Supporting Information

Practical Rh(I)-Catalyzed Asymmetric Hydrogenation of β-(Acylamino)acrylates
 Using a New Unsymmetrical Hybrid Ferrocenylphosphine-Phosphoramidite Ligand: Crucial Influence of a N-H Proton in the Ligand

Xiangping Hu and Zhuo Zheng*
Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China

General Procedures: All synthetic reactions and manipulations were performed in a nitrogen or argon atmosphere using standard Schlenk techniques. Solvents were reagent grade, dried and distilled before use following standard procedures. $\left(S_{c}, R_{p}, S_{a}\right)$-1, ${ }^{1}$ Bophoz-Me and Bophoz- ${ }^{2}$ were prepared according the literature procedure. β-aryl- β-(acylamino)acrylates 3^{3} and β-alkyl- β-(acylamino)acrylates 4^{4} were known compounds which were synthesized according to the literature procedure. All other chemicals obtained commercially. Optical rotations were measured on a JASCO P-1020 high sensitive polarimeter. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ NMR spectra were recorded at room temperature on a BRUKER DEX $400(400 \mathrm{MHz})$ spectrometers. Chemical shifts were determined relative to the residual solvent peaks (e.g. $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \delta$ $=5.30 \mathrm{ppm}$ for proton atoms, $\delta=54.2 \mathrm{ppm}$ for carbon atoms; $\mathrm{H}_{3} \mathrm{PO}_{4}, \delta=0 \mathrm{ppm}$ for phosphorus atoms). Enantiomeric excesses were determined by capillary GC analysis with a Chiral Select 1000 column ($0.25 \mathrm{~mm} \times 30 \mathrm{~m}$) for $\mathbf{5 a - h}, \mathbf{6 a - b}$ and $\mathbf{6 d}$, with a CP-Chiralsil-L-Val capillary column ($0.25 \mathrm{~mm} \times 25 \mathrm{~m}$) for $\mathbf{6 e}$, and HPLC analysis with a chiralcel OD column for $\mathbf{6 c}$.

Synthesis of ferrocenylphosphine-phosphoramidite ligand (S_{c}, R_{p}, S_{a})-2

$\left(S_{a}\right)$-Chlorophosphite 8 ($350.5 \mathrm{mg}, 1.0 \mathrm{mmol}$) was dissolved in 4.0 mL of dried dichloromethane, which was cooled to $0^{\circ} \mathrm{C}$. A solution of $\left(S_{C}, R_{p}\right)-$ PPFNH $_{2} 7(413 \mathrm{mg}$,
$1.0 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(303 \mathrm{mg}, 3.0 \mathrm{mmol})$ in 4.0 mL of dichloromethane was added to above-solution during 30 minutes. The resulting mixture was standing at room temperature overnight. The precipitation was filtrated. The filtrate was collected, and concentrated under reduced pressure to c.a. 2 mL . Adding the n-hexane to the filtrate gave the yellow power, which was sufficient pure for further use. An analytic sample was obtained by column chromatography purification (silica gel, hexanes / ethyl acetate $=1 / 1$) to give yellow power $\left(S_{c}, R_{p}, S_{a}\right)$-2, which can be crystallized from hexane/dichloromethane. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 1.69-1.70(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3$ H), 3.35-3.36 (m, 1 H), 3.85 (s, 1 H), 3.97 (s, 5 H), 4.28-4.29 (t, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.41 (s, 1 H), 4.75-4.84 (m, 1 H), 6.95-6.98 (m, 1 H), 7.11-7.59 (m, 17 H), 7.84-7.92 (m, 4 H) ppm; ${ }^{1} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): 26.1, 46.5, $69.5,69.9,70.5,72.5,122.6,123.5$, 125.4, 126.7, 127.4, 128.3, 128.6, 128.8, 129.0, 129.9, 130.1, 130.6, 132.0, 133.1, 133.3, 136.0, $136.2 \mathrm{ppm} ;{ }^{31} \mathrm{P}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta-24.2,152.7(\mathrm{~d}, J=58.0$ $\mathrm{Hz})$ ppm. HRMS calcd for $\mathrm{C}_{45} \mathrm{H}_{35} \mathrm{FeNO}_{2} \mathrm{P}_{2}$: 727.1492, found: 727.1480.

General procedure for asymmetric hydrogenation and determination of enantiomeric excesses.

