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Data Set. The 3D molecular structures of the 47 ligands were generated using Macromodel 6.51 

and optimized with MMFF force field complemented by the continium water model (GBSA/H2O).2  

Monte Carlo (MC) conformational searches. These were performed within Macromodel 6.53 

using the MMFF force field and 1,000 step searches within 20.9 kJ/mol (5 kcal/mol) of the global 

minimum, as described by Jansen.4 All structures were subjected to the truncated Newton 

conjugate gradient (TNCG) minimization method to a convergence criterion of 0.01 kJ/(Å.mol). 

The energy of the lowest energy structure, the number of conformations found and the frequency 

with which the simulation visited the lowest energy structure were monitored to assure an 

exhaustive search (Table 2). Within the MC framework, if the global minimum conformation is 

found 15-20 separate times, it can be assumed that the search is complete. 

APOLLO alignment. Input to the alignment procedure consists of a set of MC-derived 

conformations for each ligand. The module RMSFIT from the program APOLLO4-6 was used to 

identify those conformations of the different ligands that exhibited the best overall least-squares 

fit to specified atomic positions on a conformer of colchicine: the three oxygen atoms in the A-ring 

(weight 1.0), and the two the oxygens of ring C (weight 0.1). The specific conformer of colchicine 

selected as template was derived from a full conformational search using MMFF/Macromodel. It 

corresponds to a boat conformation for ring-B with the amido side chain in the equatorial position. 

The latter two features are found in colchicine’s global minimum. The latter also orients the 

amide’s NH group toward ring-A. However, the conformer used in the QSAR alignment involves a 

180° rotation about the CH-NH bond, directing the amide C=O toward ring-A. This orientation of 



-S2- 
the amide was chosen to match the colchicine conformer best suited to an explicit tubulin-

colchicine model under development.7 

The energies of the conformations were used together with the root mean square (RMS) 

deviations between conformer and target to score the matches. Suitable superpositions based on 

the score and diversity in orientation were extracted using the MMDFIT module.5,6 For the 47 

ligand molecules defining the data set, the inclusion of multiple torsional isomers resulted in a 

total of 160 conformers.  

5D-QSAR Analysis. The data input for Quasar 3.5 was prepared with the PrGen software8 and 

included 1-6 conformations for each ligand, atomic partial charges, ligand solvation energy (Esolv), 

ligand entropy correction (T∆S), internal energies relative to the lowest-energy conformer (∆Eint) 

and free energies of binding (∆G°exp).  Atomic charges for each structure were obtained from 

MOPAC and correspond to MNDO ESP charges scaled to HF/6-31G* values.9  A solvation free 

energy (∆Gsolv) for each structure was derived with  the AMSOL AM1/SM5.4 procedure and falls in 

range from -7 to -25 kcal/mol.10,11   Free energies of binding (∆G°exp) were calculated from 

experimental IC50 values (Concentration of ligand required to inhibit 50% of tubulin assembly) as 

follows: ∆G°exp (kcal/mol) = RT ln IC50 (M), where R = 1.987 × 10-3 kcal/mol.K and T = 298 K. 

Manipulation of Quasar 3.5 to generate a QSAR correlation as described below ultimately 

produces a predicted free energy of binding (∆G°pred). 

The mean envelope was generated about the ligands of the training set using all the induced-fit 

models available in Quasar 3.5: a linear induced fit scaled at 0.75, four field-based modes (steric, 

electrostatic, H-bond and lipophilicity), and minimization along the steric lines scaled at 1.00. 

Individual envelopes of the ligands of the dataset were then generated. Points on the receptor 

surface were initially randomly populated with atomistic properties (hydrophobicity, H-bonds, 

salt bridges) to furnish a starting population of receptor models. Using a genetic algorithm, this 

family of receptor models was allowed to evolve with cross-validation. The following Quasar-

specific settings were used, unless otherwise specified: Equalization = Both (Equalising solvation 

energies and atomic partical charges); polarization = None (No ligand-receptor polarisation); 

Attenuation factors = 1.0 (weight of solvent), 1.0 (T∆S), 1.0 (Internal energy), 1.0 (Polarisation), 

1.0 (Lack-of-fit), 2.0 (Cross-validation); Static surface area = None; Cross-validation groups n = 3 



-S3- 
(Internal splitting of training set for cross-validation pruposes); H-bond function shift = gsm 

(g.s.mean H-bond radii); Induced-fit weight = 1.0 (Weight of envelope-adaptation energy); Speed-

up factor = 0.9 (Selection criterion for low-frequent induced fit models); Dynamic surface area = 

None (Using a generic algorithm to identify solvent-accessible or “open” regions”); Size of parent 

family = 200 (genetic pool); Number of cross-overs (varied according to termination criterion); 

Mutation rate = 0.02 (Transcription error rate during crossover events); Target q2 = 0.95 

(Termination criterion, usually > 0.9); Experimental error = 0.200 (Termination criterion), Crop 

collection = a 1.0  (asymmetric selection); and Functional-group analysis = Yes (Contribution of 

functinal group to ∆G). 
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