Supporting Information

Analogues of Key Precursors of Aspartyl Protease Inhibitors: Synthesis of Trifluoromethyl Amino Epoxides

Table of Contents

S2: 1. Addition of vinyl Grignard reagent on imines 6a-c : General method.
N-benzyl- N-[1-(trifluoromethyl)prop-2-enyl]amine (5a)
S3: $\quad N$-(4-methoxyphenyl)-N-[1-(trifluoromethyl)prop-2-enyl]amine (5b)
N-[(1R)-2-methoxy-1-phenylethyl]- N-[(1R)-1-(trifluoromethyl)prop-2-enyl]amine (5c)
S4: 2. Acylation of allyl amines 5 a-c : General method.
N-benzyl- N-[1-(trifluoromethyl)prop-2-enyl]acetamide (7a)
N-(4-Methoxy-phenyl)- N-(1-trifluoromethyl-allyl)-acetamide (7b)
S5: $\quad N-[(1 R)$-2-methoxy-1-phenylethyl]- $N-[(1 R)-1$-(trifluoromethyl)prop-2-enyl]acetamide
3. Preparation of bromhydrins 8a-c : General method.

S6: $\quad N$-Benzyl- N-(3-bromo-2-hydroxy-1-trifluoromethyl-propyl)- acetamide (8a)
N-(3-Bromo-2-hydroxy-1-trifluoromethyl-propyl)- N -(4-methoxy-phenyl)-acetamide

S7: $\quad N-[(1 R, 2 R)$-3-bromo-2-hydroxy-1-(trifluoromethyl)propyl]- N-[(1R)-2-methoxy-1phenylethyl]acetamide (8c)

Intermediate \mathbf{B}
3. Synthesis of epoxides 3a-c: General method

S8: $\quad N$-Benzyl- N-(2,2,2-trifluoro-1-oxiranyl-ethyl)-amine (3a)
N -(4-Methoxy-phenyl)- N -(2,2,2-trifluoro-1-oxiranyl-ethyl)-acetamide (3b)
N-[(1R)-2-methoxy-1-phenylethyl]- N-\{(1R)-2,2,2-trifluoro-1-[(2R)-oxiran-2-
yl]ethyl\}amine (3c)
S9: $\quad(2 R, 3 S)$-1-[(1R)-2-methoxy-1-phenylethyl]-2-(trifluoromethyl)azetidin-3-ol (9c)
S10: Figure 1. ORTEP view of $\mathbf{9 c}$

All reactions were performed in an oven-dried apparatus under an inert atmosphere of argon. ${ }^{19} \mathrm{~F}$ NMR, ${ }^{13} \mathrm{C}$ NMR, ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a 200 MHz or 400 MHz multinuclear spectrometer, ${ }^{19} \mathrm{~F}$ NMR spectra are referenced to external $\mathrm{CFCl}_{3},{ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra to TMS. In all NMR measurements CDCl_{3} was used as a solvent. Elemental analyses were performed by the Service of Microanalyses at the "Faculty of Pharmacy", ChâtenayMalabry.
The diastereoselectivities were determined by ${ }^{19}$ F NMR and GC.

1. Addition of vinyl Grignard reagent on imines 6a-c : General method.

To imine $6 \mathbf{a}$ or $\mathbf{6 b}$ or $\mathbf{6 c}(26.7 \mathrm{mmol})$ in anhydrous $\mathrm{Et}_{2} \mathrm{O}(60 \mathrm{~mL})$ was added the vinyl magnesium bromide ($1 \mathrm{M} / \mathrm{THF}$) (29.4 mmol) at $0^{\circ} \mathrm{C}$. After 2 h of stirring, the reaction was hydrolyzed with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$, then extracted with $\mathrm{Et}_{2} \mathrm{O}$ $(50 \mathrm{~mL} \times 3)$. The combined organic layers were washed with a saturated solution of $\mathrm{NaCl}(30$ mL), dried on MgSO_{4}, filtered, and solvents were evaporated. The residue was subjected to flash chromatography on silica gel (petroleum ether/ $\mathrm{Et}_{2} \mathrm{O}, 8 / 2$) affording the corresponding allyl amines 5a-c.

N-benzyl- N-[1-(trifluoromethyl)prop-2-enyl]amine (5a).

