Supporting Information

Synthesis of the Core Structure of Acutumine

Matthew D. Reeder, G. S. C. Srikanth, Spencer B. Jones, and Steven L. Castle*

Department of Chemistry and Biochemistry Brigham Young University, Provo, Utah, 84602

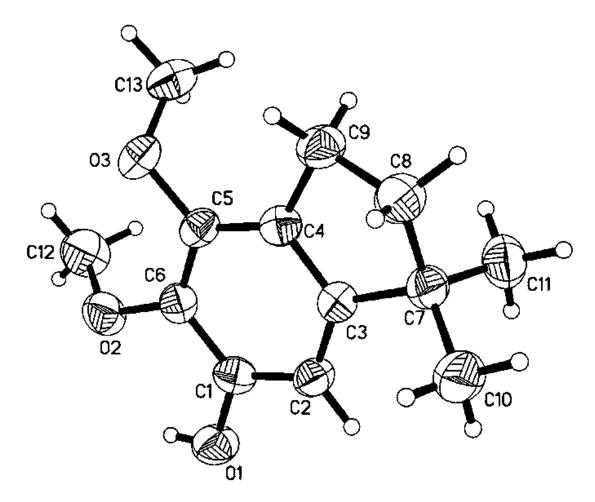
General Experimental Details

Ether, methanol, methylene chloride, tetrahydrofuran, and toluene were dried by passage through a Glass Contour solvent drying system containing cylinders of activated alumina.¹ Flash chromatography was carried out using 60–230 mesh silica gel. ¹H NMR spectra were obtained on Varian 200, 300, or 500 MHz spectrometers with chloroform (7.27 ppm) or benzene (7.16 ppm) as internal reference. Signals are reported as follows: s (singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublets), dt (doublet of triplets), br s (broad singlet), m (multiplet). Coupling constants are reported in hertz (Hz). ¹³C NMR spectra were obtained on Varian spectrometers operating at 50, 75, or 125 MHz with chloroform (77.23 ppm) or benzene (128.06 ppm) as internal reference. Infrared spectra were obtained on a Nicolet Avatar 360 FT-IR Spectrometer. Mass spectral data (EI, FAB) and were obtained from the Brigham Young University X-ray crystallographic data were obtained from the Brigham Young University X-ray crystallography facility.

¹ Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics **1996**, *15*, 1518.

Methyl 3-(2,3,4-Trimethoxyphenyl)propionate (7). A solution of *trans*-2,3,4trimethoxycinnamic acid (6) (5.50 g, 23.1 mmol) in anhydrous CH₃OH (80 mL) was treated with conc H₂SO₄ (0.8 mL) and stirred at reflux for 12 h. The resulting mixture was diluted with H₂O (300 mL) and extracted with CHCl₃ (4 × 78 mL). The combined organic layers were washed with satd aq NaHCO₃ (100 mL), dried (MgSO₄), and concentrated in vacuo. The resultant crude methyl ester was dissolved in anhydrous CH₃OH (22 mL) under Ar, treated with 10% Pd/C (0.11 g, 0.02 wt equiv), and stirred at rt under H₂ (1 atm) for 18 h. The mixture was filtered through a pad of Celite and concentrated in vacuo, affording **7** (5.49 g, 21.6 mmol, 94%) as an amber oil: ¹H NMR (CDCl₃, 300 MHz) δ 6.84 (d, *J* = 8.4 Hz, 1H), 6.59 (d, *J* = 8.4 Hz, 1H), 3.89 (s, 3H), 3.86 (s, 3H), 3.84 (s, 3H), 3.67 (s, 3H), 2.88 (t, *J* = 8.1 Hz, 2H), 2.58 (t, *J* = 8.4 Hz, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 173.8, 152.6, 152.0, 142.3, 126.5 123.9, 107.2, 61.0, 60.8, 56.1, 51.7, 35.1, 25.6; IR (film) v_{max} 2946, 1735, 1455, 1275, 1177, 1095 cm⁻¹; HRMS (FAB) *m/z* 277.1064 (MNa⁺, C₁₃H₁₈O₅Na requires 277.1052).

