Supplementary Materials belonging to <u>Changes in calmodulin mainchain dynamics upon ligand binding revealed by cross-</u> <u>correlated NMR relaxation measurements.</u>

Tianzhi Wang, Kendra King Frederick, Tatyana I. Igumenova, A. Joshua Wand, and Erik R. P. Zuiderweg

Methodology:

The ¹³CO¹³C α -dipole-dipole-CSA cross correlation rates ($\Gamma_{CO/CO-C\alpha}^{CSA/DD}$) were obtained from the "TROSY" effects in the ¹³CO¹³C α doublets in constant time ¹³C α -coupled 3D HNCO spectra¹. The data was analyzed using an in-house written simulated annealing routine that fitted the CO time-domain data¹, extracted from the 3D (t1,f2,f3) matrix.

The order parameter of the 13 CO- 13 C α vector was subsequently obtained using the following equation¹

$$\Gamma_{CO/CO-C\alpha}^{CSA/DD} = \frac{1}{30} \left(\frac{\mu_0}{4\pi} \right) \frac{\hbar \omega_c \gamma_c^2}{r_{CO-C\alpha}^3} \times \left[(\sigma_{11} - \sigma_{33}) \times (3 \cos^2 \theta_{11,CO-C\alpha} - 1) + (\sigma_{22} - \sigma_{33}) \times (3 \cos^2 \theta_{22,CO-C\alpha} - 1) \right] \\ \times \tau_c \times \left\{ 4S_{CO-C\alpha}^2 + \frac{3S_{CO-C\alpha}^2}{1 + (\omega_c \tau_c)^2} \right\}$$

where the symbols have their usual meaning; $\theta_{11,CO-C_{\alpha}}$ and $\theta_{22,CO-C_{\alpha}}$ describe the angle between the (σ_{11} and σ_{22}) principal axes of the ¹³CO CSA tensor and the ¹³CO-¹³C α vector and σ_{11} - $\sigma_{33} = 156$ ppm, σ_{22} - $\sigma_{33} = 80$ ppm, $\theta_{11,CO-C_{\alpha}} = 157^{\circ}$, $\theta_{22,CO-C_{\alpha}} = 247^{\circ}$. The values obtained correspond very closely to solid-state NMR data (σ_{11} - $\sigma_{33} = 154$ ppm, σ_{22} - $\sigma_{33} = 81$ ppm, $\theta_{11,CO-C_{\alpha}} = 157^{\circ}$ and $\theta_{22,CO-C_{\alpha}} = 247^{\circ}$).²⁻⁴

The value for τ_c was obtained from ¹⁵N relaxation data.

Note that the spectral density function used

$$J(\omega) = \frac{2}{5} \frac{S_{CO-C\alpha}^2 \tau_c}{1 + (\omega \tau_c)^2}$$

corresponds to Model 1 of the Model-free program⁵. We use the approximation that the cross-correlation order parameter reports predominantly on the motion of the COC α vector¹.

- (1) Wang, T. Z.; Cai, S.; Zuiderweg, E. R. P. J Am Chem Soc 2003, 125, 8639-8643.
- (2) Oas, T. G.; Hartzell, C. J.; McMahon, T. J.; Drobny, G. P.; Dahlquist, F. W. JAm Chem Soc 1987, 109, 5956-5962.
- (3) Teng, Q.; Ph D. thesis, Florida State University: Tallahassee, FL, 1990.
- (4) Teng, Q.; Iqbal, M.; Cross, T. A. J Am Chem Soc 1992, 114, 5312-5321
- (5) Mandel, A. M.; Akke, M.; Palmer, A. G. III. J. Mol. Biol. 1995, 246, 144-163.

Following are three tables with raw relaxation data for CaM-free and CaM-smMLCK-p.

Table 1. ¹⁵N relaxation data of smMLCKp-complexed Calmodulin measured at a 500 MHz proton resonance frequency on a Bruker Avance spectrometer and at a temperature of 35 ^oC, pH 6.5.

