Supporting Information

Synthesis of Adducts of \boldsymbol{o}-Quinone Metabolites of Carcinogenic Polycyclic Aromatic Hydrocarbons with 2'-Deoxyribonucleosides

Quing Dai, Chongzhao Ran, and Ronald G. Harvey*
Ben May Institute for Cancer Research, University of Chicago

4-Aminonaphthalene-1,2-dione (3). To a solution of naphthalene-1,2-dione (5.0 g, 32 mmol) in DMF (10 mL) under argon was added dropwise azidotrimethylsilane (5.3 mL , 38 mmol). Following initial evolution of nitrogen, the mixture was heated at $80^{\circ} \mathrm{C}$ for 2 h. Then the solution was cooled to ambient temperature, and EtOAc (50 mL) was added. The orange solid precipitate of $\mathbf{3}$ was removed by filtration, and additional $\mathbf{3}$ was obtained by evaporation of the solvent and chromatography of the residue on a column of silica gel. Combined yield of 3: $85 \%, \mathrm{mp}>298^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\square 8.25$ (br s, 1), 8.09 (br s, 1), 7.92 (d, $1, J=7.8 \mathrm{~Hz}$), $7.84(\mathrm{dd}, 1, J=7.6,1.2 \mathrm{~Hz}$), $7.78(\mathrm{~m}, 1), 7.66(\mathrm{~m}$, 1), $5.61(\mathrm{~s}, 1) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{DMSO}-d_{6}\right): \square 182.6,175.0,158.4,134.6,132.0,130.9,128.2$, 124.5, 101.5, 101.4.

4-Amino-1,2-(tert-butyldimethylsilyloxy)naphthalene (4). Method 1: To a solution of $\mathbf{3}$ ($400 \mathrm{mg}, 2.31 \mathrm{mmol}$) in anhydrous DMF $(10 \mathrm{~mL})$ under argon was added $\mathrm{NaBH}_{4}(111$ $\mathrm{mg}, 2.92 \mathrm{mmol}$), and evolution of hydrogen and heating was observed. The solution was stirred at room temperature for 0.5 h , then excess TMDMS-Cl ($1.50 \mathrm{~g}, 10 \mathrm{mmol}$) and imidazole ($13.36 \mathrm{~g}, 20 \mathrm{mmol}$) were added. After 4 h , EtOAc and water was added. The organic phase was washed with water and brine, and dried over MgSO_{4}. After filtration,

EtOAc was removed and the residue was passed through a silica gel column eluted with hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1)$ to furnish $\mathbf{4}(20 \%)$ as colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \square 8.06(\mathrm{~d}, 1, J$ $=8.0 \mathrm{~Hz}), 7.71(\mathrm{~d}, 1, J=8.3 \mathrm{~Hz}), 7.41(\mathrm{t}, 1), 7.31(\mathrm{t}, 1), 6.47(\mathrm{~s}, 1), 3.75(\mathrm{br} \mathrm{s}, 2), 1.29(\mathrm{~s}$, 9), $1.04(\mathrm{~s}, 9), 0.28(\mathrm{~s}, 6), 0.11(\mathrm{~s}, 6) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \square 142.3,136.2,133.1,130.0$, 125.1, 123.0, 122.8, 120.8, 120.6, 107.4, 26.3, 26.2, 18.6, 3.6; MS Calcd for $\mathrm{C}_{22} \mathrm{H}_{37} \mathrm{O}_{2} \mathrm{Si}_{2}$: $[\mathrm{MH}]^{+}$403.2. Found: 404.1. Compound 4 obtained via this route became black, even under vacuum and it had to be prepared freshly before use.

Method 2: To a solution of $\mathbf{3}(400 \mathrm{mg}, 2.3 \mathrm{mmol})$ in anhydrous DMF (10 mL) under argon. was added $\mathrm{NaBH}_{4}(111 \mathrm{mg}, 2.9 \mathrm{mmol})$. The solution was stirred at rt for 0.5 h , then N-(tert-butyldimethylsilyl)- N-methyltrifluoroacetamide (1 mL) was added. After 0.5 h, EtOAc and water were added, the organic phase was washed with water and brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the solvent was removed and the residue was purified by rapid chromatography on a silica gel column eluted with hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:1) to provide $4(50 \%)$ as a colorless oil.

5d
6-Chloro-9-[2'-deoxy-3',5'-bis-O-(tert-butyldimethylsilyl)- β-D-erythropentofuranosyl]purine (5d). To a flask containing 3 ',5'-bis-(tert-butyldimethylsilyl)-2'-deoxyadeno$\operatorname{sine}^{1}(1.46 \mathrm{~g}, 3.0 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ under argon at $0{ }^{\circ} \mathrm{C}$ was added dropwise trimethylsilyl chloride ($770 \mathrm{~mL}, 2.0$ equiv.) followed by t-butyl nitrite ($804 \mathrm{~mL}, 5.0$ equiv.). The solution was stirred at $0^{\circ} \mathrm{C}$ for 4 h , and reaction was quenched by addition of a saturated solution of NaHCO_{3}. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, combined with the organic phase, washed with water, and dried over MgSO_{4}. The solvent was removed under vacuum, and the residue was purified by chromatography on a silica gel column eluted with hexane-EtOAc (4:1) to provide 5d (912 mg, 60\%): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \square 8.73(\mathrm{~s}, 1), 8.48(\mathrm{~s}, 1), 6.51(\mathrm{t}, 1, J=6.4 \mathrm{~Hz}), 4.62(\mathrm{~m}, 1), 4.04(\mathrm{~m}, 1)$,

[^0]$3.88(\mathrm{dd}, 1, J=10.4,3.8 \mathrm{~Hz}), 3.77(\mathrm{dd}, 1, J=10.4,2.8 \mathrm{~Hz}), 2.61(\mathrm{~m}, 1), 2.40(\mathrm{~m}, 1), 1.01$ (s, 9), $0.98(\mathrm{~s}, 9), 0.09(\mathrm{~s}, 6),-0.02(\mathrm{~s}, 6)$.

