. Soc. 2000, 122 (36), 8654-8664.

[^1]: 2 See structure A, Smith, A. B., III; Beauchamp, T. J.; LaMarche, M. J.; Kaufman, M. D.; Qiu, Y.; Arimoto, H.; Jones, D. R.; Kobayashi, K. J. Am. Chem. Soc. 2000, 122 (36), 8654-8664.

[^2]: ${ }^{3}$ See structure C, Smith, A. B., III; Beauchamp, T. J.; LaMarche, M. J.; Kaufman, M. D.; Qiu, Y.; Arimoto, H.; Jones, D. R.; Kobayashi, K. J. Am. Chem. Soc. 2000, 122 (36), 8654-8664.