Pasidua	$R_1 (s^{-1})$		R ₂ ($R_2(s^{-1})$		NOE	
Residue	Rate	Error	Rate	Error	Data	Error	
4	1.524	0.053	5.091	0.114	0.169	0.005	
5	1.957	0.039	7.464	0.156	0.557	0.023	
6	1.994	0.049	8.24	0.161	0.645	0.035	
7	2.019	0.033	8.643	0.126	0.638	0.019	
9	2.043	0.048	8.786	0.145	0.657	0.038	
10	2.061	0.041	9.508	0.203	0.671	0.046	
11	2.003	0.045	9.503	0.16	0.618	0.027	
12	2.068	0.034	9.554	0.209	0.697	0.025	
13	1.996	0.053	9.612	0.236	0.662	0.028	
14	1.947	0.039	9.776	0.181	0.689	0.043	
15	2.046	0.032	9.468	0.175	0.652	0.048	
16	2.137	0.049	9.345	0.129	0.703	0.044	
17	1.974	0.038	9.344	0.198	0.658	0.043	
18	1.996	0.049	9.938	0.137	0.697	0.042	
19	1.961	0.028	9.701	0.14	0.663	0.038	
20	2.017	0.046	9.45	0.201	0.683	0.055	
21	1.959	0.039	8.138	0.226	0.624	0.014	
22	2.078	0.036	8.716	0.127	0.663	0.034	
24	2.128	0.036	8.523	0.108	0.698	0.048	
25	2.122	0.035	8.242	0.155	0.685	0.026	
26	2.028	0.038	9.489	0.158	0.74	0.028	
27	2.035	0.027	9.811	0.16	0.657	0.035	
28	2.186	0.062	8.617	0.174	0.675	0.032	
29	2.144	0.046	8.201	0.145	0.674	0.038	
30	2.147	0.053	8.567	0.185	0.686	0.031	
31	2.13	0.031	8.572	0.231	0.696	0.044	
32	2.17	0.034	8.894	0.23	0.648	0.018	
33	2.187	0.043	8.334	0.106	0.652	0.042	
34	2.078	0.04	8.565	0.228	0.674	0.031	
35	2.225	0.038	8.412	0.152	0.75	0.042	
37	2.06	0.058	9.124	0.131	0.645	0.035	
39	2.04	0.058	11.173	0.217	6.05	0.014	
41	1.988	0.038	8.288	0.103	0.649	0.036	
42	1.781	0.085	7.061	0.148	0.558	0.039	
44	1.841	0.048	8.766	0.176	0.661	0.024	
45	2.117	0.044	8.271	0.17	0.72	0.036	

46	2.178	0.047	8.394	0.192	0.636	0.03
48	2.115	0.055	8.907	0.096	0.691	0.021
49	2.119	0.038	8.588	0.219	0.673	0.026
52	2.096	0.029	8.952	0.166	0.652	0.055
54	2.095	0.037	8.454	0.19	0.682	0.046
55	2.105	0.038	9.702	0.172	0.744	0.078
56	2.076	0.046	8.495	0.224	0.67	0.037
57	1.666	0.048	5.897	0.121	0.643	0.028
58	2.1	0.029	8.089	0.084	0.658	0.025
61	2.056	0.055	9.436	0.219	0.68	0.034
63	2.132	0.048	9.337	0.203	0.721	0.035
64	2.183	0.051	8.674	0.186	0.739	0.039
65	1.973	0.043	9.709	0.245	0.729	0.043
67	1.978	0.042	10.079	0.168	0.723	0.024
68	2.083	0.043	9.742	0.191	0.703	0.035
69	2.11	0.055	9.743	0.144	0.709	0.043
70	1.813	0.028	8.404	0.152	0.342	0.022
71	1.995	0.045	10.167	0.173	0.706	0.028
72	2.014	0.064	9.772	0.147	0.704	0.056
73	2.029	0.05	9.55	0.155	0.626	0.039
76	1.961	0.044	7.617	0.173	0.491	0.019
77	1.795	0.047	6.046	0.101	0.31	0.033
78	1.792	0.043	5.529	0.09	0.22	0.006
79	1.66	0.045	4.891	0.165	0.2	0.012
80	1.849	0.033	4.989	0.155	0.228	0.019
81	1.915	0.057	5.961	0.138	0.346	0.014
82	1.957	0.053	7.468	0.215	0.437	0.013
84	2.055	0.035	8.469	0.17	0.635	0.033
85	1.974	0.052	9.949	0.249	0.642	0.021
86	1.961	0.057	9.903	0.213	0.684	0.043
87	2.08	0.04	9.192	0.145	0.682	0.027
88	2.052	0.052	9.094	0.154	0.676	0.023
89	2.047	0.043	10.19	0.178	0.7	0.043
90	1.941	0.035	10.125	0.165	0.713	0.03
91	2.082	0.03	8.556	0.12	0.674	0.031
93	1.928	0.051	9.776	0.181	0.671	0.027
94	2.072	0.047	7.565	0.137	0.638	0.036
95	2.205	0.04	7.788	0.153	0.651	0.031
96	2.2	0.05	7.68	0.149	0.676	0.025
97	2.152	0.027	8.407	0.119	0.706	0.039
98	2.332	0.035	7.776	0.1	0.698	0.025
99	2.236	0.032	8.12	0.094	0.658	0.028
100	2.129	0.041	7.726	0.137	0.692	0.029
101	2.281	0.024	8.368	0.12	0.713	0.036
102	2.228	0.046	7.9	0.117	0.703	0.029