From imine $\mathbf{6 a}(5 \mathrm{~g}, 26.7 \mathrm{mmol})$ and vinyl magnesium bromide ($1 \mathrm{M} / \mathrm{THF}$) (29.4 mmol), 5a was obtained $(5.34 \mathrm{~g}, 93 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 7.33(\mathrm{~m}, 5 \mathrm{H})$, $5.75(\mathrm{ddd}, J=17.5,10.6,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.98\left(\mathrm{~d}, J_{\mathrm{A}-\mathrm{B}}=13.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.85\left(\mathrm{~d}, J_{\mathrm{A}-\mathrm{B}}=13.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.62$ (quint., $\left.J=7.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.63$ $(\mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 139.2,130.7,128.5,128.1,127.6\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=241.6 \mathrm{~Hz}\right)$, 127.3, 122.7, $61.7\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=28.6 \mathrm{~Hz}\right), 50.7 ;{ }^{19} \mathrm{~F} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 188 \mathrm{MHz}\right) \delta-75.3(\mathrm{~d}, J=6.9$ Hz). Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N}: \mathrm{C}, 61.39$; $\mathrm{H}, 5.58$; N, 6.50. Found: C, 61.41; H, 5.50; N, 6.53.

N-(4-methoxyphenyl)- N-[1-(trifluoromethyl)prop-2-enyl]amine (5b).

From imine 6b ($7 \mathrm{~g}, 30.0 \mathrm{mmol}$) and vinyl magnesium bromide ($1 \mathrm{M} / \mathrm{THF}$) ($39 \mathrm{~mL}, 39$ $\mathbf{m m o l}), \mathbf{5 b}$ was obtained $(5.34 \mathrm{~g}, 73 \%)$ as a yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 6.80$ $(\mathrm{m}, 2 \mathrm{H}), 6.66(\mathrm{~m}, 2 \mathrm{H}), 5.89(\mathrm{ddd}, J=17.6,10.3,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.43$ $(\mathrm{d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta$ $153.2,139.8,130.1,125.3\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=282.9 \mathrm{~Hz}\right), 120.4,115.6,114.9,59.5\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=29.6 \mathrm{~Hz}\right)$, 55.4; ${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 188 \mathrm{MHz}\right) \delta-75.8(\mathrm{~d}, J=7.2 \mathrm{~Hz})$; Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{NO}: \mathrm{C}$, 57.14; H, 5.23; N, 6.06. Found: C, 56.98; H, 5.16; N, 5.97.
N-[(1R)-2-methoxy-1-phenylethyl]- N-[(1R)-1-(trifluoromethyl)prop-2-enyl]amine (5c).

From imine $\mathbf{6 c}(1 \mathrm{~g}, 4.33 \mathrm{mmol})$ and vinyl magnesium bromide ($1 \mathrm{M} / \mathrm{THF}$) ($5.63 \mathrm{~mL}, 5.63$ $\mathrm{mmol}), 5 \mathrm{c}$ was obtained $(0.90 \mathrm{~g}, 86 \%)$ as a yellow oil; $[\alpha]_{\mathrm{D}}{ }^{20}-51(\mathrm{c}=1, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.40(\mathrm{~m}, 5 \mathrm{H}), 5.72(\mathrm{ddd}, J=17.1,10.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{~d}, J=10.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{dd}, J=8.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 3.44(\mathrm{~m}, 2 \mathrm{H})$, 3.35 (quint., $J=8 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 139.1,130.5,128.6$, $127.9(2 \mathrm{C}), 125.0\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=280.0 \mathrm{~Hz}\right), 121.0,77.5,59.7\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=29.2 \mathrm{~Hz}\right), 58.9,58.7,{ }^{19} \mathrm{~F}$ NMR ($\mathrm{CDCl}_{3}, 188 \mathrm{MHz}$): $\delta-75.8(\mathrm{~d}, J=7.6 \mathrm{~Hz}) ;$ Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{NO}: \mathrm{C}, 60.22 ; \mathrm{H}$, 6.22 ; N, 5.40. Found : C, 60.14 ; H, 6.18 ; N, 5.31.

2. Acylation of allyl amines 5 a-c : General method.

The allyl amine (9.73 mmol) was dissolved in acetic anhydride (10 mL). The solution was stirred at reflux. When the reaction was complete as indicated in GC, the mixture was then concentrated. The resulting oil was purified on silica gel (petroleum ether/ $\mathrm{Et}_{2} \mathrm{O}, 8 / 2$) to give 7a-c.