2-Chloro-6-benzyloxy-9-[2'-deoxy-ß-D-erythropentofuranosyl]purine diacetate (8a). Compound $\mathbf{8 a}$ was prepared by the procedure described below for preparation of $\mathbf{8 b}$ (60% yield): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \square 8.08(\mathrm{~s}, 1), 7.52(\mathrm{~d}, 2), 7.32(\mathrm{~m}, 3), 6.41(\mathrm{t}, 1), 5.64(\mathrm{~s}$, 2), $5.38(\mathrm{~m}, 1), 4.35(\mathrm{~m}, 3), 2.79(\mathrm{~m}, 1), 2.62(\mathrm{~m}, 1), 2.12(\mathrm{~s}, 3), 2.06(\mathrm{~s}, 3) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \square 170.3,170.2,160.8,153.1,152.7,140.5,140.4,135.2,128.7,128.5,128.4$, 121.0, 84.6, 82.6, 74.3, 69.6, 63.6, 37.9, 20.8, 20.7; MS: [MH] 461.0 (Mass: 460.1.1).

2-Chloro-6-(p-nitrophenylethyloxy)-9-[2'-deoxy- β-D-erythropentofuranosyl]purine

 diacetate (8b). To a flask containing 2-amino-6-(p-nitrophenylethyloxy)-9-[2'-deoxy - β -D-erythropentofuranosyl]purine diacetate ${ }^{2}(189 \mathrm{mg}, 0.378 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$ under argon at $0{ }^{\circ} \mathrm{C}$ was added dropwise trimethylsilyl chloride ($118 \mathrm{~mL}, 3.0$ equiv.) followed by t-butyl nitrite ($206 \mathrm{~mL}, 5.0$ equiv.). The solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h , and reaction was quenched by addition of a saturated solution of NaHCO_{3}. Workup by the procedure for preparation of $\mathbf{5 d}$ followed by purification on a silica gel column eluted with $3 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to provide $\mathbf{8 b}(147 \mathrm{mg}, 75 \%)$: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \square 8.09$ (dd, 2, $J=8.6 \mathrm{~Hz}) 8.07(\mathrm{~s}, 1), 7.44(\mathrm{~d}, 2, J=8.6 \mathrm{~Hz}), 6.38(\mathrm{t}, 1), 5.30(\mathrm{~m}, 1), 4.78(\mathrm{t}, 2), 4.35(\mathrm{~m}$, 3), $3.25(\mathrm{t}, 2) 2.85(\mathrm{~m}, 1), 2.65(\mathrm{~m}, 1), 2.07(\mathrm{~s}, 3), 2.04(\mathrm{~s}, 3) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \square 170.3$, $170.2,160.6,153.0,152.7,146.8,145.3,140.8,129.9,123.7,120.7,84.6,82.7,74.3$, 67.5, 63.6, 37.8, 34.9, 20.9, 20.8; MS: [MH] 520.0 (Mass: 519.1).[^1]

General Procedure for Coupling Halopurines: Synthesis of 6. A 15 mL pressure tube was flushed with argon, $\mathrm{Pd}(\mathrm{OAc})_{2}(2.2 \mathrm{mg}, 0.01 \mathrm{mmol})$, racemic BINAP ($9.3 \mathrm{mg}, 0.015$ $\mathrm{mmol})$, and toluene (1 mL) were added and the mixture was stirred for 5 min . Then a solution of $4(42 \mathrm{mg}, 0.113 \mathrm{mmol})$ in toluene $(2 \mathrm{~mL}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(37 \mathrm{mg})$, and a solution of $\mathbf{5 b}(43 \mathrm{mg}, 0.113 \mathrm{mmol})$ in toluene $(2 \mathrm{~mL})$ were added under of argon. The pressure tube was reflushed with argon, sealed, and heated at $80^{\circ} \mathrm{C}$ overnight. The mixture was cooled to rt and chromatographed on a silica gel column eluted with hexane-EtOAc (1:1) to give 6 as yellow oil ($36 \mathrm{mg}, 47 \%$): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \square 8.42(\mathrm{~s}, 1 \mathrm{H}), 8.14(\mathrm{~d}, 1 J=8.4 \mathrm{~Hz})$ $8.02(\mathrm{~s}, 1), 7.96(\mathrm{~s}, 1), 7.94(\mathrm{~s}, 1), 7.92(\mathrm{~d}, 1 J=8.4 \mathrm{~Hz}) 7.44(\mathrm{~m}, 1), 7.36(\mathrm{~m}, 1), 6.46(\mathrm{~m}$, 1), $5.46(\mathrm{~m}, 1), 4.44(\mathrm{~m}, 1), 4.37(\mathrm{~m}, 2), 3.01(\mathrm{~m}, 1), 2.66(\mathrm{~m}, 1), 2.14(\mathrm{~s}, 3), 2.11(\mathrm{~s}, 3)$, $1.13(\mathrm{~s}, 9), 1.01(\mathrm{~s}, 9), 0.31(\mathrm{~s}, 6), 0.18(\mathrm{~s}, 6) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \square 170.4,170.3,153.3$, 153.1, 149.2, 141.9, 138.6, 137.7, 129.8, 126.6, 125.2, 124.4, 124.1, 123.1, 121.0, 118.0, 84.6, 82.6, 74.5, 63.8, 37.5, 26.2, 21.0, 20.9,20.8, 18.7, 18.6. -0.04, -3.56, -3; HRMS Calcd for $\mathrm{C}_{36} \mathrm{H}_{51} \mathrm{~N}_{5} \mathrm{O}_{7} \mathrm{Si}_{2}[\mathrm{MNa}]^{+} 744.3225$. Found 744.3231. There was also obtained a small amount of the bis-adduct: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \square 8.59(\mathrm{~s}, 2), 8.13(\mathrm{~d}, 1, J=8.5 \mathrm{~Hz})$, 7.12-7.87 (m, 5), $6.45(\mathrm{~m}, 2), 5.41(\mathrm{~m}, 2), 4.35(\mathrm{~m}, 6), 2.93(\mathrm{~m}, 2), 2.61(\mathrm{~m}, 2), 2.11(\mathrm{~s}$, $6), 2.04(\mathrm{~m}, 6), 1.13(\mathrm{~s}, 9), 0.87(\mathrm{~s}, 9), 0.17(\mathrm{~s}, 6), 0.08(\mathrm{~s}, 6) ; \mathrm{MS}$ Calcd for $\mathrm{C}_{50} \mathrm{H}_{65} \mathrm{~N}_{9} \mathrm{O}_{12} \mathrm{Si}_{2}$: $[\mathrm{MH}]^{+}$1040.4. Found: 1040.3. When the chloropurine (5c) was substituted for $\mathbf{5 b}$, reaction took place at lower temperature $\left(60^{\circ} \mathrm{C}\right)$, required 1 h for completion, and gave 6 in higher yield 6 (85%).