	103	2.205	0.042	7.598	0.126	0.693	0.029
	105	2.17	0.043	8.397	0.177	0.682	0.042
	109	2.173	0.051	9.367	0.198	0.638	0.025
	110	2.157	0.037	7.805	0.144	0.631	0.061
	111	2.34	0.036	7.869	0.131	0.667	0.026
	114	2.016	0.027	6.712	0.092	0.538	0.025
	115	1.688	0.037	5.471	0.083	0.219	0.014
	116	1.609	0.04	5.149	0.137	0.355	0.009
	117	1.959	0.034	7.369	0.14	0.59	0.017
	118	2.079	0.036	8.265	0.179	0.626	0.036
	119	2.092	0.059	7.906	0.177	0.613	0.029
	121	2.041	0.043	8.979	0.112	0.636	0.032
	125	2.066	0.037	8.961	0.173	0.648	0.039
	126	2.135	0.059	8.524	0.158	0.653	0.025
	127	2.167	0.062	9.227	0.173	0.69	0.043
	128	2.073	0.043	8.695	0.111	0.739	0.036
	129	2.037	0.033	9.451	0.155	0.672	0.026
	130	1.571	0.028	6.235	0.168	0.598	0.03
	131	2.219	0.033	7.769	0.132	0.67	0.033
	133	2.028	0.029	9.382	0.115	0.707	0.041
	134	2.104	0.045	8.016	0.124	0.689	0.035
	135	2.188	0.028	8.044	0.113	0.69	0.031
	136	2.158	0.04	7.988	0.149	0.675	0.032
	137	2.187	0.04	8.024	0.186	0.652	0.026
	140	2.258	0.038	8.03	0.146	0.682	0.03
	141	2.282	0.056	8.358	0.187	0.688	0.034
	142	2.227	0.06	8.111	0.146	0.679	0.018
	143	2.164	0.033	8.117	0.201	0.653	0.061
	145	2.187	0.041	7.98	0.125	0.642	0.035
	146	1.937	0.034	8.006	0.17	0.576	0.039
	147	1.851	0.039	5.171	0.136	0.354	0.012
1	148	1.235	0.037	2.655	0.096	-0.365	0.017