N-benzyl- N-[1-(trifluoromethyl)prop-2-enyl]acetamide (7a).

From 5a ($2.10 \mathrm{~g}, 9.73 \mathrm{mmol}$) and acetic anhydride $(10 \mathrm{~mL})(2 \mathrm{~h}), 7 \mathrm{a}$ was obtained $(2.13 \mathrm{~g}$, 85%) as a yellow oil; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 7.11(\mathrm{~m}, 5 \mathrm{H}), 5.85$ (quint., $J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.65(\mathrm{ddd}, J=16.5,10.2,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=10.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 172.4,137.0,128.6,127.2$, $126.8,125.6,124.6\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=282.0 \mathrm{~Hz}\right), 124.1,56.2\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.5 \mathrm{~Hz}\right), 48.7,21.7 ;{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 188 \mathrm{MHz}\right) \delta-72.0(\mathrm{~d}, J=8.2 \mathrm{~Hz})$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{NO}: \mathrm{C}, 60.70 ; \mathrm{H}, 5.49 ; \mathrm{N}$, 5.44. Found: C, 60.57; H, 5.50; N, 5.32.

N-(4-Methoxy-phenyl)- N-(1-trifluoromethyl-allyl)-acetamide (7b).

From 5b ($7.6 \mathrm{~g}, 32.9 \mathrm{mmol}$) and acetic anhydride (38 mL) $(2 \mathrm{~h})$, 7b was obtained as a colorless oil (65%); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.20(\mathrm{bm}, 2 \mathrm{H}), 6.90(\mathrm{bm}, 2 \mathrm{H}), 5.97$ (quint., $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{~m}, 2 \mathrm{H}), 5.45(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 171.5,159.8,131.5,131.2,127.8,124.4\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=283.1 \mathrm{~Hz}\right), 124.1$,
114.5, $57.6\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=31.1 \mathrm{~Hz}\right), 55.4,22.5 ;{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 188 \mathrm{MHz}\right) \delta-71.5(\mathrm{~d}, J=8.3$ Hz); Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{NO}_{2}$: C, 57.14; H, 5.16; N, 5.13. Found: C, 57.12; H, 5.29; N, 5.01.

N-[(1R)-2-methoxy-1-phenylethyl]- N-[(1R)-1-(trifluoromethyl)prop-2enyl]acetamide (7c).

From $5 \mathbf{5 c}(188 \mathrm{mg}, 0.73 \mathrm{mmol})$ and acetic anhydride (2 mL) (4 days), 7c was obtained (114 $\mathrm{mg}, 52 \%)$ as white crystals. Addition of a Lewis acid $\left(\mathrm{InCl}_{3}\right)$ strongly increased reaction rate (2h); mp. $66^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right) ;[\alpha]_{\mathrm{D}}{ }^{20}+34(\mathrm{c}=1, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ([D]DMSO, $\left.400 \mathrm{MHz}, 117^{\circ} \mathrm{C}\right) \delta$ $7.3(\mathrm{~m}, 5 \mathrm{H}), 6.04(\mathrm{ddd}, J=17.0,10.1,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.2(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=17.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.95(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.88$ (quint., $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{dd}, J=10.0,6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.85(\mathrm{dd}, J=10.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ([D]DMSO, 100 $\left.\mathrm{MHz}, 117^{\circ} \mathrm{C}\right) \delta 172.0,139.0,128.5,128.0,124.5\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=283.0 \mathrm{~Hz}\right), 122.8,74.3,60.5$, $60.0,58.5,23.5 ;{ }^{19} \mathrm{~F}$ NMR ([D]DMSO, $376 \mathrm{MHz}, 117^{\circ} \mathrm{C}$) $\delta-67.7$ (d, $J=8.4 \mathrm{~Hz}$); Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{NO}_{2}$: C, $59.79 ; \mathrm{H}, 6.02 ; \mathrm{N}, 4.65$. Found : C, $59.85 ; \mathrm{H}, 6.06 ; \mathrm{N}, 4.61$.

