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1 Flow solution and validation

The computational domain is mapped as shown in Fig. 1(b). The domain is then a simple square and
boundary conditions and gridding become very easy to apply. This also has significant advantages in
the scalar transport simulations, as will be evident momentarily. In this formulation the governing
equations are:

Yy (#,9) = 0= Vi,y(d,v), (1)
where the subscript ¢t denotes derivatives in (¢, ¢)-space.

The mapping from (¢, )- to (x,y)-space is obtained from the derivatives:?!

09 10y 09¢ 10z

o0 = Jou By J00 ?
ov _1or 9 1oy 5
oy Jogp ox  JO¢’

where the Jacobian J is the determinant of the Jacobian matrix J (note that J = 1/|u|?)
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In order to solve these equations, our initial approach was, given frot () and fiop(2), to solve Egs. 1 with
a second-order central difference scheme and first-order differencing to approximate Neumann boundary
conditions.? The linear system of equations produced by the second-order central difference scheme
is block-tridiagonal and can be solved using the Block-Thomas algorithm.?> The Cauchy-Riemann
conditions were also solved using a second-order central difference scheme, and along the boundary
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Figure 1: Diagram of governing equations and boundary conditions for an example geometry (one unit
cell of in-phase diamond-shaped posts).

where a symmetric stencil was not possible, a second-order asymmetric difference scheme was used.*
The equations for the z- and y-fields are coupled through the top and bottom boundary conditions,
so the matrix equations for each were solved iteratively until the residual is less than O[10719]) on a
301 x 301 grid.>©

However, in some geometries, this method was found to be subject to numerical instabilities near
sharp corners where singularities exist in the exact solution. Appropriate numerical techniques to
suppress these instabilities were employed, but we desired to confirm the final results using an alternative
method. For these geometries, conformal mapping via the Schwarz-Christoffel transformation proved
to be much more robust.” '3 Since the transformation is defined only for polygonal geometries, squares
and diamonds were defined exactly but circles are approximated by polygons made of 64 equal line
segments. Values of the z- and y-fields for a regular grid of ¢- and w-values were thus be found
x+iy = f(¢+ i) on a 601 x 601 grid. Solutions were validated by testing the orthogonality of z-
and y-fields (V gy - Vgpy = 0), which show relative deviations O[107?], with most of the error in both
cases occurring near regions where the boundary changes rapidly. Flowrates obtained with the two
methods were in agreement to within 1% in all cases; the Schwartz-Christoffel solution was used in all
cases shown in the paper.

2 Solute transport solution and validation

Particle transport is modelled using a split-step convection-diffusion scheme.'* The convection-step is
approximated by a total differential

09 o9 . .
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Recognizing that dx = wdt,this is §¢ = \u|25t. Recalling J = 1/|u|?, the convection step is d¢ =
Pe - 6t/J, where the Péclet number Pe = (A¢, /Ax)h/D1s is a non-dimensional velocity scale.



The length of the diffusion step 4, is calculated from a normal distribution with ¢ = V/45t, the factor
of v/2 in ¢ stemming from the two-dimensional nature of the problem.'®> On the other hand, (¢,1))-
space diffusion length r,, 74y = r4y/v/J. The half-diffusion-steps thus have a length R - v/25¢,'51°
where R is a random number from a normal distribution generated using the Box-Muller method.?0 22
The direction of the diffusion step 6, is distorted in (¢,1))-space to 04y = tan='[d1)/6¢]. Writing
01 and d¢ in terms of total differentials, 84, can be defined in terms of the local velocity field 84, =
tan~[(udy — véx)/(udx + véy)].

Timestep independence was tested and established in the more extreme geometry (high m) cases.
Infinite accelerations near corners cannot be avoided due to the use of potential flow as a model for
pure electrophoretic transport. Thus if Pe/J is too large (near convex corners where fluid acceleration
is highest) particles can shoot too far. When such cases are detected, we employ an adaptive integration
scheme that is somewhat computationally expensive but is quite robust and need only be performed
for a very small fraction of the particles.?? This technique finds the displacement along a streamline
iteratively, numerically integrating the time elapsed until it matches the timestep.