In a nitrogen-filled glovebox, a stainless steel autoclave was charged with $\mathrm{Rh}(\mathrm{COD})_{2} \mathrm{BF}_{4}\left(2.0 \mathrm{mg}, 0.5 \times 10^{-2} \mathrm{mmol}\right)$ and ferrocenylphosphine-phosphoramidite ligand $\left(S_{c}, R_{p}, S_{a}\right)-2\left(4.0 \mathrm{mg}, 0.55 \times 10^{-2} \mathrm{mmol}\right)$ in 1.5 mL of a degassed solvent. After stirring for 10 min at room temperature. A substrate (0.5 mmol) in 1.5 mL of same solvents was added to the reaction mixture, and then the hydrogenation was performed under 10 bar of H_{2} pressure for 12 hour at the indicated temperature. The reaction mixture was passed through a short silica gel column to remove the catalyst. After evaporation of the solvent, the crude reaction mixture was subjected for GC to determine the conversion and enantiomeric excesses.

Determination of Enantiomeric Excesses for $\boldsymbol{\beta}$-Aryl $\boldsymbol{\beta}$-(Acetylamino)propanoate
5: Chiral Capillary GC Column. Chiral Select-1000 column (dimensions 30 mx 0.25 mm (i.d.)). Carrier gas: N_{2}. The racemic products were obtained by hydrogenation of substrates with an achiral catalyst prepared from PPh_{3} and
$\mathrm{Rh}(\mathrm{COD})_{2} \mathrm{BF}_{4}$. The following are the retention times for the racemic products.

5a: $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Et} ; \quad \mathbf{5 b}: \mathrm{R}^{1}=4-\mathrm{Me}, \mathrm{R}^{2}=\mathrm{Et} ;$ 5c: $\mathrm{R}^{1}=4-\mathrm{Me}, \mathrm{R}^{2}=\mathrm{Me} ; \quad 5 \mathrm{~d}: \mathrm{R}^{1}=4-\mathrm{OMe}, \mathrm{R}^{2}=\mathrm{Et}$; 5e: $\mathrm{R}^{1}=4-\mathrm{OMe}, \mathrm{R}^{2}=\mathrm{Me} ; 5 \mathrm{f}: \mathrm{R}^{1}=4-\mathrm{Cl}, \mathrm{R}^{2}=\mathrm{Et}$; 5g: $\mathrm{R}^{1}=4-\mathrm{Cl}, \mathrm{R}^{2}=\mathrm{Me} ; \quad 5 \mathrm{~h}: \mathrm{R}^{1}=4-\mathrm{F}, \mathrm{R}^{2}=\mathrm{Me}$; 5i: $\mathrm{R}^{1}=3-\mathrm{OMe}, \mathrm{R}^{2}=\mathrm{Me}$

Ethyl 3-Acetamido-3-phenylpropanoate (5a): (capillary GC, Chiral Select-1000 column, $\left.155^{\circ} \mathrm{C}, 15 \mathrm{psi}\right)(S) \mathrm{t}_{1}=29.96,(R) \mathrm{t}_{2}=31.86$; (capillary GC, Chiral Select-1000 column, $\left.160^{\circ} \mathrm{C}, 15 \mathrm{psi}\right)(S) \mathrm{t}_{1}=22.96,(R) \mathrm{t}_{2}=24.86$.

Ethyl 3-Acetamido-3-(4-methylphenyl)propanoate (5b): (capillary GC, Chiral Select-1000 column, $\left.160^{\circ} \mathrm{C}, 10 \mathrm{psi}\right)(S) \mathrm{t}_{1}=58.19,(R) \mathrm{t}_{2}=60.76$.

Methyl 3-Acetamido-3-(4-methylphenyl)propanoate (5c): (capillary GC, Chiral Select-1000 column, $\left.160^{\circ} \mathrm{C}, 10 \mathrm{psi}\right)(S) \mathrm{t}_{1}=44.22,(R) \mathrm{t}_{2}=46.78$.

Ethyl 3-Acetamido-3-(4-methoxyphenyl)propanoate (5d): (capillary GC, Chiral Select-1000 column, $\left.160^{\circ} \mathrm{C}, 10 \mathrm{psi}\right)(S) \mathrm{t}_{1}=130.12,(R) \mathrm{t}_{2}=134.49$.

