Carbohydrate C-Sulfonyl Chlorides for the Simple, Convenient Access to Glycoconjugates

Lisbet Kværnø, Moritz Werder, Helmut Hauser and Erick M. Carreira*

Supporting Information

Organic synthesis.

General. Reactions in anhydrous solvents were all performed using oven dried glassware under an atmosphere of argon. Reagent grade solvents were all purchased from chemical companies and used without prior purification. Anhydrous THF, ether, toluene, $\mathrm{CH}_{3} \mathrm{CN}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were dried and purified through activated alumina columns as described. ${ }^{1}$ Diisopropylamine, triethylamine and pyridine were distilled from KOH . For chromatographic purification, technical grade solvents were distillated prior to use. TLC was performed using Machery-Nagel Alugram Sil G/UV 254 TLC plates and visualized with ultraviolet light at 254 nm followed by ceric ammonium molybdate, phosphomolybdic acid or $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{MeOH}$ stains. Chromatographic purification of products was accomplished by dry column vacuum chromatography ${ }^{2}$ on either Merck Silica Gel 60 (15-40 $\mu \mathrm{m}$) or Brunschwig silica $18-32,60 \AA(18-32 \mu \mathrm{M})$. Concentration under reduced pressure was performed by rotary evaporation at $40^{\circ} \mathrm{C}$ and the purified compounds were subsequently dried under high vacuum (<0.5 Torr). NMR spectra were recorded on a Varian Mercury 300 MHz apparatus operating at $300 \mathrm{MHz}, 75 \mathrm{MHz}$ and 282 MHz for ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C} /$ DEPT and ${ }^{19} \mathrm{~F}$, respectively, and chemical shifts (δ) were referenced to the internal solvent signals for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$. Multiplicities are reported as follows: ${ }^{1} \mathrm{H}$: $\mathrm{s}=$ singlet, $\mathrm{d}=$ dublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet; ${ }^{13} \mathrm{C}: \mathrm{C}, \mathrm{CH}, \mathrm{CH}_{2}, \mathrm{CH}_{3}$ (determined by DEPT); coupling constants are reported in Hz . IR-Spectra were recorded in CHCl_{3} on a Perkin Elmer Spectrum RX I FT-IR apparatus (thin films on NaCl plates) and are reported as absorption maxima in cm^{-1}. Elemental analysis was performed by the Mikroelementaranalytisches Laboratorium at the ETH, Zürich. High resolution matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) and electrospray ionization (ESI-MS) were performed by the mass spectrometry service of the LOC at the ETH, Zürich.

Mesylate 1A. Alcohol $\mathbf{1}^{3}$ ($1.181 \mathrm{~g}, 2.54 \mathrm{mmol}$) was dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, anhydrous pyridine $(3.0 \mathrm{~mL})$ followed by $\mathrm{MsCl}(0.50$ $\mathrm{mL}, 6.4 \mathrm{mmol}$) were added and the solution was stirred at $0^{\circ} \mathrm{C}$ for 1 h and at room temperature for 7 h followed by addition of sat. aq. $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$. The layers were separated and the aqueous layer extracted with EtOAc (3 x $25 \mathrm{~mL})$. The combined organic layer was washed successively with sat. aq. $\mathrm{NaHCO}_{3}(25 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})$, evaporated on celite and purified by dry column vacuum chromatography (4.1×3.3 cm) on silica gel eluting with a gradient of $0-100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ in hexane (v / v) followed by $0.25-1.0 \%$ MeOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{v} / \mathrm{v})$ to give mesylate $1 \mathrm{~A}(1.303 \mathrm{~g}, 94 \%)$ as a colourless oil after coevaporation with acetonitrile ($3 \times 10 \mathrm{~mL}$).
$\mathrm{R}_{\mathrm{f}}\left(1 \% \mathrm{MeOH}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{v} / \mathrm{v})\right) 0.60 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ б: 7.39-7.26 (15H, m), $5.02(1 \mathrm{H}, \mathrm{d}$, $J=10.6 \mathrm{~Hz}), 4.92(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.6 \mathrm{~Hz}), 4.84(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.6 \mathrm{~Hz}), 4.80(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.5 \mathrm{~Hz}), 4.66$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.8 \mathrm{~Hz}), 4.63(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.6 \mathrm{~Hz}), 4.60(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.7 \mathrm{~Hz}), 4.41-4.32(2 \mathrm{H}, \mathrm{m}), 4.02$ $(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.3 \mathrm{~Hz}), 3.85(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=3.7,10.0 \mathrm{~Hz}), 3.52(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=3.7,6.2 \mathrm{~Hz}), 3.50(1 \mathrm{H}, \mathrm{bs}), 3.39$ $(3 \mathrm{H}, \mathrm{s}), 2.98(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathrm{\delta}$: 138.30, 137.75, 137.56 (C), 128.36, 128.30, 127.94, 127.84, 127.76, $127.57(\mathrm{CH}), 98.06,81.73,79.69,76.86(\mathrm{CH}), 75.73,75.09,73.44\left(\mathrm{CH}_{2}\right)$, $68.59(\mathrm{CH}), 68.36\left(\mathrm{CH}_{2}\right), 55.46,37.54\left(\mathrm{CH}_{3}\right) . \mathrm{IR}\left(\mathrm{cm}^{-1}\right): 3031,2913,1497,1454,1359,1177,1089$, 1074, 1046, 1003, 965, 931, 813, 739, 699. MALDI-MS $\left(\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{O}_{8} \mathrm{~S}\right)$: [MNa$]^{+} 565.1873$ (calcd. 565.1872). Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{O}_{8} \mathrm{~S}: \mathrm{C}, 64.19 ; \mathrm{H}, 6.32$. Found: C, 63.99; H, 6.27.

Thioacetate $\mathbf{2 .}^{4.5}$ Mesylate $1 \mathrm{~A}(1.290 \mathrm{~g}, 2.38 \mathrm{mmol})$ was dissolved in EtOH (25 mL), KOSCMe ($869 \mathrm{mg}, 7.61 \mathrm{mmol}$) was added and the unclear solution was stirred at reflux for 4 h (orange precipitate). After cooling, 50% sat. aq. $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$ was added and the suspension was extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). The combined organic layer was washed successively with sat. aq. $\mathrm{NaHCO}_{3}(50 \mathrm{~mL}$) and $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$, evaporated on celite and purified by dry column vacuum chromatography (4.1 x 3.3 cm) on silica gel eluting with a gradient of $0-30 \%$ EtOAc in hexane (v / v) to give thioacetate 2 ($1.189 \mathrm{~g}, 96 \%$) as a light orange solid.
$R_{f}\left(1: 1\right.$ EtOAc/hexane (v/v)) 0.64; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ~ \delta: ~ 7.41-7.32(15 \mathrm{H}, \mathrm{m}), 5.03(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=10.6 \mathrm{~Hz}), 4.94(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.6 \mathrm{~Hz}), 4.86(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.6 \mathrm{~Hz}), 4.82(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.8 \mathrm{~Hz}), 4.69(1 \mathrm{H}$, $d, J=11.8 \mathrm{~Hz}), 4.66(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.6 \mathrm{~Hz}), 4.58(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.1 \mathrm{~Hz}), 4.02(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.0 \mathrm{~Hz}), 3.81$ $(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=2.5,7.5 \mathrm{~Hz}), 3.55(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.7,9.3 \mathrm{~Hz}), 3.48(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.1,13.7 \mathrm{~Hz}), 3.40(3 \mathrm{H}$, s), $3.35(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.5 \mathrm{~Hz}), 3.08(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.5,13.7 \mathrm{~Hz}), 2.36(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ס: 194.67, 138.46, 137.90, 137.78 (C), 128.33, 128.29, 128.03, 127.94, 127.85, 127.81, 127.74, $127.53(\mathrm{CH}), 97.72,81.69,80.36,79.78(\mathrm{CH}), 75.64,75.04,73.22\left(\mathrm{CH}_{2}\right), 69.23(\mathrm{CH}), 55.02\left(\mathrm{CH}_{3}\right)$, $30.73\left(\mathrm{CH}_{2}\right), 30.39\left(\mathrm{CH}_{3}\right)$. IR $\left(\mathrm{cm}^{-1}\right): 3063,3031,2908,1694,1497,1454,1358,1201,1156,1136$, 1092, 1072, 1050, 1029, 999, 955, 737, 698, 630. MALDI-MS ($\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{O}_{6} \mathrm{~S}$): [MNa] 545.1974 (calcd. 545.1974). Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{O}_{6} \mathrm{~S}: \mathrm{C}, 68.94 ; \mathrm{H}, 6.56$. Found: $\mathrm{C}, 68.77 ; \mathrm{H}, 6.63$.

Sulfinate salt 2A. ${ }^{6}$ Thioacetate $2(1.180 \mathrm{~g}, 2.26 \mathrm{mmol})$ was dissolved in AcOH (25 mL), KOAc ($4.082 \mathrm{~g}, 41.6 \mathrm{mmol}$) followed by Oxone $\left(2 \mathrm{KHSO}_{5} \cdot \mathrm{KHSO}_{4} \cdot \mathrm{~K}_{2} \mathrm{SO}_{4}, 4.019 \mathrm{~g}, 8.69 \mathrm{mmol}\right)$ were added and after stirring for 15 h , sat. aq. $\mathrm{NaHCO}_{3}(100 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and sat. aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}(50$ mL) were carefully added. After extraction with EtOAc ($4 \times 40 \mathrm{~mL}$), the combined organic layer was washed with sat. aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}(50 \mathrm{~mL})$, evaporated on celite and purified by dry column vacuum chromatography $(4.0 \times 3.3 \mathrm{~cm})$ on silica gel eluting with a gradient of 0-90\% EtOAc in hexane (v/v) followed by $0-50 \% \mathrm{MeOH}$ in EtOAc (v/v) to give sulfinate salt 2A ($1.116 \mathrm{~g}, 90 \%$) as a white solid.
$\mathrm{R}_{\mathrm{f}}(1: 3 \mathrm{MeOH} / E t O A c(\mathrm{v} / \mathrm{v}))$ 0.40; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ ס: 7.37-7.21 ($15 \mathrm{H}, \mathrm{m}$), $4.90(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=11.2 \mathrm{~Hz}), 4.86(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.6 \mathrm{~Hz}), 4.84(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.2 \mathrm{~Hz}), 4.73(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.1 \mathrm{~Hz}), 4.72(1 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=11.2 \mathrm{~Hz}), 4.64(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.5 \mathrm{~Hz}), 4.60(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.2 \mathrm{~Hz}), 4.16(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.2 \mathrm{~Hz}), 3.90$ ($1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.3 \mathrm{~Hz}$), $3.55(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.4,9.3 \mathrm{~Hz}), 3.48(3 \mathrm{H}, \mathrm{s}), 3.30-3.22(2 \mathrm{H}, \mathrm{m}), 2.92(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ $10.0,14.3 \mathrm{~Hz}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$: 140.03, 139.57, 139.55 (C), 129.42, 129.31, 129.15, 128.93, 128.89, 128.84, 128.67, 128.59 (CH), 98.53, 83.03, 81.65, 81.52 (CH), 76.44, 75.83, 73.85 $\left(\mathrm{CH}_{2}\right), 68.52(\mathrm{CH}), 55.95\left(\mathrm{CH}_{3}\right), 53.65\left(\mathrm{CH}_{2}\right) . \mathrm{IR}\left(\mathrm{cm}^{-1}\right): 3484,3030,2922,1497,1454,1360,1230$, 1198, 1177, 1156, 1093, 1058, 1028, 736, 696. MALDI-MS ($\left.\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{NaO}_{8} \mathrm{~S}\right)$: [MNa] 573.1536 (calcd. 573.1535).

Sulfonyl chloride 3. Sulfinate salt 2A ($696 \mathrm{mg}, 1.26 \mathrm{mmol}$) was suspended in anhydrous acetonitrile $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL}, 1: 1(\mathrm{v} / \mathrm{v}))$ at $0^{\circ} \mathrm{C}, \mathrm{Ph}_{3} \mathrm{P}(1.002 \mathrm{~g}, 3.8$ mmol) and thionyl chloride ($0.40 \mathrm{~mL}, 5.5 \mathrm{mmol}$) were added sequentially and the suspension was stirred at room temperature for 13 h . EtOAc/hexane (1:4 $(\mathrm{v} / \mathrm{v}), 100 \mathrm{~mL})$ was added, the suspension was filtered through celite $(4 \times 15$ mL EtOAc/hexane ($1: 3(\mathrm{v} / \mathrm{v})$) washings) and the filtrate was evaporated and dried shortly under vacuum to give sulfonyl chloride 3 ($657 \mathrm{mg}, 95 \%$) as a yellowish oil.
$R_{f}(1: 1 \mathrm{EtOAc} / \mathrm{hexane}(\mathrm{v} / \mathrm{v})) 0.65$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ס: 7.42-7.28 ($15 \mathrm{H}, \mathrm{m}$), $5.05(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=10.6 \mathrm{~Hz}), 4.96(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.8 \mathrm{~Hz}), 4.85(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.6 \mathrm{~Hz}), 4.83(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.8 \mathrm{~Hz}), 4.67(1 \mathrm{H}$, d, J = 12.5 Hz), $4.60(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.2 \mathrm{~Hz}), 4.60(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.1 \mathrm{~Hz}), 4.33(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.6 \mathrm{~Hz}), 4.07$ $(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.0 \mathrm{~Hz}), 3.85(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.2,13.7 \mathrm{~Hz}), 3.55(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.3 \mathrm{~Hz}), 3.52(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=10.0$ $\mathrm{Hz}), 3.46(3 \mathrm{H}, \mathrm{s}), 3.26(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.5 \mathrm{~Hz}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 138.02,137.57,137.06$ (C), 128.58, 128.36, 128.30, 128.23, 128.12, 127.92, $127.66(\mathrm{CH}), 98.00,81.56,79.41,78.49$ $(\mathrm{CH}), 75.85,74.76,73.38,66.75\left(\mathrm{CH}_{2}\right), 65.93(\mathrm{CH}), 55.90\left(\mathrm{CH}_{3}\right)$. MALDI-MS $\left(\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{ClO}_{7} \mathrm{~S}\right)$: $[\mathrm{MNa}]^{+} 569.1378$ (calcd. 569.1377).

