SUPPLEMENTARY MATERIAL Ordering the Reductive and Cytochrome P450 Oxidative Steps in Demethylsterigmatocystin Formation Yields General Insights into the Biosynthesis of Aflatoxin and Related Fungal Metabolites Kevin M. Henry and Craig A. Townsend* Department of Chemistry, The Johns Hopkins University, Charles and 34th Streets, Baltimore, MD 21218 ## **Experimental Section** General Materials and Methods: Melting points were determined with a Thomas-Hoover oil bath apparatus in open capillaries and are uncorrected. ¹H and ¹³C NMR spectra were recorded on a Varian Unity ^{Plus} 400 MHz spectrometer and are referenced to CDCl₃ (7.27 and 77.0 ppm) or d₆-acetone (2.04 and 29.9 ppm) as indicated. High and low resolution mass spectra were recorded by Dr. Joseph Kachinski of the Department of Chemistry, The Johns Hopkins University using a VG Instruments 70-S 250 GC/MS at 70 eV in EI⁺, CI⁺, or FAB operating modes. Additional exact mass determinations were performed by Dr. Christopher Hadad of the Ohio State University and by Dr. Ronald Cerny of the University of Nebraska. Infrared spectra were recorded on a Perkin-Elmer 1600 Series FTIR spectrophotometer. Combustion analyses were performed by Atlantic Microlab, Inc. (Norcross, GA). Flash chromatography was performed using EM silica gel 60 (230-400 mesh). Thin-layer chromatography (TLC) was performed on Analtech Uniplate glass plates containing fluorescent indicator. TLC plates were photographed by James Van Rensselaer, The Johns Hopkins University. Reagents and aflatoxin standards were purchased from Aldrich, Inc. Media components were purchased from Difco (Detroit, MI) or Fisher (Pittsburg, PA). Nonaqueous reactions were performed in flame-dried glassware under an atmosphere of N₂ or Ar. Solvents were distilled immediately prior to use (THF and Et₂O from sodium/benzophenone ketyl, and CH₂Cl₂ and CH₃CN from CaH₂). During workup organic solutions were dried over anhydrous Na₂SO₄. HPLC was performed with a Perkin-Elmer 235C diode array detector and Series 410 LC pump using a Phenomenex (Torrance, CA) reverse-phase column (Prodigy 5μ ODS(3) 100Å, 250 x 4.60 mm, 5 micron). Mini-prep columns were purchased from Qiagen (Valencia, CA). #### SYNTHETIC PROCEDURES Synthesis of (*Linear*) 4,6,8-Trihydroxy-2,3,3a,12a-tetrahydrofuro[2,3-b]furo-xanth-5-one (24) and (*Angular*) 4,6,8-Trihydroxy-1,2,3a,12c-tetrahydrofuro[2,3-c]furo-xanth-7-one (25). **S**2 $5-[1-(R,S)-\{2',4',6'-\text{Tris-}(O-\text{benzyl})\}-1-\text{hydroxy-methyl}]-3-(t-\text{butyldimethyl-})$ silyloxy-2-ethyl)-4,6-bis-(O-methoxymethyl)-2,3-dihydro-benzofuran-2-yloxy]triisopropyl-silane (13). (Procedure A) A pentane (50 mL) solution of bromide 9 (1.86 g, 2.88 mmol) was cooled to -40 °C under argon. n-BuLi (1.26 M, 2.29 mL, 2.88 mmol) was added over 30 s. After 1 min a THF (15 mL) solution of 2,4,6-tris(O-benzyl)-benzaldehyde (11, 1.22 g, 2.88 mmol, -40 °C) was cannulated into the pentane solution. The resulting mixture was stirred 15 min at -40 °C and then 15 min at 0 °C before it was quenched with aq NaHCO₃. The product mixture was diluted with Et₂O and washed with water and brine, then concentrated and passed through a column of silica gel with 10% EtOAc in hexanes. The benzophenolic pair 13 was isolated together as a faintly yellow oil (1.7 g, 59%). TLC R_f 0.55, 0.59 (20% EtOAc in hexanes). ¹H NMR (400 MHz, CD₃COCD₃) δ 7.4 (m, 15H), 6.62 (t, 1H, J = 10.5 Hz), 6.44 (m, 2H), 5.93, 5.91 (s, 1H), 5.40, 5.32 (d, 1H, J = 10.4 Hz), 5.0 (m, 10H), 3.7 (m, 2H) 3.5 (m, 1H), 3.47, 3.40 (s, 3H), 3.02, 3.00 (s, 3H), 2.87 (s, 1H), 1.95 (m, 1H), 1.51 (m, 1H), 1.12 (m, 21H), 0.92 (m, 9H), 0.07 (m, 6H). ¹³C NMR (100 MHz, CD₃COCD₃) 8 160.7, 160.6, 160.2, 160.0, 159.8, 159.1, 158.4, 157.8, 155.8, 154.7, 154.6, 138.9, 138.7, 130.0, 129.8, 129.2, 129.0, 128.8, 121.2, 120.0, 116.2, 115.6, 115.4, 114.8, 112.1, 107.8, 107.2, 106.9, 100.5, 100.2, 97.5, 96.0, 95.6, 95.4, 95.0, 94.9, 94.5, 93.8, 71.9, 71.7, 71.5, 71.2, 71.0, 68.4, 66.0, 62.3, 62.2, 62.1, 58.1, 57.0, 56.7, 56.4, 56.3, 49.9, 49.8, 48.5, 35.9, 27.0, 19.5, 19.0, 18.9, 13.7, 13.5, -4.5. IR (neat) 3544 (br), 2947, 2894, 1603, 1498, 1151, 1112, 1054 cm⁻¹. HRMS-EI (m/z): M⁺Na calcd for C₅₇H₇₈O₁₁Si₂, 1017.4975; found, 1017.4975. Anal. Calcd for C₅₇H₇₈O₁₁Si₂: C, 68.78; H, 7.90. Found: C, 68.72; H, 7.99. 5-Keto-[2',4',6'-tris-(O-benzyl)-phenyl]-3-(t-butyldimethyl-silyloxy-2-ethyl)-4,6bis-(O-methoxymethyl)-2,3-dihydro-benzofuran-2-yloxy]-triisopropyl-silane (15). (Procedure B) Benzophenols 13 (1.65 g, 1.66 mmol) were dissolved in CH₂Cl₂ (50 mL) and cooled to 0 °C. Dess-Martin periodinane (0.77 g, 1.83 mmol) was added and the mixture was stirred 1 h and warmed to ambient temperature. The mixture was washed with aq NaHCO₃, water, and brine, then concentrated and passed through a column of silica gel with 10% EtOAc in hexanes. Benzophenone 15 was isolated as a yellow oil (1.0 g, 60%). TLC R_f 0.55 (20% EtOAc in hexanes). ¹H NMR (400 MHz, CD₃COCD₃) δ 7.35 (m, 15H), 6.42 (s, 2H), 6.38 (s, 1H), 6.01 (s, 1H), 5.11 (s, 2H), 5.04 (s, 4H), 4.80 (m, 4H), 3.74 (m, 2H), 3.51 (dd, 1H, J = 3.5, 9.6 Hz.) 3.27 (s, 3H), 3.04 (s, 3H), 1.98 (m, 1H), 1.53 (m, 1H), 1.14 (m, 21H), 0.90, 0.89 (s, 9H), 0.03, 0.02 (s, 6H). ¹³C NMR (100 MHz, CD₃COCD₃) δ 190.77, 163.0, 162.1, 161.7, 161.3, 159.7, 159.4, 158.6, 154.4, 138.1, 138.0, 137.8, 129.5, 129.4, 129.3, 129.2, 129.1, 128.9, 128.8, 128.7, 128.6, 128.4, 128.2, 128.2, 121.3, 117.5, 115.6, 107.2, 107.1, 100.1, 95.5, 94.3, 94.2, 71.5, 71.0, 70.7, 61.6, 57.2, 56.0, 48.8, 35.3, 26.4, 18.9, 18.4, 18.3, 12.9, -5.2. IR (neat) 2947, 2866, 1660, 1600, 1153, 1115, 1047 cm⁻¹. HRMS-EI (*m/z*): $M^{\dagger}Na$ calcd for $C_{57}H_{76}O_{11}Si_2$, 1015.4818; found, 1015.4857. Anal. Calcd for $C_{57}H_{76}O_{11}Si_2$: C, 68.92; H, 7.71. Found: C, 68.89; H, 7.96. 5-Keto-[2',4',6'-tris-(O-benzyl)-phenyl]-3-(t-butyldimethyl-silyloxy-2-ethyl)-4-(O-benzyl)-6-(O-methoxymethyl)-2,3-dihydro-benzofuran-2-yloxy]-triisopropyl-silane and 5-Keto-[2',4',6'-tris-(O-benzyl)-phenyl]-3-(t-butyldimethyl-silyloxy-2-ethyl)-6-(Obenzyl) 4-(O-methoxymethyl)-2,3-dihydro-benzofuran-2-yloxy]-triisopropyl-silane. (Procedure C) Benzophenone 15 (1.0 g, 1.0 mmol) in CH₂Cl₂ (50 mL) was cooled to 0 °C under argon. BCl₃ (2M in CH₂Cl₂, 0.55 mL, 1.1 mmol) was added over several minutes and the ice bath was removed. After 20 min the reaction was quenched with aq NaHCO₃. The organic layer was separated and washed with water and brine, then dried, concentrated, and passed through a column of silica gel with 20% EtOAc in hexanes. The resulting mixture of monophenols was isolated as a clear oil. TLC R_f 0.37 (10% EtOAc in hexanes). The mixture was treated with benzyl bromide (2 mL, 16.7 mmol) and DMF (5 mL) and then cooled to 0 °C. NaH (60% suspension, 1.0 g) was added and the ice bath was removed. The mixture was quenched 30 min later with aq NaHCO₃ then diluted with ethyl acetate and water. The organic layer was washed with water and brine, then dried, concentrated and passed through a column of silica gel with 10-30% EtOAc in hexanes. The regioisomeric mixture of tetrabenzyl ethers (0.77 g, 80% over two steps) was isolated as a clear oil. TLC R_f 0.24 (10% EtOAc in hexanes). ¹H NMR (400 MHz, CD₃COCD₃) δ 7.26 (m, 20H), 6.42 (s, 1H), 6.35 (s, 2H), 6.04 (d, 1H, J = 1.2 Hz), 5.11 (s, 2H), 4.98, 4.88 (d, 4H, J = 6.1 Hz), 4.81 (m, 4H), 3.68(m, 2H), 3.52 (dd, 1H, J = 3.6, 9.6 Hz), 3.13 (s, 3H), 1.98 (m, 1H), 1.64 (m, 1H), 1.18 1H),21H), 0.83, 0.82 (s, 9H), 0.00, -0.02 (s, 6H). ¹³C NMR (100 MHz, CD₃COCD₃) δ 190.5, 162.1, 161.9, 159.5, 158.6, 155.9, 138.7, 138.1, 129.4, 129.2, 128.8, 128.8, 128.6, 128.3, 121.7, 117.4, 114.8, 107.5, 107.4, 95.5, 94.3, 94.2, 74.9, 70.8, 70.7, 61.3, 56.0, 48.7, 35.2, 26.4, 18.4, 12.9, -5.2. IR (neat) 2952, 1660, 1602, 1153, 1113 cm⁻¹. HRMS-EI (m/z): M⁺Na calcd for C₆₂H₇₈O₁₀Si₂, 1061.5026; found, 1061.4941. Anal. Calcd for C₆₂H₇₈O₁₀Si₂: C, 71.64; H, 7.56. Found: C, 71.66; H, 7.38. 