Supporting Information

Structural Characterization of an Enantiopure Hydroxo-bridged Binuclear Iron(III) Complex with Empty One-dimensional Helical Channels

Md. Akhtarul Alam \dagger, Munirathinum Nethaji¥*, and Manabendra Ray \dagger^{*}

Figure S1. The cavity diameter in $\mathbf{1}$ was calculated by atom-atom distances between O8-C24 and O1-C11.

Figure S2. The magnetic susceptibility plots with parameters used in the fit. The fitting equation was taken from J. Chem. Soc., Dalton Trans., 2001, 2616 where g was kept fixed at 2.00 and Θ was taken as zero.

Figure S3. TGA plot of iodine doped 2 with derivative (DTA) plot of TGA as inset.

Rehydration of the dried crystals

Figure S4. TGA (left) and DTA (right) plot of $\mathbf{2}$ and $\mathbf{1 a}$ (dried at $90^{\circ} \mathrm{C} 2 \mathrm{~h}$) after exposure to water vapor for three days. Longer exposure to water does not have any effect on weight loss.

Figure S 5 showing the $3 \mathrm{H}_{2} \mathrm{O}$ waters (disordered in $\mathbf{1}$) and $1 \mathrm{H}_{2} \mathrm{O}$ in the channels of $\mathbf{1}$ and $\mathbf{1 a}$ respectively. Table S 1 have the bond parameters and occupancy used while solving the structure of 1 .

Figure S5. Water molecules in the channel of $\mathbf{1}(\mathrm{A})$ and $\mathbf{1 a}(\mathrm{B})$.

Table-S1

Atom	Occupancy		Distances (\AA)
In 1			
O11	0.6	O11-O11a	$2.6002(0.0302)$
O11a	0.4	O11-O12a	$2.9682(0.0275)$
O12	0.5	O11-O13	$2.4368(0.0311)$
O12a	0.5	O11a-O13a	$3.1709(0.0366)$
O13	0.6	O12a-O13a	$2.7710(0.0400)$
O13a	0.4	O1-O13a	$2.7850(0.0479)$
		O13-O13a	$3.3874(0.0419)$
		O11-O12	$3.1002(0.0301)$

In 1a

O11	1.0	O1-O11	2.790

A

B

Figure S6. (a) ORTEP diagram of the complex 1a (b) left handed helix formed by 1a.

Figure S7. (a) ORTEP diagram of the complex 2 (b) Empty channel of 2.

Figure S8. (a) ORTEP diagram of the complex 3 (b) Iodine molecules between two dimers in 3.