Mesylate 4A. ${ }^{5}$ Alcohol $\mathbf{4}^{7}(1.069 \mathrm{~g}, 1.93 \mathrm{mmol})$ was dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$, anhydrous pyridine $(3.0 \mathrm{~mL})$ followed by MsCl ($0.50 \mathrm{~mL}, 6.4 \mathrm{mmol}$) were added and after stirring for 2.5 h , sat. aq. $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ was added. The layers were separated and the aqueous layer extracted with $\operatorname{EtOAc}(3 \times 25 \mathrm{~mL})$. The combined organic layer was washed successively with sat. aq. $\mathrm{NaHCO}_{3}(25 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})$, evaporated on celite and purified by dry column vacuum chromatography ($4.2 \times 3.3 \mathrm{~cm}$) on silica gel eluting with a gradient of 0-50\% EtOAc in hexane (v/v) to give mesylate 4A ($1.202 \mathrm{~g}, 99 \%$) as a colourless oil after coevaporation with acetonitrile ($3 \times 15 \mathrm{~mL}$).
$\mathrm{R}_{\mathrm{f}}(1: 1 \mathrm{EtOAc} / \mathrm{hexane}(\mathrm{v} / \mathrm{v}))$ 0.52; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: 7.39-7.18 (20H, m), 4.94-4.83 (4H, $\mathrm{m}), 4.66(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.9 \mathrm{~Hz}), 4.60(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.9 \mathrm{~Hz}), 4.56-4.50(3 \mathrm{H}, \mathrm{m}), 4.37(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.7$, 11.5 Hz), 3.77-3.45 (7H, m), $2.98(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ס: 138.10, 137.70, 137.59, 137.34 (C), 128.44, 128.36, 128.33, 128.29, 127.95, 127.79, 127.75, 127.67, 127.62, 127.51 (CH), 86.76, 78.62, 77.86, 77.32, 76.86 (CH), 75.60, 75.21, 75.10, 73.36, 69.20, $68.68\left(\mathrm{CH}_{2}\right), 37.92$ $\left(\mathrm{CH}_{3}\right)$. IR $\left(\mathrm{cm}^{-1}\right): 3031,2866,1497,1454,1356,1219,1175,1096,964,914,772,748,698$. MALDI-MS $\left(\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{O}_{8} \mathrm{~S}\right)$: [MNa] 655.2344 (calcd. 655.2342). Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{O}_{8} \mathrm{~S}: \mathrm{C}, 68.33$; $\mathrm{H}, 6.37$. Found: C, 68.33; $\mathrm{H}, 6.46$.

Thioacetate $5 .{ }^{8}$ Mesylate $4 \mathrm{~A}(1.190 \mathrm{~g}, 1.88 \mathrm{mmol})$ was dissolved in EtOH $(25 \mathrm{~mL})$, KOSCMe ($888 \mathrm{mg}, 7.78 \mathrm{mmol}$) was added and the unclear solution was stirred at reflux for 16 h (orange precipitate). After cooling, 50% sat. aq. $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$ was added and the suspension was extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). The combined organic layer was washed successively with sat. aq. $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$, evaporated on celite and purified by dry column vacuum chromatography $(4.0 \times 3.3 \mathrm{~cm})$ on silica gel eluting with a gradient of $0-40 \% \mathrm{EtOAc}$ in hexane $(\mathrm{v} / \mathrm{v})$ to give thioacetate 5 ($1.064 \mathrm{~g}, 92 \%$) as a light orange solid.
$\mathrm{R}_{\mathrm{f}}(1: 1 \mathrm{EtOAc} / \mathrm{hexane}(\mathrm{v} / \mathrm{v}))$ 0.69; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: 7.43-7.18 (20H, m), $4.93(2 \mathrm{H}, \mathrm{s})$, $4.91(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.8 \mathrm{~Hz}), 4.85(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.6 \mathrm{~Hz}), 4.68(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.6 \mathrm{~Hz}), 4.66(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.8$ $\mathrm{Hz}), 4.62(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.0 \mathrm{~Hz}), 4.58(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.8 \mathrm{~Hz}), 3.78-3.40(8 \mathrm{H}, \mathrm{m}), 3.10(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6.2$, $13.7 \mathrm{~Hz}), 2.36(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 194.82,138.28,138.10,137.85,137.60(\mathrm{C})$, 128.35, 128.30, 128.26, 128.19, 128.13, 127.77, 127.72, 127.68, 127.62, 127.58, 127.53, 127.41 $(\mathrm{CH}), 86.85,80.56,79.12,78.22,77.86(\mathrm{CH}), 75.52,75.18,74.99,73.42,68.66,31.10\left(\mathrm{CH}_{2}\right)$, $30.57\left(\mathrm{CH}_{3}\right)$. IR (cm ${ }^{-1}$): 3064, 3031, 2902, 2865, 1693, 1497, 1454, 1360, 1210, 1134, 1099, 1069, 1028, 737, 698, 629. MALDI-MS ($\mathrm{C}_{37} \mathrm{H}_{40} \mathrm{O}_{6} \mathrm{~S}$): [MH] ${ }^{+} 613.2617$ (calcd. 613.2524); [MNa] ${ }^{+} 635.2445$ (calcd. 635.2443).

Sulfinate salt 5A. Thioacetate $\mathbf{5}(2.190 \mathrm{~g}, 3.57 \mathrm{mmol})$ was suspended in $\mathrm{AcOH}(25 \mathrm{~mL})$, KOAc ($4.216 \mathrm{~g}, 43 \mathrm{mmol}$) followed by Oxone $\left(2 \mathrm{KHSO}_{5} \cdot \mathrm{KHSO}_{4} \cdot \mathrm{~K}_{2} \mathrm{SO}_{4}, 8.076 \mathrm{~g}, 17.5 \mathrm{mmol}\right)$ were added and after stirring for 11 h , sat. aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}(100 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ were carefully added. After extraction with EtOAc ($5 \times 100 \mathrm{~mL}$), the combined organic layer was washed with sat. aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}(50 \mathrm{~mL})$, evaporated on celite and purified by dry column vacuum chromatography ($4.3 \times 3.3 \mathrm{~cm}$) on silica gel eluting with a gradient of 0-90\% EtOAc in hexane (v / v) followed by $0-50 \% \mathrm{MeOH}$ in EtOAc (v/v) to give sulfinate salt $5 \mathrm{~A}(467 \mathrm{mg}, 20 \%$) as a white solid. Further extractions of the aqueous layer with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100+3 \times 50 \mathrm{~mL})$, evaporation on celite and purification by dry column vacuum chromatography ($4.3 \times 3.3 \mathrm{~cm}$) on silica gel eluting with a gradient of $0-100 \% \mathrm{MeOH}$ in EtOAc (v/v) followed by $20 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{v} / \mathrm{v})$ gave additional sulfinate salt 5A ($810 \mathrm{mg}, 35 \%$) as a white solid.
$\mathrm{R}_{\mathrm{f}}(1: 3 \mathrm{MeOH} / E t O A c(\mathrm{v} / \mathrm{v})) 0.49$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, suspension in $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2} / \mathrm{CD}_{3} \mathrm{OD}\right)$ ס: 7.37-7.18 $(20 \mathrm{H}, \mathrm{m}), 4.86-4.35(8 \mathrm{H}, \mathrm{m}), 3.86-3.21(8 \mathrm{H}, \mathrm{m}), 2.97(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.7,14.3 \mathrm{~Hz})$. MALDI-MS $\left(\mathrm{C}_{35} \mathrm{H}_{37} \mathrm{NaO}_{8} \mathrm{~S}\right)$: $[\mathrm{MH}]^{+} 641.1467$ (calcd. 641.2185); [MNa] 663.1206 (calcd. 663.2005).

Sulfonyl chloride 6. Sulfinate salt 5A ($810 \mathrm{mg}, 1.26 \mathrm{mmol}$) was suspended in anhydrous acetonitrile $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL}, 2: 1(\mathrm{v} / \mathrm{v}))$ at $0^{\circ} \mathrm{C}$, $\mathrm{Ph}_{3} \mathrm{P}(2.087 \mathrm{~g}, 7.96 \mathrm{mmol})$ and thionyl chloride ($1.50 \mathrm{~mL}, 21 \mathrm{mmol}$) were added sequentially at $0^{\circ} \mathrm{C}$ and the suspension was stirred at room temperature for 2.5 h . EtOAc/hexane ($1: 4(\mathrm{v} / \mathrm{v}), 100 \mathrm{~mL}$) was added, the suspension was filtered through celite ($2 \times 12.5 \mathrm{~mL}$ EtOAc/hexane (1:4 (v/v)) washings) and the filtrate was evaporated and dried shortly under vacuum to give sulfonyl chloride 6 (871 mg , quant.) as a light yellow oil.
$\mathrm{R}_{\mathrm{f}}\left(10 \% \mathrm{MeOH}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{v} / \mathrm{v})$) 0.84 ; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ס: 7.48-7.21 (20H, m), 5.02-4.85 $(4 \mathrm{H}, \mathrm{m}), 4.68-4.55(4 \mathrm{H}, \mathrm{m}), 3.98-3.35(9 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 137.86,137.72$, 137.68, 136.96 (C), 128.64, 128.34, 128.32, 128.27, 128.24, 128.20, 127.99, 127.79, 127.67, 127.61, 127.49 (CH), 86.83, 79.20, 78.46, 77.59 (CH), 75.68, 74.96, $74.82\left(\mathrm{CH}_{2}\right), 74.20(\mathrm{CH})$, 73.46, 68.04, $66.69\left(\mathrm{CH}_{2}\right)$. MALDI-MS $\left(\mathrm{C}_{35} \mathrm{H}_{37} \mathrm{ClO}_{7} \mathrm{~S}\right)$: $[\mathrm{MNa}]^{+} 659.1849$ (calcd. 659.1846).

Mesylate 7A. Alcohol 7^{9} ($895.3 \mathrm{mg}, 0.907 \mathrm{mmol}$) was dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, anhydrous pyridine $(1.0 \mathrm{~mL})$ followed by $\mathrm{MsCl}(0.20 \mathrm{~mL}, 2.6 \mathrm{mmol})$ were added and after stirring for 1 h , sat. aq. $\mathrm{NaHCO}_{3}(40 \mathrm{~mL})$ was added. The layers were separated and the aqueous layer extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic layer was washed successively with sat. aq. $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$, evaporated on celite and purified by dry column vacuum chromatography ($4.2 \times 3.3 \mathrm{~cm}$) on silica gel eluting with a gradient of 0-50\% EtOAc in hexane (v / v) to give mesylate 7A ($830.7 \mathrm{mg}, 86 \%$) as a white solid.
$R_{f}\left(1: 1\right.$ EtOAc/hexane (v/v)) 0.67; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ~ \delta: ~ 7.49-7.24(35 \mathrm{H}, \mathrm{m}), 5.31(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=11.2 \mathrm{~Hz}), 5.00(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.2 \mathrm{~Hz}), 4.98-4.79(6 \mathrm{H}, \mathrm{m}), 4.66-4.36(9 \mathrm{H}, \mathrm{m}), 4.09(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.3$ $\mathrm{Hz}), 3.90(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.8,10.9 \mathrm{~Hz}), 3.83(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.0 \mathrm{~Hz}), 3.75-3.62(5 \mathrm{H}, \mathrm{m}), 3.55-3.39(5 \mathrm{H}$, $\mathrm{m}), 2.97(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ס: 138.97, 138.37, 138.21, 138.04, 137.61 (C), 128.37, 128.29, 128.18, 128.08, 127.93, 127.84, 127.76, 127.38, 127.34, 127.24, 102.51, 84.86, 82.64, 78.70, 77.94, 76.84, 76.53, 76.38, $75.57(\mathrm{CH}), 75.22,75.09\left(\mathrm{CH}_{2}\right), 74.96,74.78\left(\mathrm{CH}_{2}, \mathrm{CH}\right), 73.21$, 73.02, 69.22, 68.89, $67.76\left(\mathrm{CH}_{2}\right), 37.74\left(\mathrm{CH}_{3}\right) . \operatorname{IR}\left(\mathrm{cm}^{-1}\right): 3063,3030,2867,1497,1454,1358$,

1277, 1209, 1174, 1150, 1092, 1071, 1028, 984, 922, 812, 737, 698, 527. MALDI-MS $\left(\mathrm{C}_{63} \mathrm{H}_{68} \mathrm{O}_{13} \mathrm{~S}\right)$: [MNa] ${ }^{+} 1087.4284$ (calcd. 1087.4278). Anal. Calcd for $\mathrm{C}_{63} \mathrm{H}_{68} \mathrm{O}_{13} \mathrm{~S}: \mathrm{C}, 71.03 ; \mathrm{H}, 6.43$. Found: C, 70.94; H, 6.62.