3. Preparation of bromhydrins 8a-c : General method.

To a solution of $\mathbf{5 a}$ or $\mathbf{5 b}$ or $\mathbf{5 c}(1.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ was added bromine $\left(1 \mathrm{M} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)(2.1 \mathrm{~mL}, 2.1 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After 2 h of stirring, the solution was successively washed with aqueous solution of $\mathrm{NaHSO}_{3}(20 \mathrm{~mL}), \mathrm{NaHCO}_{3}(20 \mathrm{~mL})$, and $\mathrm{NaCl}(20 \mathrm{~mL})$. The organic phase was dried over MgSO_{4}, and filtered. The solvent was removed and the residue was purified by flash chromatography on silica gel with petroleum ether/ether (9/1) as eluent to afford $\mathbf{8 a} \mathbf{- c}$. In the case of the $\mathbf{5 c}$ the oxazolinium intermediate \mathbf{B} has been characterized by NMR before hydrolysis.

N-Benzyl- N-(3-bromo-2-hydroxy-1-trifluoromethyl-propyl)- acetamide (8a).

From 7a ($274 \mathrm{mg}, 1.1 \mathrm{mmol}$) and bromine ($2.1 \mathrm{~mL}, 2.1 \mathrm{mmol}$), 8a was obtained (0.37 g , 98%) as a yellow oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 7.24(\mathrm{~m}, 5 \mathrm{H}), 5.35(\mathrm{ddd}, J=8.6,5.4,3.9$, $\mathrm{Hz}, 1 \mathrm{H}), 4.15\left(\mathrm{~d}, J_{A-B}=12.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.87\left(\mathrm{~d}, J_{A-B}=12.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.59(\mathrm{~m}, 2 \mathrm{H}), 3.44(\mathrm{~m}$, $1 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 169.0,139.0,128.5,127.5,119.0\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=\right.$ $296.4 \mathrm{~Hz}), 70.4,57.6\left(\mathrm{q},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=26.8 \mathrm{~Hz}\right), 52.0,28.5,20.5 ;{ }^{19} \mathrm{~F} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 188 \mathrm{MHz}\right): \delta-$ 71.5 (d, $J=7.2 \mathrm{~Hz}$). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{BrF}_{3} \mathrm{NO}_{2}: \mathrm{C}, 44.08 ; \mathrm{H}, 4.26$; N, 3.95. Found: C, 44.34; H, 4.03; N, 3.73.

N-(3-Bromo-2-hydroxy-1-trifluoromethyl-propyl)-N-(4-methoxy-phenyl)acetamide (8b).

From 7b ($450 \mathrm{mg}, 1.6 \mathrm{mmol}$) and bromine $(0.16 \mathrm{~mL}, 3.1 \mathrm{mmol}), \mathbf{8 b}$ was obtained $(0.58 \mathrm{~g}$, 95%) as a yellow oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 6.77(\mathrm{~m}, 4 \mathrm{H}), 5.42$ (ddd, $J=8.4,5.4,1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.41(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{~m}, 2 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta$ $168.9,153.5,139.5,125,0\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=286.2 \mathrm{~Hz}\right), 115.6,114.9,70.1,56.2\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=29.0 \mathrm{~Hz}\right)$, 55.5, 27.9, 20.5; ${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 188 \mathrm{MHz}\right) \delta-73.7(\mathrm{~d}, J=7.1 \mathrm{~Hz})$; Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{BrF}_{3} \mathrm{NO}_{3}$: C, 42.18; H, 4.08; N, 3.78. Found: C, 41.84; H, 4.03; N, 3.53.

N-[(1R,2R)-3-bromo-2-hydroxy-1-(trifluoromethyl)propyl]-N-[(1R)-2-methoxy-1phenylethyl]acetamide (8c).