Conversion of 6 to the NQ-dA Adduct (7c). (a) Removal of TBDMS groups. To a solution of $6(70 \mathrm{mg}, \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ under argon was added TBAF $(0.2 \mathrm{~mL}$ of 1 M solution in THF, 0.2 mmol). The colorless solution was stirred at rt for 0.5 h . It became purple. The solvents were removed under reduced pressure, and the residue was purified by chromatography on a silica gel column to provide $\mathbf{7 b}$ as purple oil $(80 \%):{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}\right) \square 8.65(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{~s}, 1), 8.10(\mathrm{~d}, 1, J=8.4 \mathrm{~Hz}) 7.85(\mathrm{br} \mathrm{s}, 1), 7.58(\mathrm{~m}, 1)$, $6.48(\mathrm{~m}, 1), 5.46(\mathrm{~m}, 1), 4.72(\mathrm{~m}, 1), 4.38(\mathrm{~m}, 2), 3.04(\mathrm{~m}, 1), 2.13(\mathrm{~s}, 3), 2.07(\mathrm{~s}, 3) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \square 170.4,170.3,152.5,141.5,134.7,131.4,85.0,82.8,74.4,63.6,37.6$, 20.9, 20.8. MS Calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{7}[\mathrm{MH}]^{+}$492.1. Found: 492.1.
(b) Deacetylation. To a solution of $\mathbf{7 b}(25 \mathrm{mg}, \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and methanol (2 mL) was added a solution of guanidine hydrochloride (9.8 mg) and $\mathrm{MeONa}(3.8 \mathrm{mg})$ in $\mathrm{MeOH}(1 \mathrm{~mL})$. TLC showed reaction was complete within an hour. The solvents were removed and the residue was purified on a column of silica gel to give $7 \mathrm{c}(75 \%)$ as a purple solid: ${ }^{1} \mathrm{H}$ NMR $\left(\right.$ DMSO- $\left._{6}\right) \square 8.70(\mathrm{~s}, 1 \mathrm{H}), 8.67(\mathrm{~s}, 1), 8.25(\mathrm{~d}, 1, J=7.5 \mathrm{~Hz}) 8.04$ $(\mathrm{d}, 1, J=7.5 \mathrm{~Hz}), 7.84(\mathrm{~m}, 1), 7.74(\mathrm{~m}, 1), 6.46(\mathrm{t}, 1), 5.40(\mathrm{br} \mathrm{s}, 1), 5.05(\mathrm{br} \mathrm{s}, 1), 4.43$ $(\mathrm{m}, 1), 3.89(\mathrm{~m}, 1), 3.62(\mathrm{~m}, 1), 3.35(\mathrm{~m}, 1), 2.78(\mathrm{~m}, 1), 2.36(\mathrm{~m}, 1) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right)$ $\square 8.68(\mathrm{~s}, 1 \mathrm{H}), 8.62(\mathrm{~s}, 1), 8.34(\mathrm{~d}, 1, J=7.5 \mathrm{~Hz}), 8.12(\mathrm{~d}, 1, J=7.5 \mathrm{~Hz}), 7.80(\mathrm{~m}, 1), 7.69$ $(\mathrm{m}, 1), 6.90(\mathrm{br} \mathrm{s}, 1), 6.55(\mathrm{t}, 1), 4.61(\mathrm{~m}, 1), 4.07(\mathrm{~m}, 1), 3.86(\mathrm{~m}, 1), 3.75(\mathrm{~m}, 1), 2.85$ $(\mathrm{m}, 1), 2.51(\mathrm{~m}, 1) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}\right), \square$ 180.7, 152.2, 151.5, 143.6, 134.6, 133.1, 132.0, 131.4, 127.5, 125.8, 124.3, 88.4, 84.2, 71.0, 61.9; MS: Calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{5}$ [M$\mathrm{H}]^{+}$406.1. Found: 406.0; HRMS: Calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{5}[\mathrm{M}+\mathrm{Na}]^{+}$430.1127. Found: 430.1140.

Alternative Method of Deprotection of 6 and Conversion to the NQ-dA Adduct (7c).

(a) Deacetylation. To a solution of $\mathbf{6 a}(52 \mathrm{mg}, 0.072 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and MeOH (2 mL) was added $N, N, N^{\prime}, N^{\prime}$-tetramethylguanidine ($10 \square \mathrm{~L}, 0.08 \mathrm{mmol}$). TLC showed reaction was complete in 1 h . Following removal of the solvents under vacuum, the residue was chromatographed on a column of silica gel to give deacetylated 6a as a colorless oil (96\%): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \square 8.39(\mathrm{~s}, 1 \mathrm{H}), 8.35(\mathrm{~s}, 1), 8.14(\mathrm{~d}, 1 \mathrm{~J}=8.5 \mathrm{~Hz})$, 7.93 (d, 1, $J=8.5 \mathrm{~Hz}), 7.86(\mathrm{~s}, 1), 7.72(\mathrm{~s}, 1), 7.44(\mathrm{~m}, 1), 7.34(\mathrm{~m}, 1), 6.24(\mathrm{~m}, 1), 4.75$ (m, 1), $4.20(\mathrm{~m}, 1), 3.94(\mathrm{~d}, 1, J=13.0 \mathrm{~Hz}), 3.75(\mathrm{~d}, 1, J=13.0 \mathrm{~Hz}), 3.04(\mathrm{~m}, 1), 2.27(\mathrm{~m}$, 1), $1.13(\mathrm{~s}, 9), 1.00(\mathrm{~s}, 9), 0.28(\mathrm{~s}, 6), 0.17(\mathrm{~s}, 6) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \square 153.7,152.3$, $148.1,141.8,140.1,138.0,129.7,126.2,125.2,124.6,124.1,123.0,121.8,121.2,118.6$, 89.7. 87.8, 73.2, 63.4, 40.8, 26.2, 26.1, 18.7, 18.6, -3.6, -3.7; MS: Calcd for $\mathrm{C}_{32} \mathrm{H}_{47} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{Si}_{2}[\mathrm{MH}]^{+}$638.3. Found: 638.2
(b) Removal of TBDMS groups. To a solution of $\mathbf{6 a}(25 \mathrm{mg}, 0.039 \mathrm{mmol})$ in DMF (2 mL) KF ($2.3 \mathrm{mg}, 0.039 \mathrm{mmol}$) and water (2 drops) were added. TLC showed that reaction was complete in 1 h . The solvents were removed under vacuum, and the residue was purified by chromatography on a column of silica gel to provide $7 \mathrm{c}(4.4 \mathrm{mg}, 90 \%)$ identical by NMR with 7c prepared by the previous method.