2-Methyl-4-(2,3,4-trimethoxyphenyl)-butan-2-ol (8). A flask charged with Mg turnings (cleaned by rinsing with 1 N HCl, H₂O, and acetone, then dried overnight at 110 °C, 1.89 g, 79 mmol) was treated with a trace amount of I₂, and the turnings were stirred vigorously until discoloration of Mg by the iodine occurred. Then, anhydrous Et₂O (50 mL) was added, after which methyl iodide (1.8 mL, 9.9 mmol) was added to the resulting light yellow solution at rt under N₂. When the solution began refluxing, the mixture was cooled to 0 °C. Methyl iodide was added every 5 min in 1.0 mL portions until a total of 4.8 mL (11.0 g, 79 mmol) had been added. The mixture was stirred at 0 °C for 30 min, after which a solution of **7** (5.2 g, 20 mmol) in anhydrous Et₂O (5 mL) was added in 0.25


mL portions every 3 min. The resulting mixture was then stirred at 0 °C for 20 min, and the reaction was quenched with 0.1 N HCl (35 mL), extracted with Et₂O (4 × 10 mL), dried (MgSO₄), and concentrated in vacuo. Flash chromatography (3% acetone–hexanes elution) yielded **8** (4.3 g, 17 mmol, 85%) as a white solid: ¹H NMR (CDCl₃, 300 MHz) δ 6.84 (d, *J* = 8.4 Hz, 1H), 6.61 (d, *J* = 8.4 Hz, 1H), 3.89 (s, 3H), 3.86 (s, 3H), 3.83 (s, 3H), 2.67–2.60 (m, 2H), 1.75–1.69 (m, 2H), 1.68–1.57 (br s, 1H), 1.28 (s, 6H); ¹³C NMR (CDCl₃, 75 MHz) δ 152.2, 151.9, 142.5, 128.8, 123.8, 107.6, 71.1, 61.1, 60.9, 56.2, 45.3, 29.4 (2C), 24.9; IR (film) v_{max} 3440, 2956, 1600, 1465, 1276, 1096 cm⁻¹; HRMS (FAB) *m/z* 277.1433 (MNa⁺, C₁₄H₂₂O₄Na requires 277.1415).

4,5,6-Trimethoxy-1,1-dimethylindan (9). A solution of **8** (3.00 g, 11.8 mmol) in anhydrous Et₂O (5 mL, syringe rinsed with an additional 0.5 mL) was added dropwise to conc H₂SO₄ (6.5 g, 66 mmol) at 0 °C. The resulting brown mixture was stirred at 0 °C for 1 h, then diluted with H₂O (20 mL, brown color disappeared) and Et₂O (10 mL). The layers were separated, and the aqueous layer was extracted with Et₂O (5 mL). The combined organic layers were washed with satd aq K₂CO₃ (5 mL) and H₂O (5 mL), then dried (MgSO₄) and concentrated in vacuo. Flash chromatography (10% acetone–hexanes elution) afforded **9** (2.36 g, 9.99 mmol, 85%) as a light yellow oil: ¹H NMR (CDCl₃, 200 MHz) δ 6.43 (s, 1H), 3.89 (s, 3H), 3.85 (s, 3H), 3.84 (s, 3H), 2.82 (t, *J* = 8.0 Hz, 2H), 1.90 (t, *J* = 8.0 Hz, 2H), 1.22 (s, 6H); ¹³C NMR (CDCl₃, 75 MHz) δ 153.2, 149.6, 148.6, 140.6, 126.8, 101.5, 61.2, 60.5, 56.5, 44.7, 41.7, 28.8 (2C), 26.9; IR (film) ν_{max} 2944, 1592, 1465, 1328, 1207, 1113, 1042 cm⁻¹; HRMS (EI) *m/z* 236.1398 (MH⁺, C₁₄H₂₀O₃ requires 236.1538).