This method was validated against theory for pressure-driven flow between flat plates?* using various
values of N. Excellent agreement (shown in Fig. 2) with x> = 0.19 was obtained nearly independently
of the choice for N > 5000. A value of N = 50 000 was chosen for practical computational expense
while keeping statistical error very low.
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Figure 2: Comparison of simulation results and theory with N = 50 000 particles. The dashed line
represents theory; 2 = 0.19.

3 Tabulated Curve Fits to Dj(Pe) Data

Below ware results for the best-fit parameters for all three curve fits, as well as the x? values for each
curve fit. Values for A for each geometry are also tabulated as a function of geometry and m.



Table 1: Fit parameters and length scales for in-line circles.

m | A [ Dpo [Vor xi] we: ne x5 [oes1 /W2 X3
0.150 | 0.771 | 0.922 | 88 21 84 1.955 16 | 286 91 6
0.169 | 0.734 | 0.906 | 75 32 71 1.947 24| 191 78 8
0.200 | 0.674 | 0.883 | 62 52 56 1.928 37| 112 65 9
0.226 | 0.623 | 0.862 | 55 76 49 1912 53 78 58 11
0.250 | 0.575 | 0.843 | 50 118 43 1.892 83 54 54 16
0.282 | 0.510 | 0.794 | 45 213 36 1.847 144 32 49 26
0.300 | 0.474 | 0.774 | 44 266 33 1.808 163 26 48 22
0.339 | 0.397 | 0.726 | 42 458 25 1.692 229 16 48 18
0.350 | 0.373 | 0.703 | 42 527 22 1.640 227 14 48 13
0.357 | 0.358 | 0.690 | 42 586 21 1.606 244 12 49 12
0.395 | 0.278 | 0.657 | 44 865 14 1454 178 9 52 25

Table 2: Fit parameters and length scales for staggered circles.

m | A [ Dy [Vou Xi [ wfa na x5 |asi Gz X3
0.150 | 0.776 | 0.939 | 90 15 86 1.962 12 | 342 92 4
0.169 | 0.741 | 0.921 | 78 21 74 1957 16 | 245 80 5
0.200 | 0.685 | 0.894 | 64 48 58 1.927 32| 118 67 6
0.226 | 0.638 | 0.864 | 56 70 50 1.915 48 83 59 10
0.250 | 0.594 | 0.850 | 52 109 44 1889 71 58 55 14
0.282 | 0.536 | 0.807 | 47 179 38 1.855 119 38 52 21
0.300 | 0.504 | 0.770 | 45 238 35 1.820 146 29 50 19
0.339 | 0.436 | 0.750 | 45 371 29 1.734 199 20 51 24
0.350 | 0.416 | 0.738 | 45 430 26 1.685 198 18 51 17
0.357 | 0.404 | 0.728 | 45 452 26 1.665 192 17 52 21
0.395 | 0.338 | 0.704 | 47 708 18 1.505 159 12 55 36

Table 3: Fit parameters and length scales for in-line diamonds.

m | A [ Dpo [Vau Xi ] w2 ne x5 |asi a2 X3
0.141 | 0.748 | 0.953 | 118 7 113 1.964 4| 653 120 2
0.150 | 0.733 | 0.891 | 105 31 99 1.946 25| 320 108 15
0.200 | 0.645 | 0.912 | 74 21 71 1965 18 | 249 76 7
0.212 | 0.624 | 0.884 | 68 38 64 1946 29 | 161 71 11
0.250 | 0.560 | 0.874 | 58 45 54 1943 35| 119 61 10
0.283 | 0.504 | 0.830 | 52 75 47 1920 54 78 55 14
0.300 | 0.475 | 0.814 | 50 95 44 1911 69 64 53 17
0.350 | 0.387 | 0.758 | 48 187 39 1.864 133 39 52 29
0.354 | 0.381 | 0.748 | 47 195 39 1.861 138 37 52 30
0.424 | 0.242 | 0.625 | 51 459 33 1.724 294 20 59 64




Table 4: Fit parameters and length scales for staggered diamonds.