Coupling Reaction of 4 with 8a: Synthesis of 9 . The general coupling procedure described above was employed in the coupling of $\mathbf{4}$ with $\mathbf{8 a}$, and reaction was conducted at $60^{\circ} \mathrm{C}$ overnight. The adduct 9 was obtained in 88% yield: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \square 8.05(\mathrm{~d}$, $1 J=8.5 \mathrm{~Hz}) 7.78(\mathrm{~d}, 1 J=8.5 \mathrm{~Hz}), 7.69(\mathrm{~s}, 1), 7.39(\mathrm{~s}, 1), 7.35(\mathrm{~m}, 1), 7.22(\mathrm{~m}, 1), 7.13-$ 7.18 (m, 5), $6.94(\mathrm{~s}, 1), 6.21(\mathrm{~m}, 1), 5.30(\mathrm{~s}, 2), 5.19(\mathrm{~m}, 1), 4.13(\mathrm{~m}, 3), 2.78(\mathrm{~m}, 1), 2.38$ $(\mathrm{m}, 1), 2.01(\mathrm{~s}, 3), 1.98(\mathrm{~s}, 3), 1.03(\mathrm{~s}, 9), 0.91(\mathrm{~s}, 9), 0.15(\mathrm{~s}, 6), 0.05(\mathrm{~s}, 6) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \square 170.4,170.2,160.8,157.9,153.5,141.9,138.0,137.5,136.1,129.8,128.6$, $128.3,127.9,125.9,125.1,124.0,122.9,122.3,119.1,116.5,84.1,82.2,74.7,68.0,63.6$, 36.9, 26.3, 26.1, 20.9, 20.8, 18.6, 18.5, 0.0, -3.5. HRMS: Calcd for $\mathrm{C}_{43} \mathrm{H}_{57} \mathrm{~N}_{5} \mathrm{O}_{8} \mathrm{Si}_{2}$ [MH] 828.3824 . Found: 828.3796.

Conversion of 9 to the NQ-dG Adduct (10). (a) Debenzylation. To a solution of 9 (50 mg, $\mathrm{mmol})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$ and THF (2 mL) was added $5 \% \mathrm{Pd}-\mathrm{C}(20 \mathrm{mg}) . \mathrm{H}_{2}$ was bubbled through the solution for 2 h . then the mixture was allowed to stand under a hydrogen atmosphere overnight. TLC indicated that $\mathbf{9}$ was completely consumed and a single major product was formed. Removal of the catalyst by filtration and evaporation of the solvents afforded a residue that was purified by chromatography on a column of silica gel. Elution with $7 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ afforded $\mathbf{1 0 a}(80 \%)$ as oil: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \square 9.40(\mathrm{br} \mathrm{s}, 1)$, 8.11 (d, $1 J=8.5 \mathrm{~Hz}) 7.92(\mathrm{~d}, 1 J=8.5 \mathrm{~Hz}), 7.43(\mathrm{t}, 1), 7.32(\mathrm{t}, 1), 7.26(\mathrm{~s}, 2), 5.98(\mathrm{~m}, 1)$, $5.24(\mathrm{~m}, 1), 4.09(\mathrm{~m}, 1), 3.98(\mathrm{~m}, 1), 3.87(\mathrm{~m}, 1), 2.63(\mathrm{~m}, 1), 2.17(\mathrm{~m}, 1), 2.03(\mathrm{~s}, 3), 1.81$ (s, 3), $1.13(\mathrm{~s}, 9), 0.98(\mathrm{~s}, 9), 0.26(\mathrm{~s}, 3), 0.25(\mathrm{~s}, 3), 0.15(\mathrm{~s}, 3), 0.12(\mathrm{~s}, 3) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \square 170.2,169.9,159.2,152.6,150.7,141.8,139.1,135.6,131.8,129.7,127.9$, $127.0,126.9,125.4,123.2,122.5,121.8,118.1,84.2,82.0,74.6 .63 .1,36.4,26.2,26.1$, 20.8, 20.5, 18.6, 18.5, -0.1, -3.5, -3.6; MS Calcd for $\mathrm{C}_{36} \mathrm{H}_{51} \mathrm{~N}_{5} \mathrm{O}_{8} \mathrm{Si}_{2}[\mathrm{MH}]^{+} 738.3$. Found: 738.3.
(b) Deacetylation. To a solution of $\mathbf{1 0 a}(50 \mathrm{mg}, \mathrm{mmol})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 mL) was added TMG ($10 \square \mathrm{~L}, \mathrm{mmol}$). TLC showed reaction was complete after 0.5 h . Chromatography on a silica gel column eluted with $12 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave $\mathbf{1 0 b}$ as colorless oil (88\%): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \square 8.60(\mathrm{br} \mathrm{s}, 1), 8.07(\mathrm{~d}, 1 \mathrm{~J}=8.8 \mathrm{~Hz}) 7.78(\mathrm{~d}, 1 \mathrm{~J}$ $=8.5 \mathrm{~Hz}), 7.39(\mathrm{~m}, 1), 7.26(\mathrm{~m}, 2), 7.19(\mathrm{~s}, 1), 6.07(\mathrm{~m}, 1), 4.48(\mathrm{~m}, 1), 4.11(\mathrm{~m}, 1), 3.85$ (m, 2), $2.61(\mathrm{~m}, 1), 2.13(\mathrm{~m}, 1), 1.10(\mathrm{~s}, 9), 0.92(\mathrm{~s}, 9), 0.19(\mathrm{~s}, 6), 0.06(\mathrm{~s}, 6),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \square 152.0,150.3,141.9,138.0,130.0,126.8,125.6,124.7,122.8,122.5,122.0$, $118.2,87.4,85.0,71.0,61.9,40.0,26.1,26.0,18.6,18.5,-0.1,-3.5,-3.6$; MS: Calcd for $\mathrm{C}_{32} \mathrm{H}_{47} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{Si}_{2}[\mathrm{MH}]^{+}$654.3. Found: 654.2.
(c) Removal of $T B D M S$. To a solution of $12(25 \mathrm{mg}, 0.04 \mathrm{mmol})$ in DMF $(2 \mathrm{~mL})$ was added KF ($2.3 \mathrm{mg}, 0.04 \mathrm{mmol}$) and water (2 drops). TLC showed reaction was complete within 1 h . The solvents were evaporated and the residue was chromatographed on a silica gel column to provide the NQ-dG adduct (10) as a purple solid (85\%): ${ }^{1} \mathrm{H}$ NMR (DMSO_{-}) $\square 11.2(\mathrm{br} \mathrm{s}, 1), 8.23(\mathrm{~d}, 1, J=7.1 \mathrm{~Hz}$), $7.96(\mathrm{~s}, 1), 7.76(\mathrm{~d}, 1, J=7.5 \mathrm{~Hz}$), 7.55 (t, 1), $7.44(\mathrm{t}, 1), 6.30(\mathrm{~s}, 1), 6.12(\mathrm{~m}, 1), 5.20(\mathrm{~s} ., 1), 4.98(\mathrm{br} \mathrm{s}, 1), 4.25(\mathrm{~m}, 1), 3.72(\mathrm{~m}$, 1), $3.42(\mathrm{~m}, 2), 2.56(\mathrm{~m}, 1), 2.13(\mathrm{~m}, 1) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.{ }_{6}\right) \square$ 186.1, 172.0, 160.7, $158.3,157.8,150.2,137.8,137.6,133.2,132.4,130.1,126.0,120.0,103.9,88.1,83.6$, 71.2, 62.2, 39.8; MS: Calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{6}[\mathrm{M}-\mathrm{H}]^{+}$422.1. Found: 422.1. HRMS: Calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{6}[\mathrm{M}+\mathrm{Na}]^{+}$446.1077. Found: 446.1088.