	\mathbf{p} (-1)		\mathbf{p} (-1)		NOF	
Residue	K ₁ ((S)	K ₂ (s)		
0	Rate	Error	Kate	Error		Error
3	1.213	0.019	2.79	0.25	-0.589	0.016
4	1.472	0.019	5.455	0.098	0.142	0.006
5	1.751	0.016	8.621	0.119	0.647	0.03
6	1.973	0.026	8.958	0.136	0.719	0.017
1	1.972	0.024	9.144	0.112	0.733	0.03
8	1.903	0.024	9.233	0.148	0.735	0.024
9	1.967	0.015	9.337	0.155	0.681	0.02
10	2.037	0.025	9.715	0.097	0.746	0.025
11	1.986	0.018	9.682	0.103	0.769	0.016
12	2.014	0.026	9.981	0.128	0.746	0.025
13	2.023	0.031	9.916	0.077	0.796	0.03
15	2.008	0.018	9.444	0.131	0.8	0.021
16	2.011	0.013	9.601	0.091	0.774	0.029
17	1.973	0.031	9.871	0.141	0.771	0.024
18	2.032	0.024	9.784	0.1	0.775	0.049
19	1.924	0.032	9.477	0.127	0.771	0.018
20	1.911	0.029	9.447	0.097	0.792	0.022
21	1.907	0.021	8.587	0.079	0.73	0.015
22	1.953	0.026	9.671	0.092	0.76	0.016
23	1.964	0.033	9.174	0.083	0.788	0.025
24	1.965	0.024	9.522	0.079	0.803	0.039
25	1.912	0.023	10.271	0.123	0.813	0.025
26	2.003	0.029	9.71	0.14	0.789	0.025
27	1.899	0.035	9.447	0.155	0.774	0.036
28	1.92	0.044	10.169	0.199	0.787	0.037
29	1.902	0.03	9.995	0.085	0.809	0.027
30	1.934	0.039	10.022	0.126	0.779	0.017
31	1.893	0.03	10.359	0.121	0.781	0.032
32	1.816	0.027	10.395	0.139	0.801	0.036
33	1.962	0.02	9.987	0.138	0.798	0.03
34	1.939	0.021	9.817	0.099	0.77	0.017
36	1.873	0.027	10.605	0.095	0.782	0.029
37	1.911	0.035	9.919	0.106	0.764	0.024
38	1.87	0.022	9.694	0.05	0.787	0.032
39	1.828	0.026	9.892	0.113	0.772	0.032
40	1.833	0.026	8.16	0.191	0.735	0.034
42	1.581	0.045	7.353	0.359	0.664	0.034
44	1.868	0.032	8.917	0.096	0.736	0.027
45	1.981	0.032	9.272	0.113	0.753	0.033
46	2.012	0.023	9.54	0.094	0.769	0.02
47	1.973	0.02	9.712	0.146	0.777	0.023
48	1.985	0.027	9.704	0.135	0.777	0.027
49	1.966	0.029	9.518	0.093	0.77	0.03

Table 2. ¹⁵N relaxation data of free Calmodulin measured at a 500 MHz proton resonance frequency on a Bruker Avance spectrometer and at a temperature of 35 ⁰C, pH 6.5.

51	1.976	0.024	9.646	0.066	0.789	0.028
52	1.956	0.032	9.597	0.112	0.766	0.036
53	2.007	0.014	9.895	0.076	0.77	0.027
54	1.878	0.022	9.428	0.07	0.619	0.022
55	1.96	0.028	9.119	0.098	0.74	0.034
57	1.382	0.025	6.877	0.122	0.698	0.023
58	1.82	0.021	9,911	0.148	0.794	0.024
59	1 783	0.035	9 073	0.091	0 786	0.025
60	1 922	0.018	9.634	0.078	0.801	0.03
61	1.022	0.010	0.004 0.477	0.070	0.001	0.00
62	1 949	0.020	9.818	0.170	0.704	0.020
63	1 088	0.020	9 713	0.125	0.000	0.020
64	1.300	0.000	9 553	0.120	0.720	0.027
65	1.070	0.004	10 54	0.10	0.001	0.000
67	1.302	0.023	10.34	0.112	0.735	0.020
60	2.046	0.042	10.000	0.124	0.000	0.02
09 70	2.040	0.030	0.840	0.077	0.775	0.037
70	2.015	0.030	9.049	0.113	0.774	0.037
71	2.015	0.017	0.046	0.109	0.700	0.02
74	1.014	0.041	9.240	0.204	0.002	0.030
75 77	1.911	0.037	11.472	0.23	0.522	0.02
11	1.884	0.034	8.529	0.227	0.537	0.028
80	1.813	0.019	10.169	0.396	0.556	0.028
81	1.986	0.034	8.949	0.166	0.65	0.068
82	2.026	0.02	8.992	0.123	0.671	0.026
84	1.968	0.02	9.528	0.118	0.759	0.035
85	2.041	0.029	9.739	0.13	0.798	0.014
86	2.022	0.023	9.856	0.098	0.765	0.028
87	2.029	0.023	10.337	0.182	0.758	0.044
89	2.056	0.028	9.867	0.118	0.806	0.026
90	1.972	0.023	9.807	0.089	0.788	0.035
91	1.974	0.035	9.802	0.12	0.791	0.018
92	1.944	0.037	9.6	0.104	0.751	0.032
93	1.863	0.036	9.631	0.068	0.782	0.029
94	1.925	0.03	8.81	0.066	0.77	0.014
95	2.003	0.035	9.313	0.067	0.777	0.033
96	2.023	0.03	9.018	0.086	0.776	0.02
97	1.962	0.035	9.468	0.092	0.81	0.039
98	1.929	0.025	9.99	0.121	0.765	0.031
100	1.904	0.027	9.195	0.119	0.768	0.031
101	1.983	0.036	9.936	0.13	0.812	0.032
102	1.872	0.026	10.247	0.099	0.825	0.02
103	1.961	0.017	10.047	0.117	0.784	0.013
104	1.846	0.029	10.17	0.116	0.799	0.033
105	1.895	0.03	10.658	0.102	0.781	0.038
106	1.955	0.026	10.4	0.081	0.788	0.033
107	1.972	0.024	10.017	0.099	0.773	0.019
108	1.913	0.022	10.189	0.082	0.797	0.031
109	1.933	0.018	10.165	0.087	0.771	0.031