5,6,7-Trimethoxy-3,3-dimethylindan-4-carbaldehyde (10). A solution of hexamethylenetetramine (0.42 g, 3.0 mmol) in trifluoroacetic acid (5 mL) was treated slowly with **9** (0.35 g, 1.5 mmol). The resulting mixture was refluxed for 12 h. Water (20 mL) was then added with stirring, and the mixture was stirred at 50 °C for 1 h and subsequently cooled to 10–20 °C. The mixture was extracted with EtOAc (2 × 50 mL), and the combined organic layers were washed with brine (25 mL), dried (MgSO₄), and concentrated in vacuo. Flash chromatography (3% acetone–hexanes elution) yielded **10** (0.32 g, 1.2 mmol, 82%) as a yellow oil: ¹H NMR (CDCl₃, 200 MHz) δ 10.36 (s, 1H), 4.01 (s, 3H), 3.94 (s, 3H), 3.87 (s, 3H), 2.81 (t, *J* = 8.0 Hz, 2H), 1.92 (t, *J* = 8.0 Hz, 2H), 1.37 (s, 6H); ¹³C NMR (CDCl₃, 75 MHz) δ 192.3, 158.3, 154.8, 150.2, 143.6, 132.7, 122.2, 62.6, 61.1, 60.5, 47.0, 43.6, 27.0 (2C), 26.8; IR (film) v_{max} 2945, 1780, 1685, 1564, 1463, 1317, 1173, 1111 cm⁻¹; HRMS (FAB) *m/z* 287.1346 (MNa⁺, C₁₅H₂₀O₄Na requires 287.1376).

6,7-Dimethoxy-3,3-dimethylindan-5-ol (5). A solution of **10** (1.32 g, 4.99 mmol) in anhydrous CH_2Cl_2 (25 mL) at -78 °C under N₂ was treated with BBr₃ (0.94 mL, 2.51 g, 10.0 mmol). The resulting mixture was stirred at -78 °C for 10 min, then poured into vigorously stirring satd aq NaHCO₃ (25 mL). The layers were separated, and the organic layer was dried (MgSO₄) then concentrated in vacuo. The crude phenol was then dissolved in anhydrous toluene (80 mL) and treated with propylene glycol (4.10 g, 53.9 mmol) and TsOH (1.28 g, 6.73 mmol). The resulting mixture was refluxed for 90 min, then the reaction was quenched with satd aq NaHCO₃ (50 mL) and diluted with EtOAc (10 mL). The layers were separated, and the organic layer was dried in vacuo. Flash chromatography (10% acetone–hexanes elution)

afforded **5** (772 mg, 3.47 mmol, 70%) as a white solid: ¹H NMR (CDCl₃, 300 MHz) δ 6.51 (s, 1H), 5.62 (s, 1H), 3.90 (s, 3H), 3.89 (s, 3H), 2.84 (t, *J* = 7.2 Hz, 2H), 1.90 (t, *J* = 7.2 Hz, 2H), 1.21 (s, 6H); ¹³C NMR (CDCl₃, 75 MHz) δ 149.5, 148.7, 148.5, 137.5, 125.8, 103.9, 61.3, 60.1, 44.4, 41.6, 28.7 (2C), 27.0; IR (film) v_{max} 3410, 2949, 1585, 1462, 1316, 1151, 1090 cm⁻¹; HRMS (FAB) *m/z* 245.1153 (MNa⁺, C₁₃H₁₈O₃Na requires 245.1161).

6,6,7-Trimethoxy-3,3-dimethyl-1,2,3,6-tetrahydroinden-5-one (4). A solution of 5 (2.20 g, 9.90 mmol) in anhydrous CH₃OH (80 mL) was added to a mixture of KHCO₃ (2.38 g, 23.7 mmol), PhI(OAc)₂ (3.51 g, 10.9 mmol), and anhydrous CH₃OH (80