5-Keto-[2',4',6'-tris-(*O*-benzyl)-phenyl]-3-(*t*-butyldimethyl-silyloxy-2-ethyl)-4,6-bis-(*O*-benzyl)-2,3-dihydro-benzofuran-2-yloxy]-triisopropyl-silane (17). Pentabenzylether **17** (clear oil, 0.55 g, 0.51 mmol, 75%, TLC R_f 0.28 - 10% EtOAc in hexanes) was prepared from mixture of tetrabenzylethers prepared above (0.7 g, 0.67 mmol) according to *Procedure C*. ¹H NMR (400M Hz, CD₃COCD₃) δ 7.32 (m, 25H), 6.41 (s, 1H), 6.29 (s, 2H), 6.05 (d, 1H, J = 1.2 Hz), 5.11 (s, 2H), 4.83 (s, 6H), 4.80, 4.60 (d, 2H, J = 12.0 Hz), 3.70 (m, 2H), 3.51 (dd, 1H, J = 2.4, 9.3 Hz), 2.01 (m, 1H), 1.64 (m, 1H), 1.20 (m, 21H), 0.85 (s, 9H), 0.00, -0.02 (s, 6H). ¹³C NMR (100 MHz, CD₃COCD₃) δ 190.5, 185.1, 162.1, 162.0, 160.2, 159.5, 156.2, 138.8, 138.1, 137.8, 129.4, 129.1, 129.0, 128.8, 128.6, 128.4, 128.3, 128.3, 128.2, 121.1, 117.5, 113.9, 107.4, 94.1, 92.2, 74.9, 71.2, 70.8, 70.7, 61.3, 48.7, 35.2, 26.4, 18.8, 18.4, 18.3, 12.9, -5.2. IR (neat) 2955, 1660, 1602, 1153, 1113 cm⁻¹. HRMS-EI (m/z): M⁺Na calcd for C₆₇H₈₀O₉Si₂, 1107.5233; found, 1107.5215. Anal. Calcd for C₆₇H₈₀O₉Si₂: C, 74.13; H, 7.43. Found: C, 74.39; H, 7.51. **S6** 5-Keto-[2',4',6'-tris-(*O*-benzyl)-phenyl]-4,6-bis-(*O*-benzyl)-[2,3-b]-benzo-**2,3,3a,8a-tetrahydro-bisfuran** (19). (*Procedure D*) To pentabenzylether 17 (0.5 g, 0.46 mmol) and THF (10 mL) was added TBAF (1 M in THF, 1.4 mL, 1.4 mmol). The mixture was heated to reflux (ca. 1 h) until conversion to the diol was complete (TLC R_f 0.05 - 20% EtOAc in hexanes). The reaction mixture was then cooled to 0 °C and aq HCl (3.0 M, 2 mL) was added. The ice bath was removed and the mixture was stirred 30 min, then diluted with Et₂O and quenched with aq NaHCO₃. The etherial layer was washed with water and brine, then dried, concentrated, and passed through a column of silica gel with 20% EtOAc in hexanes. Tetrahydrobisfuran 19 was isolated (0.31 g, 85% yield, mp = 58-60 °C) as a white solid. TLC $R_f = 0.30 (20\% \text{ EtOAc in hexanes})$. ¹H NMR (400 MHz, CD₃COCD₃) δ 7.31 (m, 25H), 6.34 (s, 2H), 6.33 (s, 1H), 6.31 (s, 1H), 5.14 (s, 2H), 4.84 (s, 6H), 4.78, 4.60 (d, 2H, J = 11.4 Hz), 3.96 (m, 2H), 3.42 (q, 1H, J = 8.4 Hz), 2.05 (m, 1H), 2.00 (m, 1H). ¹³C NMR (100 MHz, CD₃COCD₃) δ 190.3, 163.2, 162.3, 160.2, 159.8, 156.0, 138.9, 138.1, 138.0, 137.8, 129.4, 129.1, 129.0, 128.9, 128.8, 128.7, 128.5, 