Thioacetate 8. Mesylate 7A ($825 \mathrm{mg}, 0.774 \mathrm{mmol}$) was dissolved in EtOH (20 mL), KOSCMe ($278 \mathrm{mg}, 2.43 \mathrm{mmol}$), iPrOH (10 mL) and THF (10 mL) were added and the orange solution was stirred at reflux for 3 h (orange precipitate). Additional KOSCMe ($512 \mathrm{mg}, 4.48 \mathrm{mmol}$) was added and the suspension was stirred at reflux for 16 h . After cooling, 50% sat. aq. $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$ was added and the suspension was extracted with ether $(4 \times 30 \mathrm{~mL})$. The combined organic layer was washed successively with sat. aq. $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$, evaporated on celite and purified by dry column vacuum chromatography ($4.2 \times 3.3 \mathrm{~cm}$) on silica gel eluting with a gradient of 0-50\% EtOAc in hexane (v / v) to give thioacetate $8(637 \mathrm{mg}, 79 \%$) as a light orange solid.
$R_{f}(1: 3 \mathrm{EtOAc} / \mathrm{hexane}(\mathrm{v} / \mathrm{v})) 0.45$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.43-7.19(35 \mathrm{H}, \mathrm{m}), 5.22(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=11.2 \mathrm{~Hz}), 4.92(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.2 \mathrm{~Hz}), 4.88(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.2 \mathrm{~Hz}), 4.87-4.71(5 \mathrm{H}, \mathrm{m}), 4.62(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $12.5 \mathrm{~Hz}), 4.60-4.43(5 \mathrm{H}, \mathrm{m}), 4.41(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.8 \mathrm{~Hz}), 4.06(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.3 \mathrm{~Hz}), 3.86(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ $3.7,11.2 \mathrm{~Hz}$), $3.75(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.6,10.9 \mathrm{~Hz}$), 3.69-3.55 ($5 \mathrm{H}, \mathrm{m}$), 3.51-3.31 ($6 \mathrm{H}, \mathrm{m}$), $3.05(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ $=6.8,13.7 \mathrm{~Hz}$), $2.34(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 195.04,139.19,138.53,138.30$, 138.24, 138.17, 137.96 (C), 128.33, 128.26, 128.20, 128.04, 127.79, 127.71, 127.63, 127.55, 127.47, 127.29, 127.19, 102.40, 85.12, 84.88, 82.71, 79.85, 79.30, 78.05, $77.87(\mathrm{CH}), 75.62,75.18$ $\left(\mathrm{CH}_{2}\right), 75.09(\mathrm{CH}), 74.94,74.81,73.26,73.21,68.96,67.86,31.12\left(\mathrm{CH}_{2}\right), 30.49\left(\mathrm{CH}_{3}\right) . \operatorname{IR}\left(\mathrm{cm}^{-1}\right)$: 3030, 2868, 1692, 1496, 1454, 1358, 1210, 1067, 1028, 773, 735, 698, 626. MALDI-MS $\left(\mathrm{C}_{64} \mathrm{H}_{68} \mathrm{O}_{11} \mathrm{~S}\right):[\mathrm{MNa}]^{+} 1067.4365$ (calcd. 1067.4380). Anal. Calcd for $\mathrm{C}_{64} \mathrm{H}_{68} \mathrm{O}_{11} \mathrm{~S}: \mathrm{C}, 73.54 ; \mathrm{H}, 6.56$. Found: C, 73.50; H, 6.60.

Sulfinate salt 8A. Thioacetate $8(631 \mathrm{mg}, 0.604 \mathrm{mmol})$ was suspended in AcOH (10 mL), KOAc ($933 \mathrm{mg}, 9.5 \mathrm{mmol}$) followed by Oxone ($2 \mathrm{KHSO}_{5} \cdot \mathrm{KHSO}_{4} \cdot \mathrm{~K}_{2} \mathrm{SO}_{4}, 1.179 \mathrm{~g}, 2.55$ mmol) were added and after stirring for 18 h , sat. aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}(50 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ were carefully added. After extraction with $\mathrm{CHCl}_{3}(4 \times 25 \mathrm{~mL})$, the combined organic layer was washed with sat. aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}(25 \mathrm{~mL})$, evaporated on celite and purified by dry column vacuum chromatography (4.1 x 3.3 cm) on silica gel eluting with a gradient of $0-20 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{v} / \mathrm{v})$ to give sulfinate salt $\mathbf{8 A}$ ($622 \mathrm{mg}, 96 \%$) as a colourless oil.
$\mathrm{R}_{\mathrm{f}}\left(10 \% \mathrm{MeOH}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{v} / \mathrm{v})\right)$ 0.29; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ס: 7.40-7.14 (35H, m), 5.19-4.34 ($15 \mathrm{H}, \mathrm{m}$), 4.17-3.22 ($15 \mathrm{H}, \mathrm{m}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 138.97,138.32,138.21,138.06$, 137.88, 137.84, 128.70, 128.36, 128.18, 128.05, 127.86, 127.76, 127.63, 127.57, 127.44, 127.29, 127.20, 126.94, 84.53, 84.45, 82.01, 79.48, 77.96, 77.75, 76.06, 76.01, 75.46, 74.94, 74.79, 74.67, $74.57,73.28,73.08,73.02,53.42$. IR $\left(\mathrm{cm}^{-1}\right): 3478,3063,3030,2870,1497,1454,1361,1315$, 1210, 1174, 1069, 1048, 1028, 736, 698, 621. MALDI-MS ($\mathrm{C}_{62} \mathrm{H}_{65} \mathrm{NaO}_{13} \mathrm{~S}$): $[\mathrm{MH}]^{+} 1073.4098$ (calcd. 1073.4122); [MNa] 1095.3926 (calcd. 1095.3941).

Sulfonyl chloride 9. Sulfinate salt $8 \mathrm{~A}(334 \mathrm{mg}, 0.311 \mathrm{mmol})$ was dissolved in anhydrous acetonitrile $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL}, 1: 1(\mathrm{v} / \mathrm{v}))$ at $0^{\circ} \mathrm{C}, \mathrm{Ph}_{3} \mathrm{P}(264 \mathrm{mg}, 1.01 \mathrm{mmol})$ and thionyl chloride $(0.10$ $\mathrm{mL}, 1.37 \mathrm{mmol}$) were added sequentially at $0^{\circ} \mathrm{C}$ and the suspension was stirred at room

foam.
$\mathrm{R}_{\mathrm{f}}(1: 3 \mathrm{EtOAc} / \mathrm{hexane}(\mathrm{v} / \mathrm{v})) 0.38$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ס: 7.50-7.26 $(35 \mathrm{H}, \mathrm{m}), 5.30(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=11.2 \mathrm{~Hz}), 4.98(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.6 \mathrm{~Hz}), 4.96-4.81(5 \mathrm{H}, \mathrm{m}), 4.79(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.6 \mathrm{~Hz}), 4.67-4.50(6 \mathrm{H}$, $\mathrm{m}), 4.48(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.8 \mathrm{~Hz}), 4.23-4.15(1 \mathrm{H}, \mathrm{m}), 3.98-3.91(2 \mathrm{H}, \mathrm{m}), 3.85-3.57(8 \mathrm{H}, \mathrm{m}), 3.51-3.38$ $(3 \mathrm{H}, \mathrm{m}), 3.30(1 \mathrm{H}, \mathrm{t} \mathrm{J}=9.0 \mathrm{~Hz}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 138.77,138.45,138.17,138.11$, 137.78, 137.27 (C), 128.63, 128.38, 128.31, 128.18, 128.12, 127.94, 127.78, 127.70, 127.63, 127.55, 127.42, 127.29, 102.32, 84.98, 84.80, 82.66, 79.23, 77.95, 77.82, 75.78 (CH), 75.60, 75.38 $\left(\mathrm{CH}_{2}\right), 75.12(\mathrm{CH}), 74.99,74.78,74.70\left(\mathrm{CH}_{2}\right), 74.21(\mathrm{CH}), 73.24,68.95,67.35,66.79\left(\mathrm{CH}_{2}\right) . \mathrm{IR}$ $\left(\mathrm{cm}^{-1}\right): 3089,3063,3030,2868,1496,1454,1362,1313,1280,1209,1167,1091,1067,1028$, 913, 771, 736, 698, 601. MALDI-MS ($\mathrm{C}_{62} \mathrm{H}_{65} \mathrm{ClO}_{12} \mathrm{~S}$): [MNa] 1091.3767 (calcd. 1091.3783).

Acetate 10A. ${ }^{10}$ Ezetimibe $10^{11}(5.530 \mathrm{~g}, 13.5 \mathrm{mmol})$ was suspended in 2-propanol (70 mL), aq. $\mathrm{NaOH}(2 \mathrm{M}, 15 \mathrm{~mL})$ followed by $\mathrm{Ac}_{2} \mathrm{O}(3.0 \mathrm{~mL}, 32 \mathrm{mmol})$ were added and the solution was stirred for 5 h followed by addition of sat. aq. $\mathrm{NaHCO}_{3}(200 \mathrm{~mL})$. After extraction with EtOAc ($4 \times 50 \mathrm{~mL}$), the combined organic layer was washed with sat. aq. $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$, evaporated on celite and purified by dry column vacuum chromatography ($5.2 \times 5.5 \mathrm{~cm}$) on silica gel eluting with a gradient of $0-100 \%$ EtOAc in hexane $(\mathrm{v} / \mathrm{v})$ to give acetate 10A $(5.930 \mathrm{~g}, 97 \%)$ as a white foam.
$\mathrm{R}_{\mathrm{f}}(1: 1 \mathrm{EtOAc} / \mathrm{hexane}(\mathrm{v} / \mathrm{v})) 0.35$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.31(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}), 7.29-7.18$ $(4 \mathrm{H}, \mathrm{m}), 7.09(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}), 6.99(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.7 \mathrm{~Hz}), 6.92(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.7 \mathrm{~Hz}), 4.67(1 \mathrm{H}, \mathrm{bs})$, $4.61(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}), 3.08-3.04(1 \mathrm{H}, \mathrm{m}), 2.75(1 \mathrm{H}, \mathrm{bs}), 2.29(3 \mathrm{H}, \mathrm{s}), 1.97-1.85(4 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}-$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 169.16,167.23,163.56,160.46,160.32,157.24,150.58,139.94,139.90$, $134.85,133.53,133.50$ (C), 127.32, 127.21, 126.78, 122.38, 118.34, 118.23, 115.95, 115.65, $115.35,115.07(\mathrm{CH}), 72.95,60.81,60.33(\mathrm{CH}), 36.61,25.07\left(\mathrm{CH}_{2}\right), 21.19\left(\mathrm{CH}_{3}\right)$. IR $\left(\mathrm{cm}^{-1}\right): 3443$, 3019, 2936, 2862, 1747, 1605, 1509, 1427, 1388, 1370, 1221, 1198, 1157, 1016, 835, 757, 668. MALDI-MS $\left(\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~F}_{2} \mathrm{NO}_{4}\right)$: [MH-H $\left.\mathrm{H}_{2}\right]^{+} 434.1556$ (calcd. 434.1568); [MNa] 474.1485 (calcd. 474.1493).

Silyl ether 10B. ${ }^{10}$ Acetate $10 \mathrm{~A}(1.864 \mathrm{~g}, 4.13 \mathrm{mmol})$ was dissolved in anhydrous DMF (25 mL), imidazole ($939 \mathrm{mg}, 13.8 \mathrm{mmol}$) and TBDMSCI ($1.853 \mathrm{~g}, 12.3 \mathrm{mmol}$) were added sequentially and the solution was stirred for 3 h followed by addition of 50% sat. aq. $\mathrm{NaHCO}_{3}(150 \mathrm{~mL})$. After extraction with EtOAc ($4 \times 40 \mathrm{~mL}$), the combined organic layer was washed successively with sat. aq. $\mathrm{NaHCO}_{3}(40 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$, evaporated on celite and purified by dry column vacuum chromatography ($4.2 \times 5.5 \mathrm{~cm}$) on silica gel eluting with a gradient of $0-30 \%$ EtOAc in hexane (v / v) to give silyl ether $10 \mathrm{~B}(2.137 \mathrm{~g}, 91 \%)$ as a colourless oil.
$\mathrm{R}_{\mathrm{f}}(1: 1 \mathrm{EtOAc} / \mathrm{hexane}(\mathrm{v} / \mathrm{v})) 0.69$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.31(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}), 7.26-7.20$ $(4 \mathrm{H}, \mathrm{m}), 7.10(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}), 6.98(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.7 \mathrm{~Hz}), 6.91(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.7 \mathrm{~Hz}), 4.67(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ $5.3 \mathrm{~Hz}), 4.58(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.9 \mathrm{~Hz}), 3.06-3.02(1 \mathrm{H}, \mathrm{m}), 2.28(3 \mathrm{H}, \mathrm{s}), 1.96-1.80(4 \mathrm{H}, \mathrm{m}), 0.88(9 \mathrm{H}, \mathrm{s})$, $0.02(3 \mathrm{H}, \mathrm{s}),-0.16(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: 169.16, 167.06, 163.42, 160.47, 160.16, 157.23, 150.62, 140.50, 135.10, 133.74, 133.70 (C), 127.26, 127.14, 126.77, 122.37, 118.27, 118.16, 115.89, 115.58, 115.03, 114.76(CH), 73.74, 60.67, $60.53(\mathrm{CH}), 37.94\left(\mathrm{CH}_{2}\right), 25.73\left(\mathrm{CH}_{3}\right)$, $24.55\left(\mathrm{CH}_{2}\right), 20.99\left(\mathrm{CH}_{3}\right), 18.07(\mathrm{C}),-4.74,-5.05\left(\mathrm{CH}_{3}\right) . \operatorname{IR}\left(\mathrm{cm}^{-1}\right): 2953,2930,2857,1752,1606$, 1510, 1472, 1426, 1385, 1370, 1252, 1219, 1197, 1166, 1140, 1102, 1086, 1015, 912, 835, 777, 736. MALDI-MS $\left(\mathrm{C}_{32} \mathrm{H}_{37} \mathrm{~F}_{2} \mathrm{NO}_{4} \mathrm{Si}\right)$: [MH-TBDMSOH] ${ }^{+} 434.1556$ (calcd. 434.1568); [MNa] ${ }^{+} 588.2347$ (calcd. 588.2358). Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{37} \mathrm{~F}_{2} \mathrm{NO}_{4} \mathrm{Si}: \mathrm{C}, 67.94 ; \mathrm{H}, 6.59 ; \mathrm{N}, 2.48$. Found: C, 67.94; H, 6.64; N, 2.37.