10-Amino-BPQ
10-Aminobenzo[a]pyrene-7,8-dione (10-Amino-BPQ). To a solution of BPQ (1.0g, 3.50 mmol) in DMF (10 mL) under argon was added dropwise trimethylsilyl azide (0.86 $\mathrm{mL}, 4.20 \mathrm{mmol})$. The reaction took place with evolution of heat and nitrogen gas, and the color changed from purple to brown. The mixture was stirred at rt overnight, then EtOAc $(50 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}$ were added. The orange solid precipate of $10-\mathrm{amino}-\mathrm{BPQ}$ was filtered off. Additional 10 -amino-BPQ was obtained by concentration of the filtrate under vacuum and chromatography of the residue on a silica gel column (combined yield 65\%),

Mp. $>290{ }^{\circ} \mathrm{C}:{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)$ ․ $8.72(\mathrm{~d}, 1, J=11.5 \mathrm{~Hz}), 8.44(\mathrm{~s}, 1), 7.99-8.23(\mathrm{~m}, 7)$, $5.72(\mathrm{~m}, 2) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{DMSO}_{6}\right) \square$ 183.5, 175.0, 162.7, 162.3, 132.4, 131.9, 130.7, $130.2,130.0,129.4,128.5,128.4,127.7,127.5,127.3,126.9,125.4,124.8,124.4,123.6$, 101.8; MS Calcd for $\mathrm{C}_{20} \mathrm{H}_{11} \mathrm{NO}_{2}$, 297.1. Found: 298.0.

11a: R = TBDMS
b: $R=B z$
10-Amino-7,8-bis(tert-butyldimethoxysilyoxy)benzo[a]pyrene (11a). Method A: Reduction with NaBH_{4}. To a solution of $10-\operatorname{amino}-\mathrm{BPQ}(50.8 \mathrm{mg}, 0.169 \mathrm{mmol})$ in anhydrous DMF (5 mL) under argon was added NaBH_{4} (100 mg , mmol). Reaction took place with evolution of heat and H_{2}. Stirring was continued at rt for 0.5 h , then TMDMS$\mathrm{Cl}(500 \mathrm{mg})$ and imidazole (500 mg) were added. After an additional 4 h , EtOAc and water were added and the organic phase was washed with water and brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated, and the residue was chromatographed on a silica gel column eluted with 5-7.5\% EtOAc in hexane to give 11a (20\%) as yellow oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \square 9.72(\mathrm{~d}, 1 J=9.0 \mathrm{~Hz}) .8 .78(\mathrm{~s}, 1), 8.22(\mathrm{~d}, 1, J=11.0 \mathrm{~Hz}), 8.15(\mathrm{~d}, 1, J$ $=7.5 \mathrm{~Hz}), 8.01(\mathrm{~d}, 1, J=7.0 \mathrm{~Hz}), 7.89(\mathrm{~m}, 3), 6.78(\mathrm{~s}, 1), 4.32(\mathrm{~s}, 2), 1.21(\mathrm{~s}, 9), 1.04(\mathrm{~s}$, 9), $0.30(\mathrm{~s}, 6), 0.15(\mathrm{~s}, 6) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \square 142.2,139.0,133.6,131.6,130.2,129.0$, $128.8,128.4,128.0,127.5,126.3,125.5,125.4,125.1,124.9,124.4,123.1,120.6,115.7$, 110.4, 26.4, 26.1, 18.7, 18.6, -0.1, -3.6; HRMS: Calcd for $\mathrm{C}_{36} \mathrm{H}_{51} \mathrm{~N}_{5} \mathrm{O}_{8} \mathrm{Si}_{2}[\mathrm{MH}]^{+}$ 528.2771. Found: 528.2763.