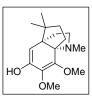
mL) at 0 °C under N₂. The resulting yellow-orange mixture was stirred for 10 min, diluted with CH₂Cl₂ (100 mL), and washed with brine (200 mL). The layers were separated, and the organic layer was dried (MgSO₄) and concentrated in vacuo, affording **4** (2.40 g, 9.51 mmol, 96%) as a yellow oil: ¹H NMR (CDCl₃, 300 MHz) δ 5.72 (s, 1H), 4.03 (s, 3H), 3.29 (s, 6H), 2.68 (t, *J* = 8.0 Hz, 2H), 1.70 (t, *J* = 8.0 Hz, 2H), 1.16 (s, 6H); ¹³C NMR (CDCl₃, 75 MHz) δ 194.4, 175.5, 153.6, 119.3, 111.4, 94.1, 58.9, 50.9 (2C), 43.8, 39.0, 31.5, 26.8, 25.1; IR (film) v_{max} 2955, 1724, 1452, 1217, 1096 cm⁻¹; HRMS (FAB) *m*/*z* 275.1274 (MNa⁺, C₁₄H₂₀O₄Na requires 275.1259).

5-Allyl-6,6,7-trimethoxy-3,3-dimethyl-2,3,5,6-tetrahydro-1*H*-inden-5-ol (11). A solution of **4** (3.84 g, 15.2 mmol) in anhydrous Et₂O (100 mL) at 0°C under N₂ was treated dropwise with allylmagnesium chloride (2.0 M soln in THF, 11.4 mL, 22.8 mmol) The resulting mixture was stirred for 15 min, and the reaction was quenched by the addition of H₂O (30 mL). The layers were separated, and the organic layer was dried (MgSO₄) and concentrated in vacuo. This afforded crude **11** (4.41 g, 15.0 mmol) that was used directly in the subsequent transformation: ¹H NMR (Benzene-*d*₆, 300 MHz) δ 6.36–6.13 (m, 1H), 5.30 (s, 1H), 5.14–5.11 (m, 1H), 5.05 (t, *J* = 1.5 Hz, 1H), 3.60 (s, 3H), 3.45 (s, 3H), 3.25 (s, 3H), 3.13 (s, 1H), 2.68 (d, *J* = 11.1 Hz, 2H), 2.51–2.36 (m, 1H), 2.35–2.18 (m, 1H), 1.39 (t, *J* = 11.1 Hz, 2H), 1.00 (s, 3H), 0.98 (s, 3H); ¹³C NMR (Benzene-*d*₆, 75 MHz) δ 148.8, 146.6, 135.4, 126.4, 122.8, 117.1, 102.2, 81.2, 60.1, 51.4, 50.7, 41.2, 40.6, 40.4, 28.1, 27.5, 24.9; IR (film) v_{max} 3504, 2949, 1636, 1452, 1210, 1053, 908 cm⁻¹; HRMS (FAB) *m*/z 317.1742 (MNa⁺, C₁₇H₂₆O₄Na requires 317.1729).

3a-Allyl-6,6,7-trimethoxy-3,3-dimethyl-1,2,3,3a,4,6-hexahydroinden-5-one

(12). A mixture of 18-crown-6 (12.3 g, 46.5 mmol), KOt-Bu (5.05 g, 45.0 mmol), and

anhydrous THF (250 mL) at 0°C under N₂ was stirred for 15 min, then treated with a solution of **11** (4.41 g, 15.0 mmol) in anhydrous THF (50 mL, added over 3 min). The resulting mixture was stirred at 0°C under N₂ for 1 h. The reaction was quenched by the addition of H₂O (100 mL) and diluted with Et₂O (200 mL). The layers were separated, and the organic layer was dried (MgSO₄) and concentrated in vacuo. Flash chromatography (1% Et₃N in 10% EtOAc–hexanes elution) afforded **12** (2.68 g, 9.10 mmol, 60% over two steps) as a colorless oil: ¹H NMR (Benzene-*d*₆, 500 MHz) δ 5.81–5.68 (m, 1H), 4.96 (s, 1H), 4.93 (d, *J* = 6.0 Hz, 1H), 3.71 (s, 3H), 3.45 (s, 3H), 3.35 (s, 3H), 2.64 (d, *J* = 13.5 Hz, 1H), 2.54–2.46 (m, 1H), 2.27 (d, *J* = 13.0 Hz, 1H), 2.19–2.12 (m, 1H), 1.98 (d, *J* = 7.5 Hz, 2H), 1.56–1.49 (m, 1H), 1.24–1.18 (m, 1H), 0.73 (s, 3H), 0.71 (s, 3H); ¹³C NMR (Benzene-*d*₆, 125 MHz) δ 202.5, 146.0, 136.1, 135.4, 118.1, 98.0, 60.1, 52.1, 51.2, 51.0, 44.2, 42.7, 41.8, 36.6, 26.6, 23.6, 22.0; IR (film) v_{max} 2952, 1732, 1450, 1063 cm⁻¹; HRMS (FAB) *m*/*z* 317.1714 (MNa⁺, C₁₇H₂₆O₄Na requires 317.1729).