Phenol 11. ${ }^{10}$ Silyl ether 10B ($5.123 \mathrm{~g}, 9.06 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$, neutral alumina (50 g) was added and the suspension was evaporated to dryness. The coated alumina was dried shortly under vacuum and then heated to $70^{\circ} \mathrm{C}$ for 5.5 h . After cooling, the alumina was extracted with $10 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{x}$ 50 mL) and the combined organic extracts were evaporated on celite and purified by dry column vacuum chromatography (5.4×5.5 cm) on silica gel eluting with a gradient of 0-30\% EtOAc in hexane (v/v) to give phenol $\mathbf{1 1}$ (3.919 g, 83%) as a white foam.
$\mathrm{R}_{\mathrm{f}}(1: 3 \mathrm{EtOAc} / \mathrm{hexane}(\mathrm{v} / \mathrm{v}))$ 0.24; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ס: 7.26-7.14 (6H, m), 6.99-6.83 (6 H , m), $6.16(1 \mathrm{H}, \mathrm{bs}), 4.65(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.3 \mathrm{~Hz}), 4.52(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.9 \mathrm{~Hz}), 3.04-2.98(1 \mathrm{H}, \mathrm{m}), 1.92-1.76$ $(4 \mathrm{H}, \mathrm{m}), 0.86(9 \mathrm{H}, \mathrm{s}), 0.00(3 \mathrm{H}, \mathrm{s}),-0.17(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ס: 167.82, 163.28, 160.42, 156.12, 140.50, 140.45, 133.57 (C), 128.92, 127.19, 127.15, 127.08, 118.43, 118.32, $116.05,115.85,115.55,115.01,114.72(\mathrm{CH}), 73.82,61.17,60.35(\mathrm{CH}), 38.07\left(\mathrm{CH}_{2}\right), 25.89\left(\mathrm{CH}_{3}\right)$, $24.68\left(\mathrm{CH}_{2}\right), 18.25(\mathrm{C}),-4.54,-4.84\left(\mathrm{CH}_{3}\right)$. IR (cm^{-1}): 3351, 2953, 2938, 2857, 1722, 1615, 1604, 1510, 1450, 1391, 1361, 1252, 1223, 1156, 1103, 1087, 863, 834, 776, 760. MALDI-MS $\left(\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{~F}_{2} \mathrm{NO}_{3} \mathrm{Si}\right)$: [MH-TBDMSOH] ${ }^{+} 392.1451$ (calcd. 392.1462); [MH] 524.2409 (calcd. 524.2433); [MNa] ${ }^{+} 546.2242$ (calcd. 546.2252). Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{~F}_{2} \mathrm{NO}_{3} \mathrm{Si}: \mathrm{C}, 68.81$; $\mathrm{H}, 6.74$; N, 2.67. Found: C, 68.61; H, 6.82; N, 2.66.

Sulfonate 12A. Sulfonyl chloride 3 ($197 \mathrm{mg}, 0.36$ mmol) was suspended in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, anhydrous pyridine (0.5 mL) followed by phenol 11 ($70.0 \mathrm{mg}, 0.13 \mathrm{mmol}$) were added and the solution was stirred for 22 h , diluted with EtOAc (25 mL) and washed sequentially with sat. aq. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The organic layer was evaporated on celite and purified by dry column vacuum chromatography $(4.3 \times 2.0 \mathrm{~cm})$ on silica gel eluting with a gradient of $0-35 \% \mathrm{EtOAc}$ in hexane $(\mathrm{v} / \mathrm{v})$ to give sulfonate 12A ($125.5 \mathrm{mg}, 91 \%$) as a colourless oil/glass.
$\mathrm{R}_{\mathrm{f}}\left(1 \% \mathrm{MeOH}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{v} / \mathrm{v})\right) 0.77$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ס: 7.37-7.14 (23H, m), $7.00(2 \mathrm{H}, \mathrm{t}$, $J=8.7 \mathrm{~Hz}), 6.95(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.7 \mathrm{~Hz}), 5.05(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.2 \mathrm{~Hz}), 4.97(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.2 \mathrm{~Hz}), 4.84(1 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=11.8 \mathrm{~Hz}), 4.82(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.6 \mathrm{~Hz}), 4.69(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}), 4.67(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.5 \mathrm{~Hz}), 4.60$
$(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.7 \mathrm{~Hz}), 4.56(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.5 \mathrm{~Hz}), 4.54(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.6 \mathrm{~Hz}), 4.29(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.5 \mathrm{~Hz})$, $4.06(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.0 \mathrm{~Hz}), 3.57(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=3.1 \mathrm{~Hz}), 3.53(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.1 \mathrm{~Hz}), 3.46(3 \mathrm{H}, \mathrm{s}), 3.26(1 \mathrm{H}, \mathrm{t}, \mathrm{J}$ $=9.3 \mathrm{~Hz}$), $3.14(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.0,14.3 \mathrm{~Hz}), 2.96(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=1.9,6.8 \mathrm{~Hz}), 1.97-1.78(4 \mathrm{H}, \mathrm{m}), 0.90$ $(9 \mathrm{H}, \mathrm{s}), 0.04(3 \mathrm{H}, \mathrm{s}),-0.13(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 166.62,163.27,160.37,160.03$, 157.14, 148.91, 140.33, 138.05, 137.63, 137.29, 136.67, 133.45, 133.42 (C), 128.44, 128.31, 128.18, 128.04, 127.96, 127.86, 127.65, 127.15, 127.03, 126.97, 123.15, 118.13, 118.03, 115.93, 115.64, 115.02, 114.75 (CH), 97.92, 81.67, 79.60, $79.23(\mathrm{CH}), 75.78,74.86\left(\mathrm{CH}_{2}\right), 73.78(\mathrm{CH})$, $73.37\left(\mathrm{CH}_{2}\right), 65.64,60.66,60.48(\mathrm{CH}), 55.73\left(\mathrm{CH}_{3}\right), 51.63,38.06\left(\mathrm{CH}_{2}\right), 25.85\left(\mathrm{CH}_{3}\right), 24.69\left(\mathrm{CH}_{2}\right)$, 18.22 (C), $-4.54,-4.87\left(\mathrm{CH}_{3}\right)$. IR (cm ${ }^{-1}$): 3032, 2930, 2858, 1750, 1605, 1510, 1455, 1386, 1252, 1220, 1153, 1086, 1073, 1048, 870, 836, 755, 699. MALDI-MS ($\left.\mathrm{C}_{58} \mathrm{H}_{65} \mathrm{~F}_{2} \mathrm{NO}_{10} \mathrm{SiS}\right):\left[\mathrm{MNa}{ }^{+}\right.$ 1056.3969 (calcd. 1056.3964). Anal. Calcd for $\mathrm{C}_{58} \mathrm{H}_{65} \mathrm{~F}_{2} \mathrm{NO}_{10} \mathrm{SiS}$: C, $67.35 ; \mathrm{H}, 6.33$; $\mathrm{N}, 1.35$. Found: C, 67.43; H, 6.44; N, 1.33.

β-Lactam 12B. Sulfonate 12A ($105.1 \mathrm{mg}, 0.102 \mathrm{mmol})$ was dissolved in EtOH (5 mL), $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(20 \%(\mathrm{w} / \mathrm{w})$, 33 mg) was added and the suspension was evacuated 4 times with H_{2} and stirred under an H_{2}-atmosphere for 6 h . The suspension was evaporated on celite and purified by dry column vacuum chromatography ($4.2 \times 2.0 \mathrm{~cm}$) on silica gel eluting with a gradient of $0-10 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{v} / \mathrm{v})$ to give β-lactam 12B ($63.2 \mathrm{mg}, 81 \%$) as a
colourless oil.
$\mathrm{R}_{\mathrm{f}}\left(10 \% \mathrm{MeOH}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{v} / \mathrm{v})\right) 0.36$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, acetone- $\left.\mathrm{d}_{6}\right) \delta: 7.55(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz})$, $7.42(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}), 7.37(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5.9,8.4 \mathrm{~Hz}), 7.28(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5.0,9.3 \mathrm{~Hz}), 7.11-7.01$ $(4 \mathrm{H}, \mathrm{m}), 4.96(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.9 \mathrm{~Hz}), 4.84(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.3 \mathrm{~Hz}), 4.69(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.7 \mathrm{~Hz}), 4.61(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $5.0 \mathrm{~Hz}), 4.35(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.1 \mathrm{~Hz}), 4.16(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=1.2,10.0 \mathrm{~Hz}), 3.87(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.2,14.9 \mathrm{~Hz})$, $3.79(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}), 3.65(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.0 \mathrm{~Hz}), 3.56(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.0,14.9 \mathrm{~Hz}), 3.45-3.40(1 \mathrm{H}$, $\mathrm{m}), 3.38(3 \mathrm{H}, \mathrm{s}), 3.27-3.14(2 \mathrm{H}, \mathrm{m}), 2.00-1.88(4 \mathrm{H}, \mathrm{m}), 0.87(9 \mathrm{H}, \mathrm{s}), 0.05(3 \mathrm{H}, \mathrm{s}),-0.15(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}-$ NMR (75 MHz, acetone- d_{6}) $\delta: 167.25,163.96,160.84,160.75,157.65,150.14,141.91,141.87$, 138.13, 134.95, 134.91 (C), 128.32, 128.23, 123.84, 118.98, 118.88, 116.43, 116.12, 115.49, 115.21 (CH), 100.74, 74.77, 74.42, 73.55, 73.04, 68.01, 61.25, $60.50(\mathrm{CH}), 55.56\left(\mathrm{CH}_{3}\right), 52.83$, $38.50\left(\mathrm{CH}_{2}\right), 26.16\left(\mathrm{CH}_{3}\right), 25.34\left(\mathrm{CH}_{2}\right), 18.65(\mathrm{C}),-4.47,-4.71\left(\mathrm{CH}_{3}\right)$. IR $\left(\mathrm{cm}^{-1}\right): 3396,2951,2931$, 2857, 1754, 1701, 1605, 1510, 1426, 1385, 1250, 1220, 1151, 1103, 1088, 1053, 1015, 988, 872, 836, 778. MALDI-MS ($\mathrm{C}_{37} \mathrm{H}_{47} \mathrm{~F}_{2} \mathrm{NO}_{10} \mathrm{SSi}$): [MNa] 786.2559 (calcd. 786.2556).

β-Lactam 12. β-Lactam 12B ($58.9 \mathrm{mg}, 0.077 \mathrm{mmol}$) was dissolved in anhydrous THF (2.5 mL , teflon bottle), anhydrous pyridine (0.5 mL) followed by HF-pyridine complex (0.5 mL) were added and the solution was stirred for 14.5 h , diluted with ether (20 mL) and washed with sat. aq. $\mathrm{NaHCO}_{3}(3 \times 5 \mathrm{~mL})$. The organic layer was evaporated on celite and purified by dry column vacuum chromatography ($4.2 \times 2.0 \mathrm{~cm}$) on silica gel eluting with a gradient of $0-10 \%$ MeOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{v} / \mathrm{v})$ to give β-lactam 12 ($44.9 \mathrm{mg}, 90 \%$) as a white solid.
$\mathrm{R}_{\mathrm{f}}\left(10 \% \mathrm{MeOH}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{v} / \mathrm{v})\right) 0.26$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, acetone- $\left.\mathrm{d}_{6}\right) \delta: 7.56(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz})$, $7.43(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}), 7.37(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5.6,8.7 \mathrm{~Hz}), 7.30(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=4.7,9.0 \mathrm{~Hz}), 7.06(2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=9.3 \mathrm{~Hz}), 7.03(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}), 4.99(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}), 4.69(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.7 \mathrm{~Hz}), 4.61(1 \mathrm{H}, \mathrm{d}$, $J=5.0 \mathrm{~Hz}), 4.42(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.7 \mathrm{~Hz}), 4.34(1 \mathrm{H}, \mathrm{bs}), 4.15(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=1.2,8.7 \mathrm{~Hz}), 3.86(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ $1.2,14.9 \mathrm{~Hz}), 3.79(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}), 3.65(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.7 \mathrm{~Hz}), 3.57(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.0,14.9 \mathrm{~Hz})$, 3.44-3.38 (1H, m), $3.38(3 \mathrm{H}, \mathrm{s}), 3.32-3.14(2 \mathrm{H}, \mathrm{m}), 2.08-1.86(4 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, acetone$d_{6}$) : $167.42,163.87,160.85,157.67,150.13,142.52,138.18,134.93$ (C), 128.35, 128.22, 128.13, 123.83, 119.01, 118.89, 116.44, 116.13, 115.40, 115.11 (CH), 100.74, 74.77, 73.56, 73.04, 72.77, 68.01, 61.27, $60.56(\mathrm{CH}), 55.56\left(\mathrm{CH}_{3}\right), 52.83,37.54,25.70\left(\mathrm{CH}_{2}\right) . \operatorname{IR}\left(\mathrm{cm}^{-1}\right): 3395,2925,1732$, 1604, 1509, 1365, 1219, 1148, 1103, 1051, 1014, 871, 834, 752. MALDI-MS ($\mathrm{C}_{31} \mathrm{H}_{33} \mathrm{~F}_{2} \mathrm{NO}_{10} \mathrm{~S}$): $\left[_{\mathrm{MNa}}{ }^{+} 672.1693\right.$ (calcd. 672.1691). Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{33} \mathrm{~F}_{2} \mathrm{NO}_{10} \mathrm{~S}: \mathrm{C}, 57.31 ; \mathrm{H}, 5.12 ; \mathrm{N}, 2.16$. Found: C, 57.34; H, 5.26; N, 2.21.