From 7c ($156 \mathrm{mg}, 0.5 \mathrm{mmol}$) and bromine ($0.05 \mathrm{~mL}, 0.9 \mathrm{mmol}$), $\mathbf{8 c}(0.16 \mathrm{~g}, 81 \%)$ was obtained as a yellow oil: $[\alpha]_{\mathrm{D}}{ }^{20}-57(\mathrm{c}=1, \mathrm{MeOH}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 7.36(\mathrm{~m}$, 5 H), 5.39 (ddd, $J=8.2,5.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{dd}, J=7.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~m}, 1 \mathrm{H}), 3.69$ $(\mathrm{m}, 1 \mathrm{H}), 3.54(\mathrm{~m}, 1 \mathrm{H}), 3.45(\mathrm{~m}, 2 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$ $\delta 169.3,139.5,128.4,128.0,127.8,125.4\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=281.5 \mathrm{~Hz}\right), 77.5,70.7,61.2,58.8,56.5(\mathrm{q}$, $\left.{ }^{2} J_{\mathrm{C}-\mathrm{F}}=27.9 \mathrm{~Hz}\right), 29.2,20.6 ;{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 188 \mathrm{MHz}\right): \delta-73.2(\mathrm{~d}, J=7.6 \mathrm{~Hz})$; Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{BrF}_{3} \mathrm{NO}_{3}$: C, $45.24 ; \mathrm{H}, 4.81$; N, 3.52. Found : C, 45.37 ; H, 4.94 ; N, 3.50.

Intermediate B :

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.56(\mathrm{~m}, 3 \mathrm{H}), 7.47(\mathrm{~m}, 2 \mathrm{H}), 5.80(\mathrm{td}, J=4.6,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.74$ (dd, $J=8.6,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{qd}, J=5.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{dd}, J=10.7,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.26$ (dd, $J=10.7,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{dd}, J=12.7,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{dd}, J=12.6,2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.57(\mathrm{~s}, 3 \mathrm{H}), 2.80(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 183.0,131.1,130.2,128.6,128.5$, $120.0\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=270.0 \mathrm{~Hz}\right), 83.5,70.0,65.5\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=34.0 \mathrm{~Hz}\right), 64.5,60.0,31.0,17.0 ;{ }^{19} \mathrm{~F}$ NMR ($\left.\mathrm{CDCl}_{3}, 188 \mathrm{MHz}\right): \delta-71.8(\mathrm{~d}, J=5.8 \mathrm{~Hz})$.

3. Synthesis of epoxides 3a-c: General method.

To a solution of $\mathbf{8 a}$ or $\mathbf{8 b}$ or $\mathbf{8 c}(1.64 \mathrm{mmol})$ in dry THF (10 mL) was added t-BuOK (369 mg , 3.30 mmol) at $0^{\circ} \mathrm{C}$. After 1 h stirring at room temperature, the solution was hydrolyzed with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and filtered. The solvents were removed and the residue was purified by flash chromatography on silica gel with petroleum ether $/ \mathrm{Et}_{2} \mathrm{O}$ (8/2) as eluent to afford epoxides 3a-c.

N-Benzyl- N-(2,2,2-trifluoro-1-oxiranyl-ethyl)-amine (3a).

From 8a ($583 \mathrm{mg}, 1.64 \mathrm{mmol}$) and t-BuOK ($369 \mathrm{mg}, 3.30 \mathrm{mmol}$), 3a was obtained (0.3 g , 80%) as a yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 7.59(\mathrm{~m}, 5 \mathrm{H}), 4.32\left(\mathrm{~d}, J_{\mathrm{A}-\mathrm{B}}=13.4 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 4.22\left(\mathrm{~d}, J_{\mathrm{A}-\mathrm{B}}=13.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.44(\mathrm{~m}, 1 \mathrm{H}), 3.32(\mathrm{~m}, 1 \mathrm{H}), 3.06(\mathrm{~m}, 2 \mathrm{H}), 2.02(\mathrm{bs}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 139.1,128.4,128.1,127.3,125.8\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=287.8 \mathrm{~Hz}\right), 59.4(\mathrm{q}$, $\left.{ }^{2} J_{\mathrm{C}-\mathrm{F}}=27.4 \mathrm{~Hz}\right), 51.5,49.5,43.4 ;{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 188 \mathrm{MHz}\right) \delta-73.6(\mathrm{~d}, J=6.9 \mathrm{~Hz})$; Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{NO}: \mathrm{C}, 57.14 ; \mathrm{H}, 5.23$; N, 6.06. Found: C, 56.57; H, 5.41; N, 5.81.

N-(4-Methoxy-phenyl)- N-(2,2,2-trifluoro-1-oxiranyl-ethyl)-acetamide (3b).