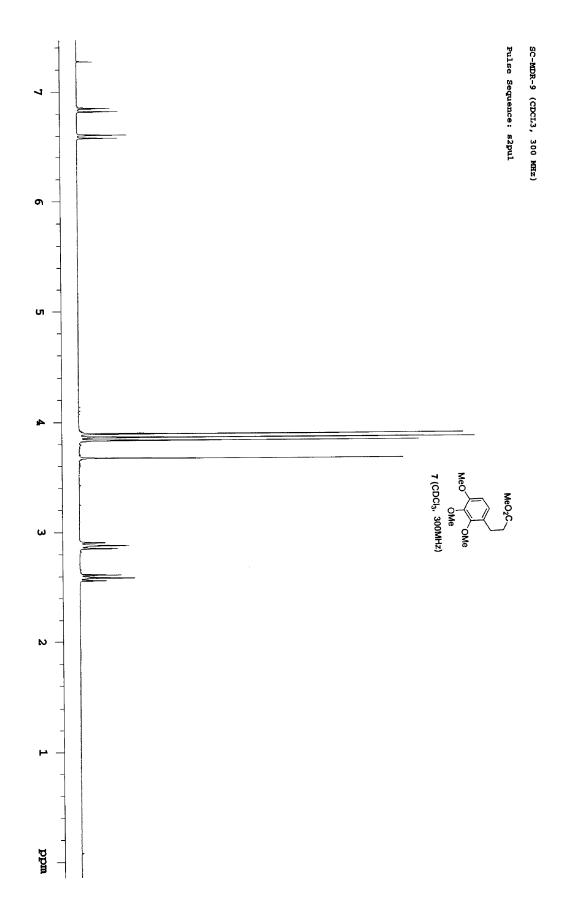

6,6,7-Trimethoxy-3,3-dimethyl-3a(2-methylaminoethyl)-1,2,3,3a,4,6-

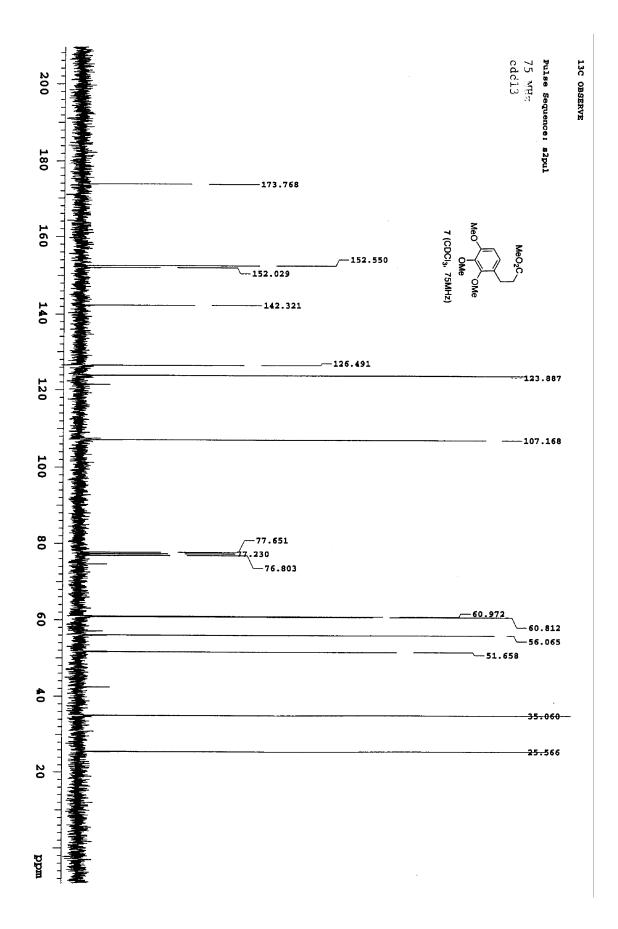
hexahydroinden-5-one (3). A solution of **12** (50 mg, 0.17 mmol) in EtOAc (28 mL, 0.006 M) at -78 °C was treated with O₃ (bubbled for 1.25 min). Et₃N (71 µL, 52 mg, 0.51 mmol) was then added and the resulting mixture was stirred at rt for 16 h then concentrated in vacuo. This procedure was repeated twice.