Sulfonate 13A. Sulfonyl chloride 6 ($871 \mathrm{mg}, 1.26$ mmol) was suspended in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL), anhydrous pyridine (1.0 mL) followed by phenol 11 ($334 \mathrm{mg}, 0.634 \mathrm{mmol}$) were added and the solution was stirred for 13 h , diluted with EtOAc (50 mL) and washed sequentially with sat. aq. $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$. The organic layer was evaporated on celite and purified by dry column vacuum chromatography (4.3 x 3.3 cm) on silica gel eluting with a gradient of $0-100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ in hexane (v / v) to give sulfonate 13 A ($657 \mathrm{mg}, 92 \%$) as a white foam.
$\mathrm{R}_{\mathrm{f}}(1: 1 \mathrm{EtOAc} / \mathrm{hexane}(\mathrm{v} / \mathrm{v})) 0.76 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: 7.37-7.15 $(28 \mathrm{H}, \mathrm{m}), 7.01(2 \mathrm{H}, \mathrm{t}, \mathrm{J}$ $=8.7 \mathrm{~Hz}), 6.96(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.7 \mathrm{~Hz}), 5.03-4.81(4 \mathrm{H}, \mathrm{m}), 4.73-4.51(6 \mathrm{H}, \mathrm{m}), 3.95(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.4 \mathrm{~Hz})$, $3.78(4 \mathrm{H}, \mathrm{bs}), 3.57-3.53(1 \mathrm{H}, \mathrm{m}), 3.48(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.2 \mathrm{~Hz}), 3.40(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.0 \mathrm{~Hz}), 3.24(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ $9.3,14.9 \mathrm{~Hz}), 3.02-2.95(1 \mathrm{H}, \mathrm{m}), 1.97-1.80(4 \mathrm{H}, \mathrm{m}), 0.92(9 \mathrm{H}, \mathrm{s}), 0.06(3 \mathrm{H}, \mathrm{s}),-0.11(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}-$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 166.72,163.24,160.35,160.01,157.13,149.25,140.37,140.33,137.90$, $137.65,137.58,137.12,136.97,136.52,133.52,133.48$ (C), 128.46, 128.32, 128.28, 128.17, 128.02, 127.97, 127.81, 127.76, 127.67, 127.63, 127.52, 127.13, 127.02, 123.32, 118.13, 118.02, 115.90, 115.60, 115.01, $114.72(\mathrm{CH}), 86.83,79.13,78.83,77.73(\mathrm{CH}), 75.56,75.00,74.85\left(\mathrm{CH}_{2}\right)$, 74.19, $73.77(\mathrm{CH}), 73.31\left(\mathrm{CH}_{2}\right), 68.36,60.57,60.53(\mathrm{CH}), 51.31,38.03\left(\mathrm{CH}_{2}\right), 25.85\left(\mathrm{CH}_{3}\right), 24.67$ $\left(\mathrm{CH}_{2}\right), 18.20(\mathrm{C}),-4.57,-4.87\left(\mathrm{CH}_{3}\right)$. IR $\left(\mathrm{cm}^{-1}\right): 2951,2929,2858,1751,1605,1510,1454,1386$, 1362, 1251, 1220, 1151, 1102, 871, 835, 776, 754, 699. MALDI-MS ($\left.\mathrm{C}_{65} \mathrm{H}_{71} \mathrm{~F}_{2} \mathrm{NO}_{10} \mathrm{SiS}\right)$: [MNa] ${ }^{+}$ 1146.4440 (calcd. 1146.4434). Anal. Calcd for $\mathrm{C}_{65} \mathrm{H}_{71} \mathrm{~F}_{2} \mathrm{NO}_{10} \mathrm{SiS}$: C, $69.43 ; \mathrm{H}, 6.36 ; \mathrm{N}, 1.25$. Found: C, 69.27; H, 6.47; N, 1.28.

β-Lactam 20. Sulfonate 13A ($236 \mathrm{mg}, 0.210$ mmol) was dissolved in EtOH/EtOAc ($10 \mathrm{~mL}, 1: 1$ $(\mathrm{v} / \mathrm{v})), \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(20 \%(\mathrm{w} / \mathrm{w}), 73 \mathrm{mg})$ was added and the suspension was evacuated 4 times with H_{2} and stirred under an H_{2}-atmosphere for 3.5 h . The suspension was evaporated on celite and purified by dry column vacuum chromatography (4.6×2.0 cm) on silica gel eluting with a gradient of $0-20 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{v} / \mathrm{v})$ to give β-lactam 20 (145 $\mathrm{mg}, 90 \%$) as a white foam.
$\mathrm{R}_{\mathrm{f}}\left(10 \% \mathrm{MeOH}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{v} / \mathrm{v})\right) 0.25$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, acetone- $\left.\mathrm{d}_{6}\right) \delta$: $7.55(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6.5,8.7$ $\mathrm{Hz}), 7.47(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}), 7.40-7.20(4 \mathrm{H}, \mathrm{m}), 7.11-6.98(4 \mathrm{H}, \mathrm{m}), 4.97(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.3,10.5 \mathrm{~Hz})$, $4.83(1 \mathrm{H}, \mathrm{bs}), 4.61(1 \mathrm{H}, \mathrm{bs}), 4.48(1 \mathrm{H}, \mathrm{bs}), 4.30(1 \mathrm{H}, \mathrm{bs}), 3.90-3.81(3 \mathrm{H}, \mathrm{m}), 3.71-3.64(1 \mathrm{H}, \mathrm{m})$, $3.56-3.38(5 \mathrm{H}, \mathrm{m}), 3.25-3.14(2 \mathrm{H}, \mathrm{m}), 2.66(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}), 1.98-1.81(4 \mathrm{H}, \mathrm{m}), 0.88(9 \mathrm{H}, \mathrm{s}), 0.05$ (3H, s), $-0.15(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}\right.$, acetone- $\left.d_{6}\right)$ ס: 168.30, 161.88, 158.69, 151.25, 142.96, 139.63, 139.16, 139.13, 135.98 (C), 131.66, 131.56, 129.36, 129.28, 124.92, 120.00, 119.90, 117.46, 117.16, 116.62, 116.52 (CH), 82.13, 80.16, 76.75, 75.44, 74.46, $72.35(\mathrm{CH}), 63.64\left(\mathrm{CH}_{2}\right)$, 61.60, $61.55(\mathrm{CH}), 54.03,39.52\left(\mathrm{CH}_{2}\right), 27.20\left(\mathrm{CH}_{3}\right), 26.35\left(\mathrm{CH}_{2}\right), 19.68(\mathrm{C}),-3.44,-3.69\left(\mathrm{CH}_{3}\right)$. IR $\left(\mathrm{cm}^{-1}\right): 3380,2930,2858,1749,1604,1510,1385,1363,1220,1172,1149,1088,1032,1016$, 872, 835, 757. MALDI-MS ($\mathrm{C}_{37} \mathrm{H}_{47} \mathrm{~F}_{2} \mathrm{NO}_{10} \mathrm{SiS}$): [MNa] 786.2563 (calcd. 786.2556). Anal. Calcd for $\mathrm{C}_{37} \mathrm{H}_{47} \mathrm{~F}_{2} \mathrm{NO}_{10} \mathrm{SiS}: \mathrm{C}, 58.17 ; \mathrm{H}, 6.20 ; \mathrm{N}, 1.83$. Found: C, $58.02 ; \mathrm{H}, 6.26 ; \mathrm{N}, 1.85$.

β-Lactam 13. β-Lactam 21 ($31.5 \mathrm{mg}, 0.041 \mathrm{mmol})$ was dissolved in anhydrous THF (2.5 mL , teflon bottle), anhydrous pyridine (0.5 mL) followed by HF-pyridine complex (0.5 mL) were added and the solution was stirred for 24 h , diluted with ether (20 $\mathrm{mL})$ and washed with sat. aq. $\mathrm{NaHCO}_{3}(3 \times 5 \mathrm{~mL})$. The organic layer was evaporated on celite and purified by dry column vacuum chromatography $(4.3 \times 2.0 \mathrm{~cm})$ on silica gel eluting with a gradient of $0-20 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{v} / \mathrm{v})$ to give β-lactam 13 ($9.8 \mathrm{mg}, 37 \%$) as a white solid.
$\mathrm{R}_{\mathrm{f}}\left(10 \% \mathrm{MeOH}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{v} / \mathrm{v})\right) 0.22$ (run twice); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, acetone- $\left.\mathrm{d}_{6}\right) \delta: 7.55(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $8.7 \mathrm{~Hz}), 7.47(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}), 7.36(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5.6,8.7 \mathrm{~Hz}), 7.29(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=4.8,9.2 \mathrm{~Hz}), 7.06$ $(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}), 7.03(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.0 \mathrm{~Hz}), 4.98(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}), 4.68(1 \mathrm{H}, \mathrm{bs}), 4.58(1 \mathrm{H}, \mathrm{bs})$, $4.38(1 \mathrm{H}, \mathrm{bs}), 4.27(1 \mathrm{H}, \mathrm{bs}), 3.89-3.80(3 \mathrm{H}, \mathrm{m}), 3.66(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.6 \mathrm{~Hz}), 3.54-3.36(5 \mathrm{H}, \mathrm{m}), 3.24-$ $3.14(2 \mathrm{H}, \mathrm{m}), 2.00-1.86(4 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}\right.$, acetone- $\left.d_{6}\right) \delta: 168.48,151.29,143.63$, 139.23, 136.09 (C), 129.37, 129.29, 129.19, 124.97, 120.05, 119.94, 117.49, 117.18, 116.46, $116.18(\mathrm{CH}), 82.17,80.18,76.78,74.49,73.79,72.42(\mathrm{CH}), 63.67\left(\mathrm{CH}_{2}\right), 62.35,61.63(\mathrm{CH})$, 54.06, 38.62, $26.75\left(\mathrm{CH}_{2}\right)$. IR $\left(\mathrm{cm}^{-1}\right): 3364,2924,1734,1509,1388,1220,1148,1102,872,835$, 769. MALDI-MS $\left(\mathrm{C}_{31} \mathrm{H}_{33} \mathrm{~F}_{2} \mathrm{NO}_{10} \mathrm{~S}\right)$: [MNa] 672.1744 (calcd. 672.1691).

Sulfonate 14A. Sulfonyl chloride 9 ($271 \mathrm{mg}, \quad 0.253 \mathrm{mmol}$) was dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 mL), anhydrous pyridine (0.5 mL) followed by phenol 11 (75.7 mg , 0.145 mmol) were added and the solution was stirred for 38 h , diluted with EtOAc (50 mL) and washed sequentially with sat. aq. $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$. The organic layer was evaporated on celite and purified by dry column vacuum chromatography ($4.5 \times 3.3 \mathrm{~cm}$) on silica gel eluting with a gradient of $0-20 \%$ EtOAc in toluene (v / v) to give a $4: 1$ mixture of sulfonate 14 A and unreacted phenol $11(166 \mathrm{mg})$ as a white foam.
$\mathrm{R}_{\mathrm{f}}(1: 1 \mathrm{EtOAc} / \mathrm{hexane}(\mathrm{v} / \mathrm{v})) 0.73$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ס: 7.49-7.17 ($41 \mathrm{H}, \mathrm{m}$), $7.06(2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=8.7 \mathrm{~Hz}), 7.02(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}), 6.96(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}), 5.31(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.2 \mathrm{~Hz}), 5.01-4.74$ ($7 \mathrm{H}, \mathrm{m}$), 4.65-4.45 ($8 \mathrm{H}, \mathrm{m}$), $4.21(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.3 \mathrm{~Hz}$), 4.02-3.96 (2H, m), 3.86-3.60 (6H, m), 3.53$3.47(4 \mathrm{H}, \mathrm{m}), 3.33(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.3 \mathrm{~Hz}), 3.26(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.0 \mathrm{~Hz}), 3.19(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.3 \mathrm{~Hz}), 3.06-3.00$ $(1 \mathrm{H}, \mathrm{m}), 2.06-1.84(4 \mathrm{H}, \mathrm{m}), 0.96(9 \mathrm{H}, \mathrm{s}), 0.10(3 \mathrm{H}, \mathrm{s}),-0.07(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathrm{\delta}$: 166.70, 160.35, 160.00, 156.27, 149.33, 140.35, 140.31, 138.63, 138.26, 138.00, 137.90, 137.59, $137.45,137.29,136.51,133.47$ (C), 128.82, 128.73, 128.34, 128.19, 128.08, 127.98, 127.85, 127.66, 127.56, 127.45, 127.30, 127.25, 127.12, 127.01, 125.10, 123.32, 118.11, 118.01, 115.91, $115.60,115.00,114.93,114.72,102.39,84.93,84.80,82.56,78.82,78.55,77.95,75.99(\mathrm{CH})$, $75.60,75.31\left(\mathrm{CH}_{2}\right), 75.15(\mathrm{CH}), 74.96,74.76\left(\mathrm{CH}_{2}\right), 74.23,73.77(\mathrm{CH}), 73.21,73.08,68.97,67.62$ $\left(\mathrm{CH}_{2}\right), 61.02,60.57,60.39(\mathrm{CH}), 51.26,38.02\left(\mathrm{CH}_{2}\right), 25.85\left(\mathrm{CH}_{3}\right), 24.67\left(\mathrm{CH}_{2}\right), 18.19(\mathrm{C}),-4.56,-$ $4.87\left(\mathrm{CH}_{3}\right) .{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta:-114.94(1 \mathrm{~F}$, septet, $\mathrm{J}=4.3 \mathrm{~Hz}$), -117.10 (1 F , septet, $\mathrm{J}=$ 4.3 Hz). MALDI-MS ($\mathrm{C}_{92} \mathrm{H}_{99} \mathrm{~F}_{2} \mathrm{NO}_{15} \mathrm{SiS}$): [MNa] ${ }^{+} 1578.6365$ (calcd. 1578.6370).

β-Lactam 14B. Sulfonate 14A (166 mg 4:1 mixture) was dissolved in $\mathrm{EtOH}(5 \mathrm{~mL}), \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(20 \%(\mathrm{w} / \mathrm{w})$, 94 mg) was added and the suspension was evacuated 4 times with H_{2} and stirred under an $\mathrm{H}_{2}-$ atmosphere for 11.5 h . The suspension was evaporated on celite and purified by dry column vacuum chromatography ($4.3 \times 2.0 \mathrm{~cm}$) on silica gel eluting with a gradient of $0-10 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{v} / \mathrm{v})$ to give β-lactam 14B ($69.5 \mathrm{mg}, 52 \%$ from 11) as a colourless oil.
$\mathrm{R}_{\mathrm{f}}\left(20 \% \mathrm{MeOH}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{v} / \mathrm{v})\right)$ 0.46; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) ~ \delta: 7.46-7.38(4 \mathrm{H}, \mathrm{m}), 7.31-7.23$ $(4 \mathrm{H}, \mathrm{m}), 7.04-6.95(4 \mathrm{H}, \mathrm{m}), 4.75-4.68(1 \mathrm{H}, \mathrm{m}), 4.44(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}), 3.92-3.80(5 \mathrm{H}, \mathrm{m}), 3.69-$ $3.18(11 \mathrm{H}, \mathrm{m}), 3.10-3.05(1 \mathrm{H}, \mathrm{m}), 1.95-1.75(4 \mathrm{H}, \mathrm{m}), 0.86(9 \mathrm{H}, \mathrm{s}), 0.01(3 \mathrm{H}, \mathrm{s}),-0.19(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}-$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta: 169.31$, 169.21, 161.76, 158.91, 150.96, 142.28, 138.45, 135.01, 134.98, 131.06, 130.95 (C), 128.83, 124.50, 119.92, 119.83, 116.99, 116.68, 116.10, 116.04, 115.81, 115.74, 104.54, 80.33, 80.10, 78.11, 77.81, 77.72, 76.30, 75.13, 74.89, 73.61, 71.38 (CH), 62.47, $61.63\left(\mathrm{CH}_{2}\right), 61.56,61.47(\mathrm{CH}), 53.26,38.83\left(\mathrm{CH}_{2}\right), 26.38\left(\mathrm{CH}_{3}\right), 25.75\left(\mathrm{CH}_{2}\right), 19.04(\mathrm{C})$, 4.40, -4.70 (CH_{3}). ${ }^{19} \mathrm{~F}-\mathrm{NMR}\left(282 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta:-117.94(1 \mathrm{~F}$, septet, $J=4.3 \mathrm{~Hz}$), $-120.10(1 \mathrm{~F}$, septet, $J=4.3 \mathrm{~Hz}$). MALDI-MS ($\mathrm{C}_{43} \mathrm{H}_{57} \mathrm{~F}_{2} \mathrm{NO}_{15} \mathrm{SiS}$): [MNa] 948.3088 (calcd. 948.3084).