110	1.9	0.033	10.256	0.116	0.793	0.039
111	1.929	0.035	10.023	0.111	0.782	0.029
112	1.781	0.024	9.878	0.115	0.776	0.028
113	1.854	0.029	8.761	0.151	0.75	0.029
115	1.628	0.022	5.961	0.108	0.405	0.019
116	1.49	0.02	5.668	0.05	0.314	0.01
117	1.815	0.036	8.23	0.127	0.683	0.036
118	2.021	0.025	9.64	0.166	0.763	0.023
119	2.025	0.023	8.968	0.093	0.73	0.021
120	1.972	0.025	9.574	0.075	0.758	0.023
123	2	0.029	9.664	0.106	0.762	0.02
125	2.044	0.032	10.213	0.093	0.762	0.02
126	2.06	0.023	9.542	0.086	0.773	0.034
127	2	0.012	9.612	0.102	0.785	0.045
128	1.971	0.025	9.558	0.113	0.76	0.026
129	1.907	0.022	9.141	0.102	0.793	0.025
130	1.399	0.017	7.194	0.096	0.756	0.046
131	1.884	0.021	9.909	0.098	0.799	0.033
132	1.761	0.023	9.092	0.102	0.79	0.021
133	1.892	0.031	9.862	0.093	0.829	0.033
134	1.973	0.034	9.539	0.136	0.813	0.039
135	1.974	0.032	9.637	0.094	0.791	0.018
136	1.968	0.031	9.423	0.052	0.804	0.034
137	1.964	0.025	9.3	0.162	0.797	0.029
138	1.971	0.025	9.616	0.073	0.777	0.021
139	1.917	0.019	9.573	0.088	0.807	0.029
140	2.007	0.023	9.702	0.083	0.787	0.038
141	2.014	0.028	9.898	0.126	0.76	0.022
142	2.026	0.021	9.901	0.084	0.779	0.05
143	1.964	0.02	9.947	0.088	0.792	0.026
144	2.007	0.019	9.513	0.112	0.783	0.033
145	1.968	0.027	9.401	0.108	0.747	0.033
146	1.806	0.024	8.556	0.129	0.698	0.023
147	1.915	0.025	6.118	0.123	0.502	0.021

Residue	Fr	ee	Com	plex	
Residue	Rate	Error	Rate	Error	
3	-1.034	0.037	-1.270	0.045	
5	-1.543	0.055	-1.490	0.026	
6	-1.085	0.068	-1.371	0.036	
8	-0.858	0.100	-1.701	0.020	
9	-1.314	0.087	-1.527	0.070	
11	-1.210	0.070	-1.653	0.047	
12	-1.670	0.097	-1.623	0.013	
13	-1.240	0.109	-1.648	0.033	
15	-1.585	0.117	-1.732	0.059	
17	-1.524	0.108	-1.906	0.043	
18	-1.391	0.081	-1.582	0.062	
19	-1.501	0.101	-1.839	0.083	
20	-1.504	0.103	-1.910	0.060	
22	-1.229	0.069	-1.800	0.086	
24	-1.841	0.077	-1.806	0.113	
25	-1.445	0.114	-2.177	0.072	
26	-1.433	0.092	-1.266	0.023	
27	-1.418	0.072	-1.874	0.068	
28	-1.680	0.082	-1.466	0.035	
29	-1.228	0.072	-1.659	0.095	
30	-1.409	0.065	-1.600	0.009	
31	-1.899	0.077	-1.464	0.094	
32	-1.485	0.063	-1.484	0.046	
33	-1.469	0.056	-1.832	0.092	
35	-1.824	0.089	-1.796	0.056	
36	-1.349	0.105	-1.560	0.070	
37	-1.458	0.067	-1.385	0.054	
38	-1.729	0.095	-1.559	0.113	
40	-1.365	0.077	-1.818	0.069	
41	-1.357	0.093	-1.514	0.176	
44	-1.299	0.085	-1.631	0.047	
45	-1.529	0.091	-1.649	0.025	
46	-1.699	0.100	-1.580	0.073	
47	-1.320	0.066	-1.713	0.044	
49	-1.740	0.065	-1.496	0.054	
50	-0.918	0.083	-1.119	0.047	
51	-1.115	0.116	-1.971	0.045	
54	-1.374	0.068	-1.663	0.009	
55	-1.588	0.046	-1.772	0.040	
56	-1.696	0.156	-1.610	0.019	
59	-1.871	0.106	-1.837	0.034	
60	-1.351	0.123	-1.897	0.102	