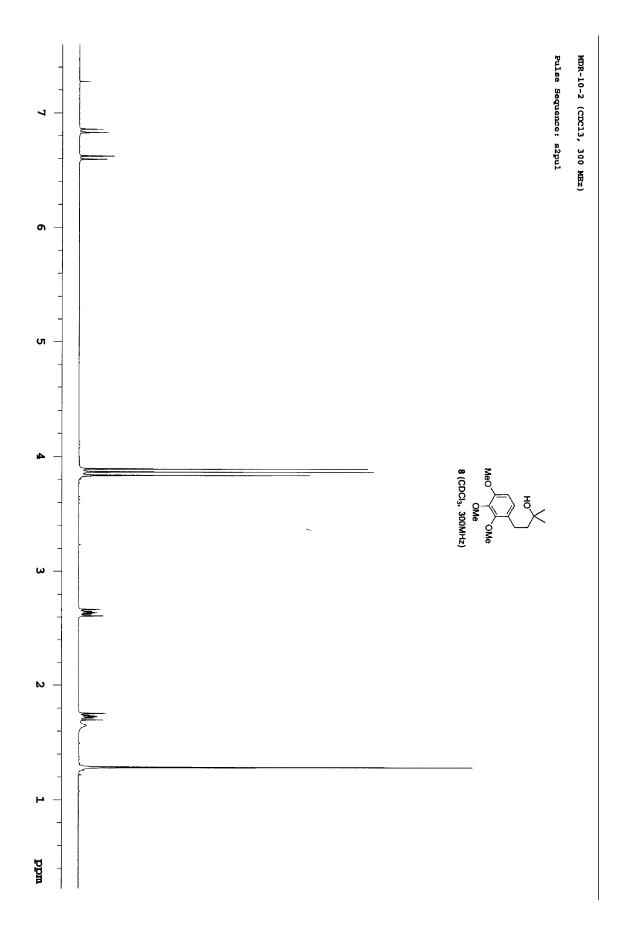
The three crude mixtures of aldehyde and **12** (derived from 150 mg of **12**) were combined and dissolved in anhydrous CH₃OH (200 μ L), treated with powdered 4Å molecular sieves (30 mg) and CH₃NH₂ (2.0 M in CH₃OH, 410 μ L, 0.82 mmol), and stirred at rt under N₂ for 30 min. NaBH₃CN (26 mg, 0.41 mmol) was then added and the resulting mixture was stirred at rt under N₂ for 16 h. It was then diluted with EtOAc (3 mL), washed with aq KOH (10 M, 1 mL), and the aqueous layer was extracted with EtOAc (2 × 4 mL). The combined organic layers were dried (Na₂SO₄) and concentrated in vacuo. Flash chromatography (SiO₂, 1% Et₃N in 5–10% EtOAc–hexanes gradient elution) afforded recovered **12** (73 mg, 49% recovery) and **3** (59.4 mg, 0.191 mmol, 37%, 73% based on recovered **12**) as a colorless oil that solidified on standing: ¹H NMR (Benzene- d_6 , 500 MHz) δ 3.64 (s, 3H), 3.53 (s, 3H), 3.38 (s, 3H), 3.03 (dt, J = 3.5, 12.5 Hz, 1H), 2.88 (s, 3H), 2.74 (ddd, J = 2.0, 5.0, 12.0 Hz, 1H), 2.44–2.36 (m, 1H), 2.06 (ddd, J = 1.5, 10.5, 18.0 Hz, 1H), 1.76 (dd, J = 3.0, 11.5 Hz, 1H), 1.55 (dt, J = 5.0, 12.5 Hz, 1H), 1.49 (d, J = 11.5 Hz, 1H), 1.49–1.43 (m, 1H), 1.41–1.28 (m, 2H), 1.25 (ddd, J = 1.5, 9.0, 13.0 Hz, 1H), 0.79 (s, 3H), 0.71 (s, 3H); ¹³C NMR (Benzene- d_6 , 125 MHz) δ 190.6, 149.2, 134.6, 100.5, 61.6, 52.8, 52.2, 49.8, 49.1, 42.7, 39.0, 37.4, 30.6, 27.9, 25.4, 23.5, 22.0; IR (film) v_{max} 3460, 2940, 1728, 1460, 1112 cm⁻¹; HRMS (EI) m/z 334.1984 (MNa⁺, C₁₇H₂₉O₄NNa requires 334.1985).