β-Lactam 14. β-Lactam 14B (59.5 $\mathrm{mg}, 0.073 \mathrm{mmol}$) was dissolved in anhydrous THF (2.0 mL , teflon bottle), anhydrous pyridine (0.40 mL) followed by HF.pyridine complex $(0.40 \mathrm{~mL})$ were added and the solution was stirred for 14 h . Sat. aq. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ was added and the
suspension was evaporated on celite and purified by dry column vacuum chromatography (4.4 x 2.0 cm) on silica gel eluting with a gradient of $10-20 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{v} / \mathrm{v})$ to give β-lactam 14 ($38.1 \mathrm{mg}, 64 \%$) as a white solid.
$\mathrm{R}_{\mathrm{f}}\left(10 \% \mathrm{MeOH}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{v} / \mathrm{v})\right) 0.17$ (eluted thrice); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta: 7.45(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ $9.3 \mathrm{~Hz}), 7.40(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}), 7.33-7.24(4 \mathrm{H}, \mathrm{m}), 7.02(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}), 6.98(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7$ $\mathrm{Hz}), 4.90(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.9 \mathrm{~Hz}), 4.60(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5.0,6.2 \mathrm{~Hz}), 4.43(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}), 3.92-3.79(5 \mathrm{H}$, $\mathrm{m}), 3.69-3.49(4 \mathrm{H}, \mathrm{m}), 3.44-3.18(6 \mathrm{H}, \mathrm{m}), 3.12-3.06(1 \mathrm{H}, \mathrm{m}), 1.99-1.82(4 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, $\mathrm{CD}_{3} \mathrm{OD}$) $\delta: 169.31,165.08,162.17,161.85,158.96,150.98,142.15,138.51,135.01$ (C), 128.88, 128.76, 124.46, 119.97, 119.86, 116.99, 116.68, 116.13, 115.84, 104.54, 80.35, 80.06, 78.11, 77.81, 77.71, 76.31, 74.91, 73.77, 73.63, 71.39 (CH), 62.45, $61.50\left(\mathrm{CH}_{2}\right), 61.42(\mathrm{CH}), 53.26$, 37.45, $26.12\left(\mathrm{CH}_{2}\right) .{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(282 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta:-118.08(1 \mathrm{~F}$, septet, $\mathrm{J}=4.3 \mathrm{~Hz}),-120.21(1 \mathrm{~F}$, septet, $J=4.3 \mathrm{~Hz}$). MALDI-MS $\left(\mathrm{C}_{37} \mathrm{H}_{43} \mathrm{~F}_{2} \mathrm{NO}_{15} \mathrm{~S}\right)$: [MNa] ${ }^{+} 834.2223$ (calcd. 834.2219).

Silyl ether 16. Ezetimibe 10^{11} ($279 \mathrm{mg}, 0.681 \mathrm{mmol}$) was dissolved in anhydrous DMF (5 mL), imidazole ($262 \mathrm{mg}, 3.84$ mmol) and TBDMSCl ($500 \mathrm{mg}, 3.32 \mathrm{mmol}$) were added sequentially and the solution was stirred for 5 h followed by addition of 50% sat. aq. $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$. After extraction with EtOAc ($4 \times 20 \mathrm{~mL}$), the combined organic layer was washed successively with sat. aq. $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$, evaporated on celite and purified by dry column vacuum chromatography ($3.8 \times 3.3 \mathrm{~cm}$) on silica gel eluting with a gradient of 0-10\% EtOAc in hexane (v/v) to give silyl ether 16 ($424 \mathrm{mg}, 97 \%$) as a colourless oil.
$\mathrm{R}_{\mathrm{f}}(1: 3 \mathrm{EtOAc} / \mathrm{hexane}(\mathrm{v} / \mathrm{v}))$ 0.65; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: 7.25-7.21 (4H, m), $7.17(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $8.1 \mathrm{~Hz}), 6.98(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.7 \mathrm{~Hz}), 6.91(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.7 \mathrm{~Hz}), 6.83(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}), 4.66(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ $5.6 \mathrm{~Hz}), 4.51(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}), 3.08-3.02(1 \mathrm{H}, \mathrm{m}), 1.96-1.78(4 \mathrm{H}, \mathrm{m}), 0.98(9 \mathrm{H}, \mathrm{s}), 0.88(9 \mathrm{H}, \mathrm{s})$, $0.20(6 \mathrm{H}, \mathrm{s}), 0.02(3 \mathrm{H}, \mathrm{s}),-0.16(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 167.27,163.28,160.27$, 160.04, 157.06, 155.71, 140.58, 140.54, 133.89, 133.86 (C), 129.99, 127.22, 127.11, 126.94, 120.56, 118.24, 118.15, 115.74, 115.44, 114.99, 114.72 (CH), 73.84, 61.08, $60.44(\mathrm{CH}), 38.08$ $\left(\mathrm{CH}_{2}\right), 25.90,25.68\left(\mathrm{CH}_{3}\right), 24.75\left(\mathrm{CH}_{2}\right), 18.26,18.24(\mathrm{C}),-4.28,-4.52,-4.83\left(\mathrm{CH}_{3}\right)$. IR $\left(\mathrm{cm}^{-1}\right): 2954$, 2930, 2858, 1752, 1607, 1510, 1385, 1259, 1223, 1101, 1085, 914, 834, 778. MALDI-MS $\left(\mathrm{C}_{36} \mathrm{H}_{49} \mathrm{~F}_{2} \mathrm{NO}_{3} \mathrm{Si}_{2}\right.$): [MH-TBDMSOH] 506.2329 (calcd. 506.2327); [MH] 638.3289 (calcd. 638.3297); [MNa] ${ }^{+} 660.3117$ (calcd. 660.3117). Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{49} \mathrm{~F}_{2} \mathrm{NO}_{3} \mathrm{Si}_{2}$: $\mathrm{C}, 67.78 ; \mathrm{H}, 7.74$; N, 2.20. Found: C, 67.70; H, 7.60; N, 2.02.

Bicycle 18. $\mathrm{LiAlH}_{4}(57 \mathrm{mg}, 1.5$ mmol) and $\mathrm{AlCl}_{3}(200 \mathrm{mg}, 1.5$ mmol) were suspended in anhydrous ether (15 mL), refluxed for 40 min and cooled to $0^{\circ} \mathrm{C}$. Azetidinone 32 ($180.8 \mathrm{mg}, 0.283$ mmol) dissolved in anhydrous ether (5 mL) was added and after stirring at $0^{\circ} \mathrm{C}$ for $30 \mathrm{~min}, \mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ was added dropwise. The suspension was evaporated on celite and purified by dry column vacuum chromatography (3.5 x
3.3 cm) on silica gel eluting with a gradient of $0-50 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ in hexane (v / v) to give bicycle 18 ($110.8 \mathrm{mg}, 63 \%$) and olefin 18A ($24.1 \mathrm{mg}, 16 \%$) as colourless oils.
18: $\mathrm{R}_{\mathrm{f}}(1: 9 \mathrm{EtOAc} / \mathrm{hexane}(\mathrm{v} / \mathrm{v})) 0.23$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ס: 7.18-7.14 (2H, m), $6.95(2 \mathrm{H}, \mathrm{t}$, $J=8.7 \mathrm{~Hz}), 6.88(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}), 6.74(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}), 6.68(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.8,8.4 \mathrm{~Hz}), 6.44$ $(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6.5,8.7 \mathrm{~Hz}), 6.38(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.8,9.6 \mathrm{~Hz}), 4.48(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5.0,6.8 \mathrm{~Hz}), 3.78(1 \mathrm{H}$, bs), $3.61(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}), 3.26(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.1,11.2 \mathrm{~Hz}), 2.91(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.8,11.5 \mathrm{~Hz}$), 1.91$1.85(1 \mathrm{H}, \mathrm{m}), 1.68-1.44(3 \mathrm{H}, \mathrm{m}), 1.16-1.04(1 \mathrm{H}, \mathrm{m}), 0.99(9 \mathrm{H}, \mathrm{s}), 0.80(9 \mathrm{H}, \mathrm{s}), 0.20(6 \mathrm{H}, \mathrm{s}), 0.06$ $(3 \mathrm{H}, \mathrm{s}),-0.21(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 163.60,160.36,157.37,154.27,141.53$, 141.01, 138.13 (C), 130.07, 127.56, 127.46, 125.58, 125.50, 120.01, 117.27, 116.98, 115.17, 114.89, 114.78, 114.08, $113.79(\mathrm{CH}), 74.64,48.97(\mathrm{CH}), 44.52\left(\mathrm{CH}_{2}\right), 39.89(\mathrm{CH}), 38.67,28.28$ $\left(\mathrm{CH}_{2}\right), 26.00,25.90\left(\mathrm{CH}_{3}\right), 18.38,18.32(\mathrm{C}),-4.16,-4.43,-4.77\left(\mathrm{CH}_{3}\right)$. IR $\left(\mathrm{cm}^{-1}\right): 2955,2930,2858$, 1607, 1506, 1472, 1408, 1361, 1258, 1222, 1170, 1144, 1085, 1006, 915, 837, 808, 779, 735, 667. MALDI-MS $\left(\mathrm{C}_{36} \mathrm{H}_{51} \mathrm{~F}_{2} \mathrm{NO}_{2} \mathrm{Si}_{2}\right)$: [MH-TBDMSOH] ${ }^{+} 492.2517$ (calcd. 492.2534); [M] ${ }^{+} 623.3414$ (calcd. 623.3426). Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{51} \mathrm{~F}_{2} \mathrm{NO}_{2} \mathrm{Si}_{2}$: C, 69.30; H, 8.24; $\mathrm{N}, 2.24$. Found: C, 69.47; H, 8.32; N , 2.15.

18B: $\mathrm{R}_{\mathrm{f}}(1: 9 \mathrm{EtOAc} / \mathrm{hexane}(\mathrm{v} / \mathrm{v})) 0.70$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ס: 7.29-7.25 (2H, m), $7.18(2 \mathrm{H}$, $\mathrm{t}, \mathrm{J}=8.7 \mathrm{~Hz}), 6.19(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.7 \mathrm{~Hz}), 6.76(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}), 6.30(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=15.6 \mathrm{~Hz}), 6.04(1 \mathrm{H}$, $\mathrm{dd}, \mathrm{J}=6.8,15.6 \mathrm{~Hz}), 4.68(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5.0,7.5 \mathrm{~Hz}), 2.26-2.13(2 \mathrm{H}, \mathrm{m}), 1.91-1.66(2 \mathrm{H}, \mathrm{m}), 0.98$ $(9 \mathrm{H}, \mathrm{s}), 0.89(9 \mathrm{H}, \mathrm{s}), 0.19(6 \mathrm{H}, \mathrm{s}), 0.04(3 \mathrm{H}, \mathrm{s}),-0.16(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 163.42$, 160.18, 154.72, 141.28, 131.10, 129.49 (C), 128.25, 127.42, 127.32, 126.87, 120.10, 114.97, 114.69, $73.85(\mathrm{CH}), 40.64,28.94\left(\mathrm{CH}_{2}\right), 25.84,25.68\left(\mathrm{CH}_{3}\right), 18.22,18.18(\mathrm{C}),-4.42,-4.60,-4.91$ $\left(\mathrm{CH}_{3}\right)$. IR (cm ${ }^{-1}$): 3030, 2956, 2930, 2887, 2858, 1605, 1509, 1472, 1362, 1258, 1223, 1169, 1155, 1088, 1006, 965, 915, 837, 804, 779, 701, 665.