128.4, 121.1, 117.3, 113.0, 112.3, 94.2, 91.1, 74.9, 71.2, 71.0, 70.8, 67.8, 45.9, 32.8. IR (neat) 2955, 1660, 1602, 1153, 1113 ${\rm cm}^{-1}$. HRMS-EI (m/z): ${\rm M}^{+}$ Na calcd for ${\rm C}_{52}{\rm H}_{44}{\rm O}_{8}$, 819.2928; found, 819.2934. Anal. Calcd for C₅₂H₄₄O₈: C, 78.37; H, 5.57. Found: C, 78.34; H, 5.64. (Linear) 4, 6, 8-Trihydroxy-2,3,3a,12a-tetrahydrofuro[2,3-b]furo-xanth-5-one (24) and (Angular) 4, 6, 8-Trihydroxy-1,2,3a,12c-tetrahydrofuro[2,3-c]furo-xanth-7-one (25). (*Procedure E*) Tetrahydrobisfuran 19 (100 mg, 0.12 mmol), Pd black (100 mg, 0.94 mmol), and EtOAc (3 mL) were shaken 12 h under H₂ (30 psi). The product mixture was gravity filtered, washed with EtOAc and concentrated. This crude mixture was used a source of the angular xanthone 25 [TLC $R_f = 0.04$; 20% EtOAc in hexanes, ¹H NMR (400 MHz, CD_3COCD_3) δ 12.2 (s, 1H), 11.8 (s, 1H), 11.1 (s, 1H), 6.51 (d, 1H, J = 8.4 Hz), 6.46 (d, 1H, J = 2.1 Hz), 6.28 (d, 1H, J = 2.1 Hz), 6.21 (s, 1H), 4.1 (m, 2H), 3.5 (m, 1H), 2.1 (m, 2H)]. Pure 24 was isolated as a white solid (10.3 mg, 0.03 mmol, 24%, 250 °C dec; TLC $R_f = 0.10$; 20% EtOAc in hexanes) following elution of the crude product mixture through a plug of silica gel with 60% EtOAc in hexanes. ¹H NMR (400 MHz, CD₃COCD₃) δ 12.2 (s, 1H), 11.7 (s, 1H), 11.0 (s, 1H), 6.50 (d, 1H, J = 8.4 Hz), 6.44 (d, 1H, J = 2.1 Hz), 6.39 (s, 1H), 6.28 (d, 1H), 6.50 (d, 1H, J = 8.4 Hz), 6.44 =1H, J = 2.1 Hz), 4.1 (m, 2H), 3.5 (m, 1H), 2.1 (m, 2H). ¹³C NMR (100 MHz, CD₃SOCD₃) δ 182.4, 166.3, 165.9, 162.0, 157.4, 157.2, 156.6, 113.5, 109.0, 101.8, 100.4, 98.6, 94.2, 89.0, 67.2, 42.7, 30.5. HRMS-EI (m/z): M⁺Na calcd for C₁₇H₁₂O₇, 351.0475; found, 351.0493. Synthesis of (*Linear*) 4,6-Dihydroxy-2,3,3a,12a-tetrahydrofuro[2,3-b]furo-xanth-5-one (21) and (*Angular*) 6,8-Dihydroxy-1,2,3a,12c-tetrahydrofuro[2,3-c]furo-xanth-7-one (22). **5-[1-(***R***,***S***)-{2',6'-***Bis***-(***O***-benzyl)}-1-hydroxy-methyl]-3-(***t***-butyldimethyl-silyloxy-2-ethyl)-4,6-bis-(***O***-methoxymethyl)-2,3-dihydro-benzofuran-2-yloxy]-triisopropyl-silane (12**). Benzophenols **12** (clear oil, 3.35 g, 3.77 mmol, 92%, TLC *R_f* 0.53, 0.54 - 20% EtOAc in hexanes) were prepared from bromide **9** (2.64 g, 4.08 mmol) and 2,6-*bis*-(*O*-benzyl)-benzaldehyde (**10**, 1.3 g, 4.08 mmol) according to *Procedure A*. ¹H NMR (400 MHz, CD₃COCD₃) δ 7.35 (m, 10H), 6.77, 6.75 (s, 2H), 6.67 (m, 1H), 6.40, 6.39 (s, 1H), 5.94, 5.92 (d, *J* = 2.0 Hz, 1H), 5.52, 5.43 (d, *J* = 10.4 Hz, 1H), 5.2 (m, 6H), 5.04 (m, 2H), 3.78 (m, 2H), 3.62, 3.60 (s, 1H), 3.5 (m, 1H), 