4,5-Dimethoxy-7,10,10-trimethyl-7-azatricyclo[4.3.3.0^{1,6}]

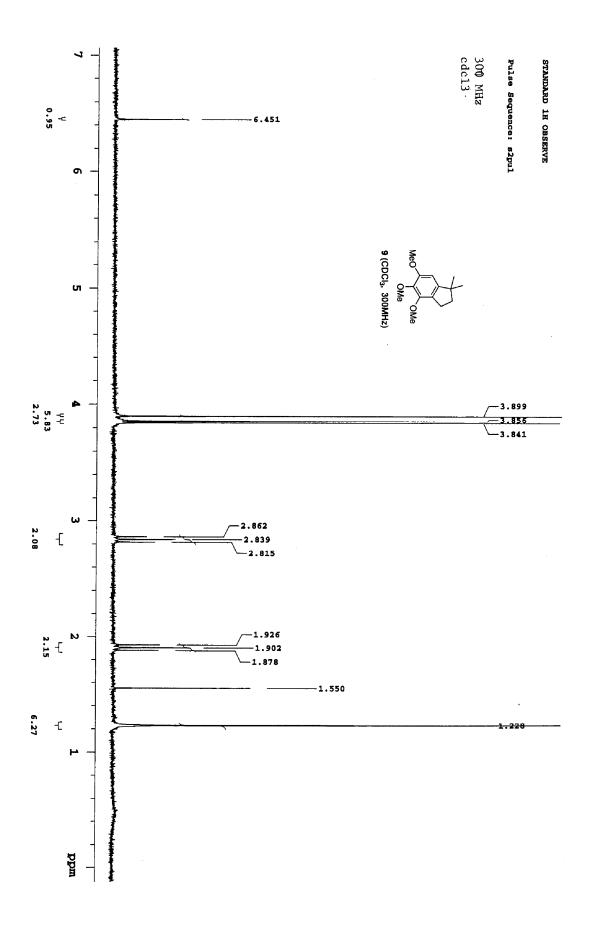
dodeca-2,4-dien-3-ol (13). A solution of 3 (20 mg, 0.064 mmol) in anhydrous CH_2Cl_2 (0.6 mL) at -10 °C was treated with powdered 4Å


molecular sieves (32 mg) followed by TMSOTf (12 μ L, 13.8 mg, 0.062 mmol). The resulting mixture was stirred at –10 °C for 10 min, treated with additional TMSOTf (12 μ L, 13.8 mg, 0.062 mmol), and stirred for 5 min. The mixture was concentrated in vacuo, and all volatile materials were removed under high vacuum. The residue was purified by column chromatography (SiO₂, 2 × 15 cm, 1% Et₃N in 0–5% EtOAc–hexanes gradient elution) to afford **13** (8.9 mg, 0.032 mmol, 50%) as a colorless oil along with the O-


demethylated byproduct **14** (1.9 mg, 0.0072 mmol, 11%) as a pale yellow oil that solidified on standing.