Methyl 3-Acetamido-3-(4-methoxyphenyl)propanoate (5e): (capillary GC, Chiral Select-1000 column, $\left.160^{\circ} \mathrm{C}, 10 \mathrm{psi}\right)(S) \mathrm{t}_{1}=103.6,(R) \mathrm{t}_{2}=108.8$.

Ethyl 3-Acetamido-3-(4-chlorophenyl)propanoate (5f): (capillary GC, Chiral Select-1000 column, $\left.160^{\circ} \mathrm{C}, 15 \mathrm{psi}\right)(S) \mathrm{t}_{1}=72.15,(R) \mathrm{t}_{2}=76.93$.

Methyl 3-Acetamido-3-(4-chlorophenyl)propanoate (5g): (capillary GC, Chiral Select-1000 column, $\left.160^{\circ} \mathrm{C}, 15 \mathrm{psi}\right)(S) \mathrm{t}_{1}=58.40,(R) \mathrm{t}_{2}=63.19$.

Methyl 3-Acetamido-3-(4-fluorophenyl)propanoate (5h): (capillary GC, Chiral Select-1000 column, $\left.160^{\circ} \mathrm{C}, 15 \mathrm{psi}\right)(S) \mathrm{t}_{1}=20.86,(R) \mathrm{t}_{2}=22.32$.

Methyl 3-Acetamido-3-(3-methoxyphenyl)propanoate (5i): (capillary GC, Chiral Select-1000 column, $\left.160^{\circ} \mathrm{C}, 10 \mathrm{psi}\right)(S) \mathrm{t}_{1}=80.31,(R) \mathrm{t}_{2}=85.17$.

Determination of Enantiomeric Excesses for $\boldsymbol{\beta}$-Alkyl- $\boldsymbol{\beta}$-(Acylamino)propanoate 6: Chiral Select-1000 column (dimensions $30 \mathrm{~m} \times 0.25 \mathrm{~mm}$ (i.d.)), carrier gas: N_{2}, or CP-Chiralsil-L-Val column (dimensions 25 mx 0.25 mm (i.d.)), carrier gas: H_{2}. The
racemic products were obtained by hydrogenation of substrates with an achiral catalyst prepared from PPh_{3} and $\mathrm{Rh}(\mathrm{COD})_{2} \mathrm{BF}_{4}$. The following are the retention times for the racemic products.

6a: $R^{1}=M e, R^{2}=M e, R^{3}=M e ;$
6b: $R^{1}=M e, R^{2}=M e, R^{3}=E t ;$
6c: $R^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{Ph}, \mathrm{R}^{3}=\mathrm{Me}$;
6d: $R^{1}=E t, R^{2}=M e, R^{3}=M e ;$
6e: $\mathrm{R}^{1}=i-\mathrm{Pr}, \mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{3}=\mathrm{Me}$

Methyl 3-Acetamidobutanoate (6a): (capillary GC, Chiral Select-1000 column, $\left.130^{\circ} \mathrm{C}, 15 \mathrm{psi}\right)(S) \mathrm{t}_{1}=4.54,(R) \mathrm{t}_{2}=5.22$.

Ethyl 3-Acetamidobutanoate (6b): (capillary GC, Chiral Select-1000 column, $\left.130^{\circ} \mathrm{C}, 15 \mathrm{psi}\right)(S) \mathrm{t}_{1}=6.30,(R) \mathrm{t}_{2}=7.20$.

Methyl 3-Benzamidobutanoate (6c): (HPLC, Chiralcel OD column, hexane/i-propanol =95:5, $1 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm})(S) \mathrm{t}_{1}=40.41,(R) \mathrm{t}_{2}=45.44$.

Methyl 3-Acetamidopentanoate (6d): (capillary GC, Chiral Select-1000 column, $\left.110^{\circ} \mathrm{C}, 15 \mathrm{psi}\right)(S) \mathrm{t}_{1}=14.82,(R) \mathrm{t}_{2}=16.52$. (capillary GC, Chiral Select- 1000 column, $\left.110^{\circ} \mathrm{C}, 17 \mathrm{psi}\right)(S) \mathrm{t}_{1}=13.03,(R) \mathrm{t}_{2}=14.52$.

Methyl 4-methyl-3-Acetamidopentanoate (6e): (capillary GC, CP-Chiralsil-L-Val column, $\left.125^{\circ} \mathrm{C}, 20 \mathrm{psi}\right)(S) \mathrm{t}_{1}=5.40,(R) \mathrm{t}_{2}=5.67$.