Azetidine 19. LiAlH_{4} ($57 \mathrm{mg}, 1.5 \mathrm{mmol}$) and AlCl_{3} (200 $\mathrm{mg}, 1.5 \mathrm{mmol}$) were suspended in anhydrous ether (15 mL), refluxed for 30 min and cooled to $0^{\circ} \mathrm{C} . \beta$-Lactam 12 ($26.8 \mathrm{mg}, 0.041 \mathrm{mmol}$) dissolved in anhydrous THF ($1 \mathrm{~mL}, 2 \times 0.5 \mathrm{~mL}$ rinse) was added and after stirring at $0^{\circ} \mathrm{C}$ for 10 min , sat. aq. $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$ was added dropwise. The suspension was evaporated on celite and purified by dry column vacuum chromatography ($4.7 \times 2.0 \mathrm{~cm}$) on silica gel eluting with a gradient of $0-12 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{v} / \mathrm{v})$ to give azetidine 19 ($20.4 \mathrm{mg}, 78 \%$) as a colourless oil.
$\mathrm{R}_{\mathrm{f}}\left(10 \% \mathrm{MeOH}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{v} / \mathrm{v})\right)$ 0.20; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, acetone- $\left.\mathrm{d}_{6}\right)$ ס: 7.63-7.59 ($2 \mathrm{H}, \mathrm{m}$), 7.49$7.42(2 \mathrm{H}, \mathrm{m}), 7.36-7.29(2 \mathrm{H}, \mathrm{m}), 7.10-7.01(2 \mathrm{H}, \mathrm{m}), 6.92-6.77(2 \mathrm{H}, \mathrm{m}), 6.40-6.35(2 \mathrm{H}, \mathrm{m}), 4.72(1 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=3.7 \mathrm{~Hz}), 4.62(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.0 \mathrm{~Hz}), 4.61(1 \mathrm{H}, \mathrm{bs}), 4.52(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.9 \mathrm{~Hz}), 4.31(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=4.4$ $\mathrm{Hz})$, 4.21-4.15 ($2 \mathrm{H}, \mathrm{m}$), $3.90(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.2,14.9 \mathrm{~Hz}$), $3.76(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}), 3.68(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ $3.7,9.3 \mathrm{~Hz}), 3.66-3.57(2 \mathrm{H}, \mathrm{m}), 3.41(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.38-3.31(1 \mathrm{H}, \mathrm{m}), 3.25(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=5.0,13.7$ Hz), $2.62(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6.8,14.3 \mathrm{~Hz}), 1.92-1.84(1 \mathrm{H}, \mathrm{m}), 1.74-1.57(3 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, acetone- d_{6}) $\delta: 163.90,160.69,158.31,155.22,149.93,149.72,149.52,142.90,142.84$ (C), 129.60, 129.44, 128.30, 128.24, 128.13, 123.51, 122.99, 115.95, 115.91, 115.66, 115.40, 115.11, 113.87, 113.77, 113.67, 113.57 (CH), 100.84, 74.86, 74.03, 73.68, 73.14, 72.87, 68.09 (CH), 56.67 $\left(\mathrm{CH}_{2}\right), 55.63\left(\mathrm{CH}_{3}\right), 52.83\left(\mathrm{CH}_{2}\right), 42.78(\mathrm{CH}), 37.60,29.83\left(\mathrm{CH}_{2}\right) . \mathrm{IR}\left(\mathrm{cm}^{-1}\right): 3390,2935,2850$, 1605, 1508, 1474, 1366, 1221, 1147, 1052, 1015, 874, 824, 755. MALDI-MS ($\left.\mathrm{C}_{31} \mathrm{H}_{35} \mathrm{~F}_{2} \mathrm{NO}_{9} \mathrm{~S}\right)$:
 (calcd. 658.1898).

Azetidine 21A. $\mathrm{LiAlH}_{4}(57 \mathrm{mg}, 1.5 \mathrm{mmol})$ and $\mathrm{AlCl}_{3}(200 \mathrm{mg}, 1.5 \mathrm{mmol})$ were suspended in anhydrous ether (15 mL), refluxed for 30 min and cooled to $0^{\circ} \mathrm{C} . \beta$-Lactam $20(41.3 \mathrm{mg}, 0.054 \mathrm{mmol})$ dissolved in anhydrous ether (5 mL) was added and after stirring at $0^{\circ} \mathrm{C}$ for 10 min , sat. aq. $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$ was added dropwise. The suspension was evaporated on celite and purified by dry column vacuum chromatography (4.2 x 2.0 cm) on silica gel eluting with a gradient of $0-20 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{v} / \mathrm{v})$ to give azetidine 21A ($38.2 \mathrm{mg}, 94 \%$) as a white foam.
$\mathrm{R}_{\mathrm{f}}\left(10 \% \mathrm{MeOH}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{v} / \mathrm{v})\right) 0.31$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, acetone- $\left.\mathrm{d}_{6}\right) \delta: 7.58(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz})$, $7.47(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}), 7.29(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5.6,8.7 \mathrm{~Hz}), 7.05(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.7 \mathrm{~Hz}), 6.88(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.0$ $\mathrm{Hz}), 6.37(2 \mathrm{H}, \mathrm{dd}, \mathrm{J} 4.7,9.0 \mathrm{~Hz}), 4.71(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}), 4.61(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.0 \mathrm{~Hz}), 4.49(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $6.8 \mathrm{~Hz}), 4.30(1 \mathrm{H}, \mathrm{bs}), 4.17(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}), 3.92-3.83(3 \mathrm{H}, \mathrm{m}), 3.74-3.66(1 \mathrm{H}, \mathrm{m}), 3.57-3.40$ $(5 \mathrm{H}, \mathrm{m}), 3.32-3.15(2 \mathrm{H}, \mathrm{m}), 2.63-2.56(1 \mathrm{H}, \mathrm{m}), 1.82-1.56(4 \mathrm{H}, \mathrm{m}), 0.87(9 \mathrm{H}, \mathrm{s}), 0.04(3 \mathrm{H}, \mathrm{s}),-0.17$ $(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$-NMR (75 MHz , acetone- d_{6}) δ : 164.97, 161.76, 159.31, 156.21, 150.76, 150.47, 150.45, 143.77, 143.11, 143.07 (C), 129.35, 129.22, 124.60, 116.95, 116.65, 116.48, 116.19, 114.86, $114.75(\mathrm{CH}), 82.15,80.21,76.81,75.43,74.99,74.52,72.41(\mathrm{CH}), 63.70,57.54,53.95\left(\mathrm{CH}_{2}\right)$, $43.62(\mathrm{CH}), 39.47,31.22\left(\mathrm{CH}_{2}\right), 27.20\left(\mathrm{CH}_{3}\right), 19.70(\mathrm{C}),-3.40,-3.68\left(\mathrm{CH}_{3}\right) . \mathrm{IR}\left(\mathrm{cm}^{-1}\right): 3377,2930$, 2856, 1605, 1508, 1472, 1361, 1252, 1222, 1147, 1090, 1015, 871, 836, 776, 760. MALDI-MS $\left(\mathrm{C}_{37} \mathrm{H}_{49} \mathrm{~F}_{2} \mathrm{NO}_{9} \mathrm{SSi}\right):[\mathrm{MNa}]^{+} 772.2767$ (calcd. 772.2763).

Azetidine 21. Azetidine 21A ($34.3 \mathrm{mg}, 0.046$ mmol) was dissolved in anhydrous THF (2.5 mL , teflon bottle), anhydrous pyridine (0.5 mL) followed by HF.pyridine complex (0.5 mL) were added and the solution was stirred for 14 h , diluted with ether $(20 \mathrm{~mL})$ and washed with sat. aq. $\mathrm{NaHCO}_{3}(3 \times 5$ mL). The organic layer was evaporated on celite and purified by dry column vacuum chromatography ($4.9 \times 2.0 \mathrm{~cm}$) on silica gel eluting with a gradient of $0-18 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{v} / \mathrm{v})$ to give azetidine 21 ($20.2 \mathrm{mg}, 69 \%$) as a colourless oil.
$\mathrm{R}_{\mathrm{f}}\left(10 \% \mathrm{MeOH}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{v} / \mathrm{v})\right) 0.24$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, acetone- $\left.\mathrm{d}_{6}\right) \delta: 7.61(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz})$, $7.48(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}), 7.30(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5.6,8.7 \mathrm{~Hz}), 7.04(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.7 \mathrm{~Hz}), 6.89(2 \mathrm{H}, \mathrm{m}), 6.38$ $(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=4.4,8.7 \mathrm{~Hz}), 4.60(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.4 \mathrm{~Hz}), 4.52(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}), 4.45(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz})$, $4.29(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.4 \mathrm{~Hz}), 4.19(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}), 4.03-3.83(3 \mathrm{H}, \mathrm{m}), 3.80-3.67(1 \mathrm{H}, \mathrm{m}), 3.60-3.31$ $(6 \mathrm{H}, \mathrm{m}), 3.25(1 \mathrm{H}, \mathrm{p}, \mathrm{J}=4.4 \mathrm{~Hz}), 2.62(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.5,14.3 \mathrm{~Hz}), 1.92-1.82(1 \mathrm{H}, \mathrm{m}), 1.78-1.61(3 \mathrm{H}$, m). ${ }^{13}$ C-NMR (75 MHz , acetone- d_{6}) δ : 164.04, 155.14, 149.92, 149.71, 149.47, 142.77, 129.48 (C), 128.19, 128.16, 128.05, 123.52, 123.03, 115.87, 115.58, 115.39, 115.32, 115.05, 113.78, 113.69, $113.61,113.51(\mathrm{CH}), 81.09,79.15,75.76,73.98,73.46,72.75,71.36(\mathrm{CH}), 62.63,56.60,52.88$ $\left(\mathrm{CH}_{2}\right), 42.68(\mathrm{CH}), 37.52,29.61\left(\mathrm{CH}_{2}\right) . \operatorname{IR}\left(\mathrm{cm}^{-1}\right): 3370,2933,1605,1508,1474,1360,1220,1146$, 1087, 1015, 873, 823, 771. MALDI-MS $\left(\mathrm{C}_{31} \mathrm{H}_{35} \mathrm{~F}_{2} \mathrm{NO}_{9} \mathrm{~S}\right)$: $\left[\mathrm{MH}-\mathrm{H}_{2} \mathrm{O}\right]^{+} 618.1973$ (calcd. 618.1973); $[\mathrm{M}]^{+} 635.1996$ (calcd. 635.2001); [MNa] 658.1900 (calcd. 658.1898).

The brush border membrane vesicle assay. ${ }^{10}$

Materials. Egg phosphatidylcholine was purchased from Avanti Polar Lipids (US), cholesterol oleate and cholesterol from Sigma, phosphate-buffered saline (PBS) from Invitrogen Corporation, $\left[1 \alpha, 2 \alpha(\mathrm{~N})-{ }^{3} \mathrm{H}\right]$ cholesterol oleyl ether ($37 \mathrm{Ci} / \mathrm{mmol}$), $\left[4-{ }^{14} \mathrm{C}\right.$-cholesterol] and Sepharose CL-4B from Amersham Biosciences, the BCA protein assay kit from Pierce (US) and the glucose dehydrogenase kit from Diagnostic Systems (Germany).

Preparation of Brush Border Membrane Vesicles. Brush border membrane vesicles were prepared and characterized [total protein content by the BCA method, sucrase activity and lipid uptake (4.2 mg protein $/ \mathrm{mL}, 0.20 \mathrm{mg}$ SUV/mL - see below)] essentially as previously described. ${ }^{12}$ The source was small intestine (stored at $-78{ }^{\circ} \mathrm{C}$) from freshly killed farm rabbits. The isolation buffer was 2 mM Tris-HCl plus HCl to $\mathrm{pH} 7.1,50 \mathrm{mM}$ D-mannitol and 0.83 mM EGTA; 10 mM $\mathrm{MgC1}_{2}$ was used in the precipitation step. The brush border pellet was redispersed in 12 mM TrisHCl plus HCl to $\mathrm{pH} 7.1,0.30 \mathrm{M}$ D-mannitol and 5 mM EGTA.

Preparation of Small Unilamellar Vesicles (SUV). A total of 2 mg egg phosphatidylcholine and cholesteryl oleate (99:1 molar ratio) for control measurements and egg phosphatidylcholine, cholesteryl oleate and inhibitor (90:1:9 molar ratio) for inhibition experiments plus in either case a trace amount ${ }^{3} \mathrm{H}$-labelled cholesteryl oleyl ether (or ${ }^{14} \mathrm{C}$-labelled cholesterol) were dried from a chloroform-methanol solution ($2: 1 \mathrm{v} / \mathrm{v}$) by rotary evaporation. The lipid film was dried under high vacuum for at least 1 h and then dispersed in PBS buffer (2 mL). The suspension was sonicated with a microtip sonicator (Branson 250) for 1-1.5 h (output 2.2, 60\% duty cycle). ${ }^{13}$ After sonication, the vesicles were centrifuged (pressure 3.0, 3 min) in a Beckman airfuge and characterized by gel filtration (Sepharose CL-4B, $45 \times 1 \mathrm{~cm}$) as previously reported. ${ }^{14}$

Inhibition of Cholesterol Absorption by Brush Border Membrane Vesicles. Brush border membrane vesicles (5.0 mg protein $/ \mathrm{mL}$) were incubated at room temperature for 20 min with either control SUV (99:1 molar ratio egg phosphatidylcholine and cholesteryl oleate) or SUV containing inhibitors ($90: 1: 9$ molar ratio egg phosphatidylcholine, cholesteryl oleate and inhibitor). The experiment was terminated by centrifugation (pressure 3.0, 3 min) in a Beckman airfuge. The donor SUV remained in the supernatant under these conditions and the brush border membrane vesicles precipitated. The radioactivity present in both donor SUV and brush border membrane vesicles was counted in triplicate in a Beckman LS 7500 liquid scintillation counter.
\% Inhibition was calculated from relative radioactivities in the supernatants and pellets according to the formula: Inhibition\% = [(\%Supernatant inhibitor SUV - \%Supernatant control SUV) • 100\%]/ \%Pellet control SUV
The obtained inhibitions were: 10:16 $\pm 4 \%$ inhibition, 12: $20 \pm 5 \%$ inhibition, $\mathbf{1 3}$: $15 \pm 3 \%$ inhibition, $\mathbf{1 4}$: $41 \pm 4 \%$ inhibition, 19: $27 \pm 4 \%$ inhibition, 21: $20 \pm 5 \%$ inhibition,.

References.

