
Manuscript Title: (Polymer-oligonucleotide) conjugate synthesis from an amphiphilic block copolymer; applications to DNA detection on microarray.

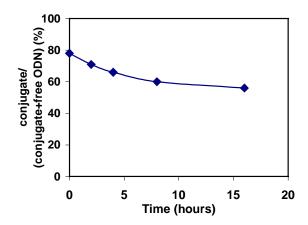
Bertrand de Lambert, Carole Chaix, Marie-Thérèse Charreyre, Alain Laurent, Arnaud Aigoui, Agnès Perrin-Rubens and Christian Pichot.

Supporting information:

a) MALDI-TOF MS analysis (in negative mode) of ODN population present in conjugate synthesis solutions (after collect of the peak eluted on HPLC at 25.8 min (Fig. 7)); a.i. = arbitrary intensity.

b) Capping study on HEG-CPG

Entry	Capping reaction	ODN synthesized from HEG-CPG
		(in % compared to experiment 1)
1	No capping	100 %
2	$ m Ac_2O^{\ a}$	51 %
3	Ac ₂ O (in solution) ^b	25 %
4	$Ac_2O^a + DPP(0.1M)$	18 %
5	Ac_2O (in solution) $^b + DPP$ (0.1M)	10 %
6	$Ac_2O + DPP (0.5M)$	7 %


^aAc₂O reaction on HEG-CPG beads inside the synthesizer

^bAc₂O reaction on HEG-CPG beads carried out in a flask before introduction of the beads in the synthesizer

The reactivity of DPP in addition to acetic anhydride was first evaluated on HEG-CPG (without polymer). For different capping conditions, 25 mer polyT were synthesized from supports and resulting ODN population was analyzed by SEC.

On experiments 2 and 3, two protocols were compared for acetic anhydride capping reaction, i.e. reaction achieved inside the synthesizer (experiment 2) and reaction in a flask with a high amount of reagent (experiment 3). Results clearly evidenced that capping step with acetic anhydride inside the synthesizer was not efficient enough, since 51 % of ODN were obtained in comparison to experiment 1. When acetic anhydride reaction was carried out in a flask, it was more performing but not complete, 25 % of ODN still being initiated from the support. Adding a capping step inside the synthesizer with phosphoramidite reagent (DPP) further improved hydroxyl capping on surface (parasite ODNs decreased from 51% to 18%, experiments 2 and 4). Best results were obtained when achieving successively Ac₂O capping and DPP (0.5 M in acetonitrile) capping directly inside the synthesizer. A total reduction of 93 % of parasite ODN population was reached in these conditions (entry 6).

c) Stability study of (block copolymer-ODN) conjugate in ammonia.

The poly(TBAm-b-(NAM/NAS))-dT25) conjugate was previously purified up to 80% by filtration on membrane prior to carry out degradation kinetics in ammonia (30% NH_4OH/H_2O).