Method B: Pd-Catalyzed Reduction with H_{2}. To a solution of $10-\mathrm{amino}-\mathrm{BPQ}(50.8 \mathrm{mg}$, 0.169 mmol) in anhydrous DMF (5 mL) under argon was added $5 \% \mathrm{Pd}-\mathrm{C}(25 \mathrm{mg})$, and H_{2} was bubbled through the mixture for 0.5 h . The dark red suspension became yellow, indicating that reduction of the quinone to the catechol was complete. The catalyst was removed by filtration under argon, and N-methyl TBDMS trifluoroacetamide (0.5 mL , 2.12 mmoL) was added to the filtrate. The mixture was stirred for 0.5 h , then EtOAc (50 $\mathrm{mL})$ and water $(50 \mathrm{~mL})$ were added. The organic phase was washed with water and brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under vacuum, and the residue was
purified on a silica gel column eluted with (5-7.5\% EtOAc in hexane) to furnish 11a (40\%) as yellow oil. A tri-TBDMS by-product was also isolated. It was converted to 11a by treatment with MeOH (combined yield of 11a 60%).

10-Amino-7,8-bis(benzoyloxy)benzo[a]pyrene (11b). To a solution of 10-amino-BPQ $(52.8 \mathrm{mg}, 0.178 \mathrm{mmol})$ in anhydrous DMF (5 mL) under argon was added $5 \% \mathrm{Pd}-\mathrm{C}$ (20 mg), and H_{2} was bubbled through the mixture for 0.5 h . The dark red solution turned dark yellow. The catalyst was removed by filtration under argon, and benzoic anhydride ($116 \mathrm{mg}, 2.5$ equiv.) and potassium carbonate ($138 \mathrm{mg}, 2.5$ equivalent) were added to the filtrate. The mixture was stirred at room temperature for 4 h , then MeOH was added to quench the reaction. After removal of the solvents under reduced pressure, water and EtOAc were added. The organic phase was washed with water and brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent under vacuum, the furnish $\mathbf{1 1 b}(65 \%)$ as yellow oil: ${ }^{1} \mathrm{H}$ NMR (DMSO_{6}) $\square: 9.83(\mathrm{~d}, 1 J=9.4 \mathrm{~Hz}$). $8.46(\mathrm{~s}, 1), 8.34(\mathrm{~d}, 1, J=9.5$ $\mathrm{Hz}), 8.27(\mathrm{~d}, 1, J=7.7 \mathrm{~Hz}), 8.10(\mathrm{~m}, 3), 7.93(\mathrm{~m}, 5), 7.64(\mathrm{t}, 1, J=7.5 \mathrm{~Hz}), 7.58(\mathrm{t}, 1, J=$ $7.5 \mathrm{~Hz}), 7.49(\mathrm{t}, 2, J=7.9 \mathrm{~Hz}), 7.40(\mathrm{t}, 2, J=7.8 \mathrm{~Hz}), 7.24(\mathrm{~s}, 1), 6.14(\mathrm{~s}, 2) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}$) $\square 165.1,164.1,147.1,139.9,134.6,131.3,130.5,130.4,130.3,130.0,129.4$, $129.3,128.9,128.7,128.6,128.4,128.3,127.4,127.2,126.8,126.1,125.7,125.4,124.5$, 123.1, 118.1, 117.0, 107.5; HRMS: Calcd for $\mathrm{C}_{34} \mathrm{H}_{21} \mathrm{NO}_{4}[\mathrm{MNa}]^{+}$530.1368. Found: 530.1385.

12 b

Bis-adduct

Synthesis of 12b via Coupling 5d with 11b. The coupling of 11b ($50 \mathrm{mg}, \mathrm{mmol}$) with $\mathbf{5 d}$ was carried out by the general procedure at $60^{\circ} \mathrm{C}$ overnight. Chromatography of the product on a silica gel column eluted with $10 \% \mathrm{EtOAc}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ afforded the coupled adduct $\mathbf{1 2 b}$ (50\%) and the corresponidng bis-adduct in $\sim 2: 1$ ratio. For $\mathbf{1 2 b}:{ }^{1} \mathrm{H}$ NMR
(DMSO-d $\left.{ }_{6}\right) \square 10.79(\mathrm{~s}, 1 \mathrm{H}), 9.76(\mathrm{~d}, 1, J=9.5 \mathrm{~Hz}) 8.81(\mathrm{~s}, 1), 8.49(\mathrm{~s}, 1), 7.98-8.24(\mathrm{~m}$, 9), $7.76(\mathrm{t}, 1, J=8.0 \mathrm{~Hz}) 7.63(\mathrm{t}, 1, J=7.2 \mathrm{~Hz}), 7.60(\mathrm{t}, 2, J=7.7 \mathrm{~Hz}), 7.46(\mathrm{t}, 2, J=7.7$ $\mathrm{Hz}), 6.39(\mathrm{t}, 1, J=6.5 \mathrm{~Hz}$), $4.65(\mathrm{~m}, 1), 3.86(\mathrm{~m}, 1), 3.67-3.79(\mathrm{~m}, 2), 2.98(\mathrm{~m}, 1), 2.34$ $(\mathrm{m}, 1), 0.87(\mathrm{~s}, 9), 0.81(\mathrm{~s}, 9), 0.10(\mathrm{~s}, 6),-0.01(\mathrm{~s}, 3),-0.03(\mathrm{~s}, 3) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}$) $\square: 164.6,163.9,153.0,154.1,152.7,150.1,141.8,140.0,138.5,136.3,135.4,134.9$, $134.7,131.5,130.8,130.7,130.5,130.0,129.5,129.4,129.3,128.4,128.3,128.0,127.8$, $127.3,127.0,126.1,126.0,125.0,124.4,124.3,124 . .0,123.5,122.2,121.6,119.9,118.6$, 87.5, 83.8, $72.3,62.9,38.8,26.1,18.3,18.1,-4.4,-4.6,-5.1$; HRMS: Calcd for $\mathrm{C}_{56} \mathrm{H}_{59} \mathrm{~N}_{5} \mathrm{O}_{7} \mathrm{Si}_{2}[\mathrm{MH}]^{+} 970.4031$. Found: 970.4034.