(1) Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics 1996, 15, 1518-1520.
(2) Pedersen, D. S.; Rosenbohm, C. Synthesis 2001, 2431-2434.
(3) (a) Jaramillo, C.; Chiara, J. L.; Martinlomas, M. J. Org. Chem. 1994, 59, 3135-3141; (b) Bernet, B.; Vasella, A. Helv. Chim. Acta 1979, 62, 1990-2016.
(4) Griffin, F. K.; Paterson, D. E.; Taylor, R. J. K. Angew. Chem. Int. Ed. 1999, 38, 2939-2942.
(5) Paterson, D. E.; Griffin, F. K.; Alcaraz, M. L.; Taylor, R. J. K. Eur. J. Org. Chem. 2002, 1323-1336.
(6) Liptak, A.; Balla, E.; Janossy, L.; Sajtos, F.; Szilagyi, L. Tetrahedron Lett. 2004, 45, 839842.
(7) RajanBabu, T. V.; Reddy, G. S. J. Org. Chem. 1986, 51, 5458-5461.
(8) Gervay, J.; Flaherty, T. M.; Holmes, D. Tetrahedron 1997, 53, 16355-16364.
(9) Spak, S. J.; Martin, O. R. Tetrahedron 2000, 56, 217-224.
(10) Kværnø, L.; Ritter, T.; Werder, M.; Hauser, H.; Carreira, E. M. Angew. Chem. Int. Ed. 2004, 43, 4653-4656.
(11) For the synthesis of ezetimibe (10), see Wu, G. Z.; Wong, Y. S.; Chen, X.; Ding, Z. X. J. Org. Chem. 1999, 64, 3714-3718.
(12) (a) Hauser, H.; Howell, K.; Dawson, R. M. C.; Bowyer, D. E. Biochim. Biophys. Acta 1980, 602, 567-577; (b) Thurnhofer, H.; Hauser, H. Biochemistry 1990, 29, 2142-2148.
(13) (a) Mütsch, B.; Gains, N.; Hauser, H. Biochemistry 1986, 25, 2134-2140; (b) Brunner, J.; Hauser, H.; Semenza, G. J. Biol. Chem. 1978, 253, 7538-7546.
(14) (a) Schulthess, G.; Compassi, S.; Werder, M.; Han, C. H.; Phillips, M. C.; Hauser, H. Biochemistry 2000, 39, 12623-12631; (b) Schurtenberger, P.; Hauser, H. Biochim. Biophys. Acta 1984, 778, 470-480.

LOC ETHZ NMR Mercury-vx 300MHz Nr. 6 05/01/04 15:56:51 USER:ekvaer GROUP;carrei SAMPLEELK111X1
STANDARD 1H OBSERVE

LOC ETHZ NMR Mercury-vx 300MHz Nr.6 05/01/04 15:57:08 USER:eivaer GROUP:carrei SAMPLE:LK111X1

13C OBSERVE

Pulse Sequence: s2pu
Solvent: CDC13
Ambient temperature
User: ekvaer
File: LK111X1-C
UNITYplus 300 "nmroc

Relax, delay 1.000 sec
Pulse 45.0 degree
Acq. time 1.300 sec
Width 20000.0 Hz
OBSERVE C13, 75.4911544 MHz
DECOUPLE H1, 300.2242455 MHz
Power 35 dB
continuously on
WALTZ-16 modulated
DATA PROCESSING
Uine broadening 2.0 Hz
FT size 65536
Total time 4 min, 55 sec

1A
A

LOC ETHZ NMR Mercury-vx 300MHz Nr.5 05/01/04 15:58:22 USER:ekvaer GROUP.carrei SAMPLE:LK110X1
13C OBSERVE

Pulse Sequence: s2pul
Solvent: CDC:3
Temp. $23.0 \mathrm{C} / 296.1 \mathrm{~K}$
User: ekvaer
UNITYplus-300 "nmroc*

Relax. delay 1.000 sec
Pulse 45.0 degrees
Acq. time 1.300 sec
Width 20000.0 H
64 repetitions
OBSERVE C13, 75.3779423 MHZ
DECOUPLE H1, 299.7740804 MHz
Power 35 dB
continuously on
WALTZ-16 modulated
DATA PROCESSING
DATA broadening 20 Hz
Line broadening 2.0 Hz
FT size 65536
FT size 65536
Total time 2 m
Total time $2 \mathrm{~min}, 27 \mathrm{sec}$

LOC ETHZ NMR Mercury 300MHz Nr. 4 05/01/04 16:00:27 USER:eivaer GROUP:carrei SAMPLE:LK109x2CR
13C OBSERVE

Pulse Sequence: s2pul
Solvent: CDC13
Ambient temperature
User: ekvaer
File: LK109X2
UNITYplus-300 "nmroc*
Relax. delay 1.000 sec
Pulse 45.0 degrees
Aoc, ime 1.300 sec
Whath 20000.0 Hz
OBSERVE C13, 75.4102323 MHz
DECOUPLE H1, 299.9024328 MHz
Power 36 dB
Power 36 dB
WALTZ-16 modulated
DATA PROCESSING
FT size 65536
Total time 2 min, 27 sec

LOC ETHZ NMR Mercury 300MHz Ne. 4 05/01/04 16:10:20 USER-ekvaer GROUP:carrei SAMPLE:LK112X1
13C OBSERVE

Pulse Sequence: s2pul
Solvent: CDC13
Ambient temperature
User: ekvaer
File: LK112X1-C
UNITYplus-300 "nmroc*

Relax. delay 1.000 sec
Pulse 45.0 degrees
Acq. time 1.300 se
Width 20000.0 Hz
OBSERVE C13, $75,4102323 \mathrm{MHz}$
DECOUPLE H1, 299.9024328 MHz
Power 36 dB
Power 36 dB
WALTZ-16 modulated
DATA PROCESSING
Line broadening 2.0 Hz
FT size 65536
Total time 4 min, 55 sec

LOC ETHZ NMR Mercury 300MHZ N. 4 05/01/04 16:11:09 USER:ekvaer GROUP:carrel SAMPLE:LK113X1

LOC ETHZ NMR Mercury 300MHz Nr. 4 05/01/04 16:11:31 USER:ekvaer GROUP;carrei SAMPLE:LK113X1
13C OBSERVE

Pulse Sequence: s2pul
Solvent CDCi3
Ambient temperature
User: ekvaer
File: LK113X1-C
UNITYplus-300 "nmroc"
Pelax, delay 1,000 se
Relax. delay 1.000 s
Puise 45.0 degrees
Pulse 45.0 degrees
Acq. time 1.300 sec
Wict the 20000.0 Hz
Width 20000.0
64 repetitions
O4 repetitions
DECOUPLE H1, 289.9024328 MHz
Power 36 dB
continuously on
WALTZ-16 modulated
DATA PROCESSING
Line broadening 2.0 Hz
FT size 65536
Total time 2 min, 27 sec

220	200	180	160	140	120	100	80	60	40	20	ppm

LOC ETHZ NMR Mercury 300MHz Nr.4 05/01/04 16:12:44 USER:ekvaer GROUP:carrei SAMPLE:LK115X1CR

LOC ETHZ NMR Gemini 300 MHz Nr 3 05/01/04 16:26:34 USER iekvaer GROUPicarrel SAMPLE:LK167X1

LOC ETHZ NMR Mercury-vx 300MHz Nr.5 05/01/04 16:30:15 USER:ekvaer GROUP:carrei SAMPLE:LK170X1CR
13C OBSERVE

Pulse Sequence: s2ppul
Solvent CDCis
Ambient temperature
User: ekvaer
File: LK170X1-C
UNITYplus-300 ${ }^{\text {"nmroc }}$

Relax. delay 1.000 sec
Pulse 45.0 degrees
Acq, time $1,300 \mathrm{sec}$
Width 20000.0 Hz
256 repetisions
OBSERVE C13, 75.3779423 MHz
DECOUPLE H1, 299.7740804 MHz
Power 35 dB
continuously on
WALTZ-16 modulated
DATA PROCESSING
Line broadening 2.0 Hz
FT size 65536
Total time $14 \mathrm{~min}, 9$ sec

200	180	160	140	120	100	80	60	40	20	ppm

LOC ETHZ NMA Mercury-vx 300MHz Nr. 6 05/01/04 14:52:18 USER:ekvaer GROUP:carrei SAMPLE:LK60X2

LOC ETHZ NMR Mercury-vx 300MHz Nr. 6 05/01/04 14:52:42 USER:ekvaer GROUP.carrel SAMPLE:LK60X1
13C OBSERVE

Pulse Sequence: s2pul
Solvent: CDC13
Ambient temperature
User: elvaer
File: LK60X1-C
UNITYplus-300 "nmroce"

Relax. delay 1.000 sec
Pulse 45.0 degrees
Acq. time 1.300 sec
Width 20000.0 Hz
OBSERVE C13, 75.4911544 MHz
DECOUPLE H1, 300.2242455 MHz
Power 35 dB
continuously on
WALTZ-16 modulated
DATA PROCESSING
Line broadening 2.0 Hz
FT size 65536
Total time $7 \mathrm{~min}, 41 \mathrm{sec}$

10A

220	200	180	160	140	120	100	80	60	40	20	ppm

LOC ETHZ NMR Mercury-vx 300MHz Nr.5 05/01/04 14:57:18 USER-ekvaer GROUP:carrei SAMPLELKB9X3
STANDARD 1H OBSERVE

LOC ETHZ NMR Mercury-vx 300MHz Nr.5 05/01/04 14:57:47 USER:ekvaer GROUP>carrel SAMPLE:LK89X3
13C OBSERVE

LOC ETHZ NMR Mercury-vx 300MHz Nt. 6 05/01/04 14:58:12 USER:ekvaer GROUP ycarrel SAMPLE:LK90X5
STANDARD 1H OBSERVE

LOC ETHZ NMR Meroury-vx 300MHz Nr. 6 05/01/04 14:58:33 USER:ekvaer GROUP:carrei SAMPLE:LK90X5
13C OBSERVE

Pulse Sequence: s2pul
Solvent: CDCI3
Ambient temperature
User: ekvaer
File: LK90X5-C
UNITYplus-300 "nmroc*

Relax, delay 1.000 sec
Pulse 45.0 degrees
Acc, time 1.300 sec
Width 20000.0 Hz
OBSERVE C13, 75.4911544 MHz
DECCOUPLE H1, 300.2242455 MHz
Power 35 dB
Continuously on
DATA PROCESSING
Line broadening 2.0 Hz
FT size 65536
Total time 2 min, 27 sec

\square

LOC ETHZ NMR Mercury-vx 300MHz Nr. 6 05/01/04 16:02:17 USER:ekvaer GROUP;carrei SAMPLELK117X1
STANDARD 1H OBSERVE

LOC ETHZ NMR Mercury-vx 300 MHz Nr. 6 05/01/04 16:04:21 USER:ekvaer GROUP:carrei SAMPLE:LK134X1

LOC ETHZ NMR Mercury-vx 300MHz Nr. 6 05/01/04 16:05:38 USERsekvaer GROUP:carrei SAMPLE:LK135X1
STANDARD 1H OBSERVE

Pulse Sequence: s2pul
Solvent: Acetone
Ambient termperature
User: ekvaer
File: LK135 $\times 1$-H
UNITYplus.300 "nmroc"
Puise 30.0 degrees Acq. time 3.138 sec
Width 5099.4 Hz 16 repetitions
OBSERVE $\mathrm{H} 1,300.2246216 \mathrm{MHz}$ DATA PROCESSING
Fr size 32768
Total time $0 \mathrm{~min}, 50 \mathrm{sec}$

12

$\sqrt{3}$

LOC ETHZ NMR Mercury 300MHz Nc.4 05/01/04 16:16:19 USERzekvaer GROUP:carrei SAMPLE:LK139X2
STANDARD 1H OBSERVE

Puise Sequence: s2pul
Solvent CD3OD
Ambient temperature
User: ekvaer
File: LK139X2P-H
UNITYplus-300 "nmroc*
Pulse 30.0 degrees
Acq. time 3.138 sec
Width 5099.4 Hz
16 repetitions
16 repetitions
OBSERVE
$H 1,299.9024335$
MHz
DATA PROCESSING
FT size 32768
Total time $0 \mathrm{~min}, 50 \mathrm{sec}$

OBSERVE C13, 5.4105668 MHz
DECOUPLE H1, 999.9039893 MHz
Power 36 dB
continuously on
WALTZ-16 modulyted
DATA PROCESSI/NG
Line broadening 20 Hz
Line broadening 20 Hz
FT size 65536
Total time $9 \mathrm{hr}, 37 \mathrm{~min}, 12 \mathrm{sec}$

LOC ETHZ NMR Mercury-vx 300MHZ Nr. 5 05/01/04 16:34:37 USER:ekvaer GROUP.carrei SAMPLELK179X2P

LOC ETHZ NMR Mercury 300MHz Nr. 4 05/01/04 14:22:06 USER:ekvaer GROUP-crarrei SAMPLE:LK47X1
STANDARD 1 H OBSERVE

Pulse Sequence: s2pul
Solvent: CDCi3
Ambient temperature
User: elkaver
File: LK47X1-H
UNITYplus-300 "nmroc*
Pulse 30.0 degrees
Acq. time 3.138 sec
With 5099.4 Hz
16 repettions
OBSERVE H1, 299.9012510 MHz
DATA PROCESSING
FT size 32768 Total time 0 min, 50 sec

16

LOC ETHZ NMR Mercury-vx 300MHz Nr.6 05/01/04 14:22-26 USERvekvaer GROUP.carrel SAMPLE:LK47X2
13C OBSERVE

Pulse Sequence: s2pul
Solvent: CDC13
Ambient temperature
User: ekvaer
UNITYplus-300 "nmroo"
Relax. delay 1.000 sec
Relax. delay 1.000 sec
Pulse 45.0 degrees
Width 20000.0 Hz
Witth 20000.0 Hz
64 repetitions
OBSERVE C13, 75.4911544 MHz
DECOUPLE H1, 300.2242455 MHz
Power 35 dB
continuously on
WALTZ-16 modulated
DATA PROCESSING
Line broadening 2.0 Hz
FT size 65536
Total time 2 min, 27 sec

220	200	180	160	140	120	100	80	60	40	20

LOC ETHZ NIMR Mercury-vx 300MHz Nr.5 05/01/04 14:24:04 USER:ekvaer GROUP:carrei SAMPLELK51X2
STANDARD 1H OBSERVE

Pulse Sequence: s2pul
Solvent: CDC13
Ambient temperature
File: UK51X2-H
UNTTYplus-300 "nmroc

Pulse 30.0 degrees
Acq. time 3.138 sec
With 5099.4 Hz
16 repelition
OBSERVE $\mathrm{H} 1,299.7729185 \mathrm{MHz}$
DATA PROCESSING
T size 32768

18

LOC ETHZ NMR Mercury-vx 300MHz Ne. 5 05/01/04 14:24:23 USER-ekvaer GROUP:carrei SAMPLE.LK51X2

LOC ETHZ NMR Meroury-vx 300MHz Nr. 6 05/01/04 16:18:04 USER:ekvaer GROUP-carrei SAMPLE:LK143X1