For 13: ¹H NMR (Benzene- d_6 , 500 MHz) δ 5.67 (s, 1H), 3.76 (s, 3H), 3.60 (s, 3H), 2.71 (dd, J = 5.5, 12.0 Hz, 1H), 2.41 (s, 3H), 2.27 (d, J = 16.5 Hz, 1H), 2.24 (dt, J =3.5, 11.5 Hz, 1H), 2.04 (dd, J = 2.5, 11.0 Hz, 1H), 1.88 (dd, J = 3.5, 16.5 Hz, 1H), 1.69 (d, J = 10.5 Hz, 1H), 1.51 (dt, J = 5.0, 13.0 Hz, 1H), 1.21 (d, J = 11.5 Hz, 1H), 0.88 (s, J = 10.5 Hz, 10.5 Hz)3H), 0.86 (s, 3H); ¹³C NMR (Benzene- d_6 , 125 MHz) δ 142.4, 126.9, 118.3, 89.3, 60.7, 60.1, 53.6, 50.7, 46.2, 44.1, 41.8, 38.5, 33.1, 30.6, 26.0, 22.8; IR (film) v_{max} 3421, 2920, 2854, 1662, 1460, 1254, 1064, 842 cm⁻¹; HRMS (FAB) *m/z* 302.1733 (MNa⁺, $C_{16}H_{25}NO_3Na$ requires 302.1732); 2D ¹H-¹H COSY NMR (Benzene- d_6 , 500 MHz) 5.67/1.88 (w, H-2/H-11), 2.71/2.23 (s, H-8/H-8), 2.71/1.51 (w, H-8/H-9), 2.27/1.88 (s, H-11/H-11), 2.23/1.51 (w, H-8/H-9), 2.04/1.69 (s, H-12/H-12), 1.51/1.21 (m, H-9/H-9); 2D $^{1}\text{H}^{-13}\text{C}$ HMQC (Benzene- d_{6} , 500 MHz) 5.67/118.3 (m, H-2/C-2), 3.76/60.1 (s, OCH₃), 3.60/60.7 (s, OCH₃), 2.71/50.7 (m, H-8/C-8), 2.41/38.5 (s, NCH₃), 2.27/46.2 (m, H-11/C-11), 2.23/50.7 (m, H-8/C-8), 2.04/41.8 (m, H-12/C-12), 1.88/46.2 (m, H-11/C-11), 1.69/41.8 (m, H-12/C-12), 1.21/33.1 (w, H-9/C-9) 0.88/26.0 (s, CCH₃), 0.86/22.8 (s, CCH₃).

For 14: ¹H NMR (Benzene- d_6 , 500 MHz) δ 3.64 (s, 3H), 2.68 (dd, J = 5.5, 12.0 Hz, 1H), 2.44–2.30 (m, 1H), 2.26 (s, 3H), 2.21–2.13 (m, 2H), 1.84 (dd, J = 3.0, 12.0 Hz, 1H), 1.79 (d, J = 12.0 Hz, 1H), 1.47 (dt, J = 5.0, 13.0 Hz, 1H), 1.30–1.24 (m, 1H), 1.08 (dd, J = 8.5, 12.5 Hz, 1H), 0.77 (d, J = 16 Hz, 1H), 0.61 (s, 3H), 0.44 (s, 3H); ¹³C NMR (Benzene- d_6 , 75 MHz) δ 191.3, 157.6, 149.3, 84.8, 60.0, 50.5, 49.4, 43.3, 40.8, 36.3,


30.6, 29.2, 25.7, 24.5, 21.7; IR (film) v_{max} 3389, 2931, 1660, 1473, 1374, 1288, 1064 cm⁻¹; HRMS (EI) *m/z* 266.1762 (M⁺, C₁₅H₂₃NO₃ requires 266.1756).