From $\mathbf{8 b}(516 \mathrm{mg}, 1.39 \mathrm{mmol})$ and t-BuOK ($374 \mathrm{mg}, 3.34 \mathrm{mmol}$), $\mathbf{3 b}$ was obtained $(0.26 \mathrm{~g}$, 64%) as a deep yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 7.41(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{~m}, 2 \mathrm{H}), 5.15$ (quint., $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.0(\mathrm{~s}, 3 \mathrm{H}), 3.13(\mathrm{~m}, 1 \mathrm{H}), 3.03(\mathrm{~m}, 2 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 172.1,159.9,131.2,130.7,123.7\left(\mathrm{q},{ }^{1} J=283.8 \mathrm{~Hz}\right), 114.8,58.6\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}\right.$ $=29.2 \mathrm{~Hz}), 55.4,47.7,46.9,22.4 ;{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 188 \mathrm{MHz}\right) \delta-70.1(\mathrm{~d}, J=7.6 \mathrm{~Hz})$; Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{NO}_{3}$: C, 53.98; H, 4.88; N, 4.84. Found: C, 54.36; H, 5.38; N, 4.47.
$N-[(1 R)-2-m e t h o x y-1-p h e n y l e t h y l]-N-\{(1 R)$-2,2,2-trifluoro-1-[(2R)-oxiran-2yl]ethyl\}amine (3c).

From 8c ($164 \mathrm{mg}, 0.41 \mathrm{mmol}$) and t-BuOK ($111 \mathrm{mg}, 0.98 \mathrm{mmol}$), 3c was obtained $(0.07 \mathrm{~g}$, 65%) as a yellow oil: $[\alpha]_{\mathrm{D}}{ }^{20}-75(\mathrm{c}=1, \mathrm{MeOH}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.40(\mathrm{~m}, 5 \mathrm{H})$, $4.24(\mathrm{dd}, J=9.4,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{dd}, J=19.0,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~m}, 1 \mathrm{H}), 3.18(\mathrm{ddd}, J=$ $6.4,3.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.96 (quint., $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$), $2.90(\mathrm{t}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{dd}, J=4.8$, $2.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 138.5,129.0,127.8,126.5,125.0\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=\right.$ $292.0 \mathrm{~Hz}), 77.7,60.0,59.0,57.0\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=28.2 \mathrm{~Hz}\right), 49.0,43.5 ;{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 188 \mathrm{MHz}\right)$ $\delta-74.3(\mathrm{~d}, J=8.3 \mathrm{~Hz})$; Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{NO}_{2}: \mathrm{C}, 56.72 ; \mathrm{H}, 5.86 ; \mathrm{N}, 5.09$. Found : C, 56.55 ; H, 6.02 ; N, 5.07.

(2R,3S)-1-[(1R)-2-methoxy-1-phenylethyl]-2-(trifluoromethyl)azetidin-3-ol (9c).

Epoxide $\mathbf{3 c}$ ($100 \mathrm{mg}, 0.36 \mathrm{mmol}$) was dissolved in $i-\mathrm{PrOH}(4.5 \mathrm{~mL})$. The solution was stirred at reflux for 5 days. The solvent was evaporated. The crude product was purified by chromatography on silica gel (petroleum ether/ether, $8 / 2$) to afford $9 \mathbf{c}$ as white crystals (0.08 g, 84%): mp. $127^{\circ} \mathrm{C}$ (diisopropyle oxide); $[\alpha]_{\mathrm{D}}{ }^{20}+5(\mathrm{c}=1, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) \delta 7.35(\mathrm{~m}, 5 \mathrm{H}), 4.55(\mathrm{qd}, J=8.1,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.80$ (quint., $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~m}$, $1 \mathrm{H}), 3.73(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~m}, 1 \mathrm{H}), 3.56(\mathrm{dd}, J=8.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{dd}, J=9.8,5.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.33(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 138.2,128.4,128.3$, $127.9,124.2\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=280.6 \mathrm{~Hz}\right), 75.6,67.9,66.8\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=29.3 \mathrm{~Hz}\right), 63.9\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=2.2\right.$ $\mathrm{Hz}), 59.6,58.9 ;{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 188 \mathrm{MHz}\right) \delta-69.7(\mathrm{~d}, J=7.6 \mathrm{~Hz})$; Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{NO}_{2}: \mathrm{C}, 56.72 ; \mathrm{H}, 5.86 ; \mathrm{N}, 5.09$. Found : C, $56.51 ; \mathrm{H}, 6.03 ; \mathrm{N}, 4.94$.

Figure 1. ORTEP view of 9 c