References:

1. Hu, X.-P.; Zheng, Z. Org. Lett. 2002, 4, 2421.
2. (a) Boaz, N. W.; Debenham, S. D.; Mackenzie, E. B.; Large, S. E. Org. Lett. 2002, 4, 2421.
3. (a) Zhou, Y.-G.; Tang, W.; Wang, W.; Li, W.; Zhang, X. J. Am. Chem. Soc. 2002, 124, 4952. (b) Tang, W.; Wang, W.; Chi, Y.; Zhang, X. Angew. Chem. Int. Ed. 2003, 42, 3509.
4. (a) Zhu, G.; Chen, Z.; Zhang, X. J. Org. Chem. 1999, 64, 6907. (b) Heller, D.; Holz, J.; Drexler, H. J.; Lang, J.; Drauz, K.; Krimmer, H.-P.; Börner, A. J. Org. Chem. 2001, 66, 6816.

14 NMR FiU-2 IN CD2CL2 2004/07/08

13C. MR HU-2 IN CD2CL2 2004/07/08

3-P NMR HU-2 IN CO2CL2 2004/07/03

|

Area Percent Revort

Sorted By	:	Sicmal		
Multiplier	:	1.0000		
Dilution	:	1.0000		
Sample Amount	:	1.00000	[ng/ul]	(not used in calc.)
Signal l: FIDl B ,				
Peak RetTime Tvoe	Width $\lceil\min 7$	$\begin{gathered} \text { Area } \\ \text { counts } \end{gathered}$	$\begin{aligned} & \text { Heicht } \\ & \text { 「counts } 7 \end{aligned}$	Area
122.826 BV	0.4680	2.49230e5	7572.04053	49.97773
224.110 VB	0.4369	2.49452e5	8537.79980	50.02227
Totals :		4.98682e5	1.61098e4	

Results obtained with enhanced intearator

NHAc

Rac-5a

-

$\begin{array}{lll}\text { Sorted BV } & \vdots & \text { Sicmal } \\ \text { Multiplier } & \vdots & 1.0000\end{array}$
Dilution
Sample Amount
1.00000 [ng/ul] (not used in calc.)

Signal 1: FID1 B,

Totals : 4.51782e5 1.43830e4
Results obtained with enhanced intearator!

5a

Sorted BV
 Sultiplier

Dilution
Sample Amount
Sima
igmal 1: FID1 B ,

Totals : $1.85013 \mathrm{e} 5 \quad 3445.80823$
Results obtained with enhanced intearator!

Me
Rac-5b

$\begin{array}{lllll}\text { Sorted Bv } & \vdots & \text { Simal } & & \\ \text { Multiplier } & \vdots & 1.0000 & & \\ \text { Dilution } \\ \text { Sample Amount } & \vdots & 1.0000 \\ \text { Sing } & 1.00000 & \text { [ng/ul] } & \text { (not used in calc.) }\end{array}$
iomal 1: FID1 B

Totals: $\quad 1.41472 \mathrm{e} 5 \quad 2401.41457$
Results obtained with enhanced inteqrator!
NHAc
Me


```
Sorted By 
\ Sicmal
ilution : 1.000
Silution Amount \}\quad\begin{array}{l}{1.0000}\\{\mathrm{ Sample Alocon [ng/ul] (not used in calc.)}}
Signal 1: FIDl B,
Mallol
Totals: 2.42668e5 5637.45581
```

Results obtained with enhanced intearator
Results obtained with enhanced intedrator

Area Percent Rewort
$\begin{array}{lll}\text { Sorted By } & \vdots & \text { Sicmal } \\ \text { Multiplier } & \vdots & 1.0000\end{array}$
$\begin{array}{lllll} & \\ \text { Dilution } \\ \text { Sample Amount } & \vdots & 1.0000 \\ 1.00000\end{array} \quad$ [ng/ul] (not used in calc.)
Signal 1: FID1 B,

$\begin{array}{llllll}1 & \begin{array}{lllll}46.037 \\ 2 & 50.689 & \mathrm{MM} & 1.3746 & 1.5772654 \\ 1.7061 & 1.13965 e 6 & 1.11328 e 4 & 98.63491\end{array}\end{array}$
Totals : $1.15542 \mathrm{e} 6 \quad 1.13240 \mathrm{e} 4$
Results obtained with enhanced intearator!