Table 3. The cross correlation rates between the CSA of ¹³CO and the dipolar ¹³CO-¹³C α of smMLCKp-complexed and free Calmodulin measured at a 500 MHz proton resonance frequency on a Bruker Avance spectrometer and at a temperature of 35 ⁰C, pH 6.5.

61	-1.656	0.105	-1.692	0.120
62	-1.606	0.092	-2.160	0.139
63	-1.491	0.099	-1.735	0.025
64	-1.482	0.069	-1.800	0.202
66	-1.219	0.040	-1.734	0.266
67	-1.338	0.087	-1.892	0.091
71	-1.539	0.066	-1.378	0.152
72	-1.695	0.074	-1.464	0.065
73	-1.399	0.076	-1.558	0.090
77	-0.867	0.061	-1.201	0.209
78	-1.040	0.062	-1.309	0.154
79	-1.087	0.039	-1.247	0.057
81	-1.260	0.100	-1.775	0.027
85	-0.996	0.075	-1.736	0.035
86	-1.197	0.062	-1.620	0.031
87	-1.652	0.067	-1.598	0.112
89	-1.159	0.070	-1.707	0.090
90	-1 392	0.081	-1 756	0.066
92	-1.041	0.114	-1.677	0.081
93	-1 277	0.083	-1 631	0.050
95	-1 597	0.070	-1 781	0.026
97	-1 648	0.082	-1 734	0.086
98	-1 427	0.070	-1 873	0.008
99	-1.610	0.073	-1.850	0.126
100	-1.753	0.094	-1.702	0.136
101	-1.195	0.060	-1.489	0.087
102	-1.447	0.040	-1.644	0.020
104	-1.346	0.034	-1.388	0.067
105	-1.245	0.054	-1.543	0.079
107	-1.423	0.089	-1.698	0.058
109	-1.387	0.072	-1.670	0.038
110	-1.453	0.025	-1.710	0.029
111	-0.703	0.092	-2.044	0.103
113	-1.186	0.026	-1.577	0.044
114	-1.455	0.069	-1.669	0.058
115	-1.351	0.071	-1.721	0.005
116	-1.596	0.074	-1.698	0.035
117	-0.955	0.085	-1.651	0.068
118	-1.145	0.091	-1.859	0.091
120	-1.179	0.074	-1.513	0.026
121	-0.914	0.052	-1.787	0.060
122	-1.659	0.097	-1.190	0.087
124	-1.034	0.036	-1.829	0.056
125	-1.138	0.087	-1.693	0.046
126	-1.351	0.049	-1.511	0.086
127	-1.374	0.060	-1.662	0.034
128	-1.097	0.053	-1.808	0.044
129	-1.257	0.048	-1.942	0.056

130	-1.545	0.085	-1.639	0.098
133	-1.736	0.100	-1.888	0.079
134	-1.541	0.101	-1.704	0.032
135	-1.569	0.108	-1.639	0.099
136	-1.635	0.106	-1.999	0.086
137	-1.574	0.090	-1.724	0.036
138	-1.758	0.067	-1.702	0.047
139	-1.218	0.073	-1.666	0.086
140	-1.428	0.086	-1.582	0.035
141	-1.697	0.066	-1.886	0.118
142	-1.389	0.031	-1.401	0.027
143	-1.378	0.056	-1.639	0.046
144	-1.501	0.067	-1.786	0.055
145	-1.571	0.053	-1.341	0.006
146	-0.826	0.042	-1.348	0.051
147	-0.519	0.025	-0.912	0.038