Conversion of 12b to the BPQ-dA adduct (2). (a) Debenzoylation. To a solution of 12b ($10 \mathrm{mg}, \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and $\mathrm{MeOH}(2 \mathrm{~mL})$ was added TMG $(10 \square \mathrm{~L})$, and the solution was stirred at rt for 1 h . The color turned red, indicative of quinone formation. The solvents were removed under reduced pressure, and the residue was purified by chromatography on a silica gel column eluted with $3-6 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to provide 2a (80\%): ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\square 10.10$ (br s, 1H), 8.97 ($\mathrm{s}, 1$), 8.74 ($\mathrm{s}, 1$), 8.57 ($\mathrm{s}, 1$), 8.318.42 (m, 4), $8.15(\mathrm{t}, 1, J=7.5 \mathrm{~Hz}) 7.89(\mathrm{~m}, 2), 7.57(\mathrm{t}, 1, J=7.4 \mathrm{~Hz}), 7.45(\mathrm{t}, 2, J=7.7 \mathrm{~Hz})$, $6.45(\mathrm{t}, 1, J=6.6 \mathrm{~Hz}), 4.65(\mathrm{~m}, 1), 3.86(\mathrm{~m}, 1), 3.67-3.79(\mathrm{~m}, 2), 2.98(\mathrm{~m}, 1), 2.36(\mathrm{~m}, 1)$, $0.87(\mathrm{~s}, 9), 0.79(\mathrm{~s}, 9), 0.09(\mathrm{~s}, 6),-0.02(\mathrm{~s}, 3),-0.04(\mathrm{~s}, 3)$; HRMS: Calcd for $\mathrm{C}_{56} \mathrm{H}_{59} \mathrm{~N}_{5} \mathrm{O}_{7} \mathrm{Si}_{2}[\mathrm{MH}]^{+} 760.3351$. Found: 760.3331.

To a solution of $\mathbf{2 a}(6 \mathrm{mg}, \mathrm{mmol})$ in acetonitrile (2 mL) was added TBAF ($50 \square \mathrm{~L}, 1 \mathrm{M}$), and the mixture was stirred at rt overnight. The solvent was removed under reduced pressure, and the residue was purified by chromatography on a silica gel column elutied with $5-30 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give the BPQ-dA adduct 2 (75\%) yield: ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $\square 10.35(\mathrm{~d}, 1, J=9.4 \mathrm{~Hz}$), $8.89(\mathrm{~s}, 1), 8.65(\mathrm{~s}, 1), 8.52(\mathrm{~s}, 1), 8.37(\mathrm{~d}, 1, J=9.0$ $\mathrm{Hz}), 8.34(\mathrm{~d}, 1, J=7.9 \mathrm{~Hz}), 8.28-8.31(\mathrm{~m}, 2), 8.22(\mathrm{~d}, 1, J=9.8 \mathrm{~Hz}), 8.13(\mathrm{t}, 1, J=7.6 \mathrm{~Hz})$, $6.46(\mathrm{t}, 1, J=6.6 \mathrm{~Hz}), 5.57(\mathrm{br} \mathrm{s}, 1), 5.36(\mathrm{br}, 1), 5.12(\mathrm{br}, 1), 4.44(\mathrm{~m}, 1), 3.90(\mathrm{~m}, 1)$, 3.52-3.71 (m, 2), $2.83(\mathrm{~m}, 1), 2.34(\mathrm{~m}, 1).) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}$) $\square: 162.1,152.7,151.2$, $144.0,142.5,131.9,131.8,131.4,130.8,129.6,129.5,128.9,128.6,128.5,128.0,127.3$, 126.7, 126.2, 125.5, 123.9, 123.6, 105.0, 88.4, 84.2, 71.2, 62.1, 39.8. HRMS: Calcd for $\mathrm{C}_{30} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{5}[\mathrm{MNa}]^{+}$554.1440. Found: 554.1435.

13a
Synthesis of 13a via Coupling 8a with 11b. The general coupling procedure was employed, and the reaction was conducted at $60^{\circ} \mathrm{C}$ overnight. The reaction mixture was cooled to rt and chromatographed on a silica gel column eluted with EtOAc-hexane (2:1). The adduct 13a was obtained (82%) as yellow oil: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \square 9.62(\mathrm{~d}, 1 \mathrm{~J}=10.0$ $\mathrm{Hz}) 8.90(\mathrm{~s}, 1), 8.07(\mathrm{~d}, 1 J=10.0 \mathrm{~Hz}), 8.01(\mathrm{~d}, 1 J=7.0 \mathrm{~Hz}), 7.86-7.98(\mathrm{~m}, 4), 7.52(\mathrm{~s}, 1)$, $7.45(\mathrm{~s}, 1), 7.36(\mathrm{~s}, 1), 7.10(\mathrm{~m}, 5), 6.18(\mathrm{~m}, 1), 5.21(\mathrm{~s}, 2), 5.05(\mathrm{~m}, 1), 4.41(\mathrm{~m}, 3), 2.50$ ($\mathrm{m}, 1$), $2.05(\mathrm{~m}, 1), 2.07(\mathrm{~s}, 3), 2.04(\mathrm{~s}, 3), 1.28(\mathrm{~s}, 9), 1.05(\mathrm{~s}, 9), 0.34(\mathrm{~s}, 3), 0.31(\mathrm{~s}, 3)$, $0.23(\mathrm{~s}, 3), 0.20(\mathrm{~s}, 3) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \square 170.3,170.0,160.8,157.6,153.5,141.8$, $139.0,137.5,136.0,131.6,130.5,129.8,129.0,128.6,128.3,128.2,128.0,127.7,127.6$, $125.8,125.1,125.0,124.5,123.4,122.4,121.3,120.4,116.5,84.3,82.2,74.6,67.8,63.4$, $60.3,36.1,26.3,26.1,21.0,20.8,20.6,18.8,18.6,14.1,-3.5,-3.6$; HRMS Calcd for $\mathrm{C}_{53} \mathrm{H}_{61} \mathrm{~N}_{5} \mathrm{O}_{8} \mathrm{Si}_{2},[\mathrm{MH}]^{+} 952.4137$. Found: 952.4136.
(a) Debenzylation. Attempts to selectively remove the benzyl group by reductive hydrogenation were complicated by the relative facility of reduction of the aromatic ring system under the conditions studied. Therefore, we investigated the use of an alternative protecting group, namely p-nitrophenylethyl, potentially removable by other methods.