m | A [ Dpo [Vou x| w2 ne x5 |asn W2 x3
0.141 | 0.753 | 0.951 | 119 6 116 1.971 5| 739 121 2
0.150 | 0.738 | 0.951 | 110 6 107 1.976 5| 667 111 2
0.200 | 0.656 | 0.923 | 75 20 71 1.952 13 | 242 78 5
0.212 | 0.637 | 0.916 | 70 17 68 1.965 13 | 257 72 5
0.250 | 0.579 | 0.874 | 59 42 55 1.941 31| 125 62 9
0.283 | 0.532 | 0.833 | 54 70 49 1923 51 84 57 14
0.300 | 0.509 | 0.821 | 52 83 47 1919 62 73 55 16
0.350 | 0.444 | 0.780 | 51 137 42 1875 90 49 55 18
0.354 | 0.439 | 0.774 | 50 142 43 1.882 100 49 54 22
0.424 | 0.359 | 0.710 | 56 276 41 1.793 176 33 63 34
0.495 | 0.289 | 0.651 | 75 422 43 1.636 202 30 89 33

Table 5: Fit parameters and length scales for in-line squares.

m | A [ Dpo [V xi | waa na x5 |asn JEBa X3
0.100 | 0.761 | 0.910 | 107 20 102 1.958 16 | 372 110 7
0.150 | 0.644 | 0.901 | 60 46 55 1.938 35| 128 62 14
0.200 | 0.540 | 0.848 | 42 110 35 1.883 63 45 45 16
0.250 | 0.446 | 0.777 | 34 280 24 1.788 133 19 37 19
0.300 | 0.361 | 0.695 | 30 594 14 1.617 179 9 33 35
0.350 | 0.278 | 0.634 | 28 1090 8§ 1.483 56 5 31 272

Table 6: Fit parameters and length scales for staggered squares.

m | A [ Dpo [V xi | wfaa ne x5 |asi JEBa X3
0.100 | 0.765 | 0.949 | 109 8 107 1.981 7| 613 112 3
0.150 | 0.650 | 0.900 | 60 35 55 1.932 21| 130 63 3
0.200 | 0.545 | 0.843 | 42 108 36 1.888 65 47 45 7
0.250 | 0.451 | 0.777 | 34 274 24 1.789 122 20 38 11
0.300 | 0.363 | 0.696 | 30 562 15 1.636 174 10 34 40
0.350 | 0.277 | 0.644 | 29 1045 8 1.488 60 6 32 254

Table 7: Fit parameters and length scales for in-phase sinusoidal channels.

m | A [ Dpo [Vai xi| %/ na x5 ] asa /32 X3
0.030 | 0.926 | 1.003 | 953 1 961 2.019 1] 1077 953 1
0.060 | 0.830 | 0.973 | 257 7 248  1.960 6 | 1437 263 3
0.090 | 0.725 | 0.931 | 126 36 117 1.928 27 294 132 10
0.120 | 0.619 | 0.882 | 81 83 72 1.901 60 115 87 18




Table 8: Fit parameters and length scales for out-of-phase sinusoidal channels.

m [ A [ Dy [ Jor xi| wfaa na x5 asqi Wz X3
0.030 | 0.926 | 0.962 | 891 5 867 1.943 4 | 7080 918 3
0.060 | 0.830 | 0.954 | 247 14 236 1.949 11 | 1053 255 6
0.090 | 0.722 | 0.937 | 122 35 113 1928 26 | 286 128 9
0.120 | 0.610 | 0.875 | 78 98 68 1.890 70 98 83 20

Table 9: Fit parameters and length scales for in-phase sawtooth channels.

m \ A \ Dro \ var oxi \ a;  na X3 | as1 /A2 X3
0.030 | 0.930 | 0.990 | 1358 1 1319 1.918 1 | 14166 1396 1
0.060 | 0.842 | 0.975 | 361 5 352 1.963 4 2581 370

0.090 | 0.743 | 0.946 | 174 22 164 1.945 18 558 180 8
0.120 | 0.639 | 0.901 | 109 63 98 1.905 46 181 116 14

Table 10: Fit parameters and length scales for out-of-phase sawtooth channels.

m | A [ Dpo | Var xi| %o na x5 | asa W2 X3
0.030 | 0.929 | 0.986 | 1309 1 1292 1.963 1 | 20091 1333 1
0.060 | 0.840 | 0.974 | 351 8 335 1.942 5 1839 361

0.090 | 0.737 | 0.974 | 171 14 163 1956 12 678 176 5
0.120 | 0.627 | 0.921 | 105 47 96 1921 35 214 111 13
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