NHAc

===1
Area Percent Revort
Sorted By
: Simal
$\begin{array}{lcc}\text { Dilution } & \vdots & 1.0000 \\ \text { Sample Amount } & \vdots & 1.0000 \\ 1.0000\end{array}$

Signal 1: FID1 B,

Totals : $\quad 9.89476 e 4 \quad 843.92624$
Results obtained with enhanced inteorator! \qquad

Rac-5d

$\begin{array}{lll}\text { Sorted BV } & \vdots & \text { Siomal } \\ \text { Multiplier } & \vdots & 1.0000 \\ \text { Dilution } & & 1.0000\end{array}$
$\begin{array}{llll}\text { Dilution } & \vdots & 1.0000 \\ \text { Sample Amount } & \quad 1.00000\end{array} \quad$ [ng/ul] \quad (not used in calc.)
Signal 1: FIDl B,

Results obtained with enhanced intearator!

MeO
5d

Area Percent Revort

Sorted By Multiplier
 Multiplier
 Silution
 1.0000

Signal 1: FID1 B,

Totals :
4.22857e5 3275.18420

Results obtained with enhanced intearator \qquad

MeO

NHAc

Rac-5e

Area Percent Revor
$\begin{array}{lll}\text { Sorted By } & \vdots & \text { Sicmal } \\ \text { Multiplier } & \vdots & 1.0000\end{array}$
$\begin{array}{lllll} & \\ \text { Dilution } \\ \text { Sample Amount } & \vdots & 1.00000 \\ 1.00000\end{array} \quad$ [ng/ul] (not used in calc.)
Signal 1: FID1 b,

$$
\begin{aligned}
& \text { Totals : }
\end{aligned}
$$

Results obtained with enhanced interrator!
$========$ bained with enhanced intearator!
NHAc
$\mathrm{CO}_{2} \mathrm{Me}$
5e

Sorted BV
Multiplier
Dilution
Area Percent Revort

Multiplier
Ditution
Sample Amount
Siomal
1.0000
1.0000
1.0000
1.00000 [ng/ul] (not used in calc.)

Signal 1: FID1 B,

Totals : 7.40164e5 7263.00391
Results obtained with enhanced intearator
Cl

Rac-5f

Ma Area Percent Revort
$\begin{array}{lllll}\text { Sorted By } & \vdots & \text { Sicmal } & \\ \text { Multiplier } & \vdots & 1.0000 & & \\ \text { Dilution } \\ \text { Sample Amount } & \vdots & 1.0000 \\ 1.00000 & \text { [ng/ul] } & \text { (not used in calc.) }\end{array}$
Signal 1: FIDl B ,

Results obtained with enhanced interrator!
相
NHAc

$5 f$

Sorted By
Multitilier
Dilution
Dilution
Sample Amount
Sicmal
1.0000

Sigmal 1: FID1 B,

Totals: $\quad 6.95867 \mathrm{e} 5 \quad 8258.76733$
Results obtained with enhanced interrator!

NHAc
Cl
Rac-5g

Sorted BV Multiplier
 Dilution Sample Amount
 Sicmal 1.0000
 ample Amount
 1.00000 [ng/ul] (not used in calc.)

Signal 1: FID1 B,

2	62.800 BP	1.3906	8.12826 e 5
	7302.35791		
Totals :	8.23380 e 5	7422.48347	

Results obtained with enhanced intearator!
NHAc

5g

Sorted BV
Multitilier
Dilution
$\begin{array}{llll}\text { Sample Amount } & \vdots & \quad 1.0000 \\ \text { [ng/ul] } & \text { (not used in calc.) }\end{array}$
Signal 1: FID1 B ,

Totals : $\quad 5.41360 \mathrm{e} 5 \quad 1.89628 \mathrm{e} 4$
Results obtained with enhanced intearator!