13b

Synthesis of 13b via Coupling 8b with 11b. The general coupling procedure was employed, and reaction was conducted at $60^{\circ} \mathrm{C}$ overnight. The usual workup afforded adduct 13b (88\%): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right) \square 9.67(\mathrm{~d}, 1 J=9.5 \mathrm{~Hz}), 8.88(\mathrm{~s}, 1), 7.71-8.23(\mathrm{~m}$, 11), $7.65(\mathrm{~s}, 1), 7.46(\mathrm{~s}, 1), 5.95(\mathrm{~m}, 1), 5.28(\mathrm{br} ., 1), 4.70(\mathrm{t}, 2), 4.07(\mathrm{~m}, 1), 3.95(\mathrm{~m}, 1)$, $3.86(\mathrm{~m}, 2), 270(\mathrm{t}, 2), 2.44(\mathrm{~m}, 1), 2.10(\mathrm{~m}, 1), 2.15(\mathrm{~s}, 3), 21.93(\mathrm{~s}, 3), 1.20(\mathrm{~s}, 9), 1.02$ ($\mathrm{s}, 9$) , $0.33(\mathrm{~s}, 3), 0.30(\mathrm{~s}, 3), 0.21(\mathrm{~s}, 6) .0 .18(\mathrm{~s}, 6) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CD}_{3} \mathrm{CN}\right) \square 170.2,170.1$, $160.3,157.9,153.8,146.4,142.0,138.8,138.7,131.5,130.8,130.5,129.4,128.9,128.5$, 128.2. 127.9, 127.8, 126.3, 126.1, 125.1, 124.7, 124.6, 123.1, 122.9, 122.5, 121.6, 120.1, $117.3,115.9,84.2,82.1,74.6,65.4,63.3,33.8,25.7,25.5,20.1,20.0,18.5 .18 .3,13.5$, 4.0, -4.1, -4.2, -4.3. HRMS: Calcd for $\mathrm{C}_{54} \mathrm{H}_{62} \mathrm{~N}_{6} \mathrm{O}_{10} \mathrm{Si}_{2}$ [MH] ${ }^{+}$1011.4144. Found: 1011.4146 .

13c

14a

Removal of Protecting Groups and Conversion of 13b into the BPQ-dG Adduct (1).

 Deprotection. To a solution of $\mathbf{1 3 b}(15 \mathrm{mg}, \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and $\mathrm{MeOH}(2 \mathrm{~mL})$ was added TMG ($30 \square \mathrm{~L}, \mathrm{mmol}$). TLC showed that conversion of $\mathbf{1 3 b}$ to $\mathbf{1 3} \mathbf{c}$ was complete in 2 h . MS of $\mathbf{1 3 c}$: Calcd for $\mathrm{C}_{50} \mathrm{H}_{58} \mathrm{~N}_{6} \mathrm{O}_{8} \mathrm{Si}_{2}$ [MH] 927.4. Found: 927.3. Following removal of the solvents under vacuum, the residue was allowed to stand at rt overnight. TLC showed that $\mathbf{1 3} \mathbf{c}$ was completely converted to a mixture of two more polar compounds that were separated by chromatography on a silica gel column and identified as $\mathbf{1 4 a}$ and the BPQ-dG adduct (1). These compounds were obtained in $\sim 1: 1$ ratio. Conversion of $\mathbf{1 4 a}$ to $\mathbf{1}$ was complete on standing for 3 days. Compound $\mathbf{1 4 a}:{ }^{1} \mathrm{H}$ NMR (DMSO-d d $_{6}$) $\square 9.95(\mathrm{br} \mathrm{s}, 1), 8.96(\mathrm{~s}, 1), 8.47(\mathrm{~s}, 1), 8.32-8.43(\mathrm{~m}, 6), 8.7(\mathrm{t}, 1), 8.10$ $(\mathrm{d}, J=9.0,1, \mathrm{~Hz}), 7.57(\mathrm{~d}, 1, J=8.0 \mathrm{~Hz}), 6.38(\mathrm{~m}, 2), 5.29(\mathrm{~m}, 1), 4.74(\mathrm{~m}, 2), 4.35(\mathrm{~m}, 1)$, 4.03 (br., 1), 3.83 (m, 1), $3.60(\mathrm{~m}, 2), 3.24(\mathrm{~m}, 2), 2.68(\mathrm{~m}, 1), 2.26(\mathrm{~m}, 1) ;{ }^{31} \mathrm{C}$ NMR $\left(\right.$ DMSO-d $\left._{6}\right) \square 182.1,160.6,153.4,146.9,146.6,141.8,132.6,131.8,130.7,130.6,130.3$, $129.8,129.5,128.6,128.3,127.4,127.2,127.0,126.8,125.3,123.9,123.7,123.6,117.4$, 108.3, 88.4, 84.0, 71.1, 66.8, 62.0, 34.6; MS: Calcd for $\mathrm{C}_{38} \mathrm{H}_{28} \mathrm{~N}_{6} \mathrm{O}_{8}[\mathrm{M}-\mathrm{H}]^{+}$695.2. Found: 695.1.

BPQ-dG adduct (1): ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $] 11.45(\mathrm{br} \mathrm{s}, 1), 10.20(\mathrm{~d}, 1 J=9.7 \mathrm{~Hz}), 8.72$ (s, 1), 7.98-8.24 (m, 7), $6.16(\mathrm{t}, 1), 5.78(\mathrm{~s}, 1), 5.18(\mathrm{br} ., 1), 4.24(\mathrm{~m}, 1), 3.74(\mathrm{~m}, 1), 3.45$ $(\mathrm{m}, 2), 2.58(\mathrm{~m}, 1), 2.14(\mathrm{~m}, 1) ;{ }^{31} \mathrm{C}$ NMR (DMSO-d $\left.{ }_{6}\right)$ 187.6, 169.8, 165.2, 158.4. $157.9,150.3,137.7,131.9,131.6,131.4,130.9,129.4,129.3,129.0,128.6,128.5,128.4$, $127.9,127.4,126.6,126.0,123.9,123.6,119.9,104.3,88.4,83.7,71.3,62.2$, (C-2' was buried in the solvent peaks of DMSO); MS: Calcd for $\mathrm{C}_{30} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{6}[\mathrm{MH}]^{+} 548.15$. Found: 548.15. HRMS: Calcd for $\mathrm{C}_{30} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{6}[\mathrm{M}+\mathrm{Na}]^{+} 570.1390$. Found: 570.1385.

[^0]: ${ }^{1}$ Watkins, B. E.; Kiely, J. S.; Rapoport, H. J. Am. Chem. Soc. 1982, 104, 5702-5708.

[^1]: ² Sigmund, H.; Pfleiderer, W. Helv. Chim. Acta 2003, 86, 2299-2334.