Rac-5h

0
Area

Sorted By
 $\begin{array}{lll} & \vdots & \text { Simal } \\ & \vdots & 1.0000\end{array}$
 ilution $\quad: \quad 1.000$

signal 1: FID1 B,

Totals : $\quad 1.13462 e 6 \quad 2.35906 e 4$
Results obtained with enhanced intearator

5h

Area Percent Revort				
Sorted Bv	:	Simal		
Multiplier	:	1.0000		
Dilution	:	1.0000		
Sample Amount	:	1.00000	[ng/ul]	(not used in calc.)
Signal 1: FIDl B ,				
Peak RetTime Type \# \quad minin	Width「min7	$\begin{gathered} \text { Area } \\ \text { counts*s } \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [counts } 1 \end{aligned}$	$\stackrel{\text { Area }}{\vdots}$
	0.4197 0.4495	3666.40552 $2.06589 e 5$	133.78531 6896.34082	$\begin{array}{r} 1.74379 \\ 98.25621 \end{array}$
Totals :		2.10255e5	7030.12613	

NHAc

$-\mathrm{CO}_{2} \mathrm{Et}$

Area Percent Revort

orted By

-

Dilution
Sample Amount

1.0000

1.0000
1.00000 \quad [ng/ul] (not used in calc.)

Signal 1: FIDl B,

$\begin{array}{lllllll}1 & 14.034 \mathrm{BV} & 0.5032 & 4.85549 \mathrm{e} 5 & 1.50988 \mathrm{e} 4 & 49.91984 \\ 14.520 & 0.4794 & 4.87108 \mathrm{e} 5 & 1.58133 \mathrm{e} & 50.08016\end{array}$
Totals : $\quad 9.72657 \mathrm{e} 5 \quad 3.09122 \mathrm{e} 4$
Results obtained with enhanced intearator!

NHAc

$\sim \mathrm{CO}_{2} \mathrm{Et}$
Rac-6d

5a ($0.02 \mathrm{~mol} \%$ of Rh)

==1
$==================================$
$\begin{array}{l:l}\text { Sorted Bv } & \vdots \\ \text { Multiplier } & \vdots \\ \text { Siomal } \\ \text { Dilution }\end{array}$
$\begin{array}{lll}\text { Multiplier } & \vdots & 1.0000 \\ 1.0000\end{array}$
$\begin{array}{lll}\text { Sample Amount } & \begin{array}{l}1.0000 \\ 1.00000 \\ \text { 「ng/ul] }\end{array} \quad \text { (not used in calc.) }\end{array}$

Signal 1: FID1 A,

$\begin{array}{lllllll}1 & 13.322 \mathrm{MM} & 0.3398 & 1238.59106 & 60.74482 & 0.53540 \\ 2 & 15.001 \mathrm{BB} & 0.4661 & 2.30102 \mathrm{e} 5 & 7413.61719 & 99.46460\end{array}$
Totals :
2.31341e5 7474.36200

Results obtained with enhanced interrator!
$\underbrace{\mathrm{NHAc}} \mathrm{CO}_{2} \mathrm{Et}$

6d

-

Sorted BV Multiplier
 Dilution Sample Amount

Simal

$$
\begin{aligned}
& \text { Sicmal } \\
& 1.000 \\
& \hline 1000
\end{aligned}
$$

$$
\begin{aligned}
& \\
& 1.0000 \\
& 1.00000 \quad \text { [ng/ul] (not used in calc.) }
\end{aligned}
$$

Signal 1: FID1 B,

Totals : $\quad 1.03669 \mathrm{e} 6 \quad 2.92829 \mathrm{e} 4$
Results obtained with enhanced intearator!
NHAc
$\sim_{\sim}^{\sim} \mathrm{CO}_{2} \mathrm{Et}$
Rac-6d

$\begin{array}{lllll} & \text { Sicnal } & & \\ \text { Sorted By } & \vdots & \begin{array}{l}\text { Sind } \\ \text { Multiplier }\end{array} & \vdots & 1.0000 \\ \text { Dilution } & & \\ \text { Sample Amount } & \vdots & 1.0000000 & \text { [ng/ul] } & \text { (not used in calc.) }\end{array}$
Signal 1: FIDl B,

$\begin{array}{llll}\text { Totals: } & 7.16722 e 5 & 2.06383 \mathrm{e} 4\end{array}$
Results obtained with enhanced intearator!
Results obtained with enhanced intearator!
$\underbrace{\text { NHAc }}$

6d

COM

Sorted By Multiplier
 $\begin{array}{lcc}\text { orted Bv } & \vdots & \text { Siomal } \\ \text { fultiplier } & \vdots & 1.0000 \\ \text { ilution } & \vdots & 1.0000\end{array}$
 Dilution Sample Amount

igmal 1: FID1 B,

Results obtained with enhanced interrator!
NHAc

6d