2.99, 2.95, 2.85 (s, 6H), 1.87 (m, 1H), 1.79 (m, 1H) 1.2 (m, 21H), 0.85 (m, 9H), 0.05 (s, 6H). ¹³C NMR (100 MHz, CD₃COCD₃) δ 160.1, 159.9, 158.7, 158.6, 158.4, 158.2, 157.7, 154.7, 154.7, 139.0, 138.8, 138.8, 129.9, 129.8, 129.5, 129.3, 129.1, 128.9, 128.8, 128.7, 123.0, 121.9, 119.7, 115.5, 115.2, 107.5, 107.3, 107.1, 106.9, 100.4, 100.1, 95.4, 95.2, 94.8, 94.7, 71.6, 71.4, 68.6, 66.2, 62.3, 62.2, 58.0, 56.2, 49.8, 49.7, 38.6, 35.8, 26.9, 28.8, 18.9, 18.8, 15.0, 13.5, 13.4, -4.6. IR (neat) 3558, 2953, 1593, 1463, 1380, 1092 cm⁻¹. HRMS-EI (*m*/*z*): M^{\dagger} Na calcd for $C_{50}H_{72}O_{10}Si_2$, 911.4556; found, 911.4543. Anal. Calcd for $C_{50}H_{72}O_{10}Si_2$: C, 67.53; H, 8.16. Found: C, 68.24; H, 8.04. 5-Keto-[2',6'-*bis*-(*O*-benzyl)-phenyl]-3-(*t*-butyldimethyl-silyloxy-2-ethyl)-4,6-bis-(*O*-methoxymethyl)-2,3-dihydro-benzofuran-2-yloxy]-triisopropyl-silane (14). Benzophenone 14 (faintly yellow oil, 0.57 g, 0.65 mmol, 50%, TLC R_f 0.53 - 20% EtOAc in hexanes) was prepared from benzophenols 12 (1.15 g, 1.3 mmol) according to *Procedure B*. ¹H NMR (400 MHz, CD₃COCD₃) δ 7.25 (m, 11H), 6.73 (d, 2H, J = 8.5 Hz), 6.41 (s, 1H), 6.04 (d, 1H, J = 1.3 Hz), 5.05 (s, 4H), 4.8 (m, 4H), 3.73 (m, 2H), 3.53 (dd, 1H, J = 3.0, 9.6 Hz), 3.31 (s, 3H), 3.01 (s, 3H), 1.99 (m, 1H), 1.65 (s, 1H), 1.1 (m, 21H), 0.90, 0.88 (s, 9H), 0.03, 0.02 (s, 6H). ¹³C NMR (100 MHz, CD₃COCD₃) δ 191.4, 162.2, 159.1, 157.9, 155.0, 138.2, 131.1, 129.3, 129.2, 129.1, 128.3, 128.1, 124.3, 120.3, 115.8, 107.2, 106.7, 100.2, 95.3, 94.1, 71.0, 61.5, 57.2, 55.9, 48.7, 35.1, 26.4, 18.9, 18.4, 18.3, 12.9, -5.2. IR (neat) 2947, 2866, 1668, 1593, 1465, 1255, 1099 cm⁻¹. HRMS-EI (m/z): M^+ Na calcd for $C_{50}H_{70}O_{10}Si_2$, 909.4399; found, 909.4360. Anal. Calcd for $C_{50}H_{70}O_{10}Si_2$; C, 67.68; H, 7.95. Found: C, 67.96; H, 7.98. 5-Keto-[2',6'-bis-(O-benzyl)-phenyl]-3-(t-butyldimethyl-silyloxy-2-ethyl)-4-(O-benzyl)-6-(O-methoxymethyl)-2,3-dihydro-benzofuran-2-yloxy]-triisopropyl-silane and 5- **Keto-[2',6'-bis-(***O***-benzyl)-phenyl]-3-(***t***-butyldimethyl-silyloxy-2-ethyl)-6-(***O***-benzyl)-4-(***O***-methoxymethyl)-2,3-dihydro-benzofuran-2-yloxy]-triisopropyl-silane.** The isomeric tribenzylethers shown above (clear oil, 0.64 g, 0.69 mmol, 74%, TLC R_f 0.21 - 20% EtOAc in hexanes) were prepared from benzophenone **14** (0.82 g, 0.92 mmol) according to *Procedure C*. ¹H NMR (400 MHz, CD₃COCD₃) δ 7.3 (m, 16H), 6.68 (s, 1H), 6.44 (d, J = 8.4 Hz, 2H), 6.06 (d, J = 1.4 Hz, 1H), 4.97 (dd, J = 4.6, 16.6 Hz, 4H), 4.82 (m, 4H), 3.66 (m, 2H), 3.51 (dd, J = 3.5, 9.6 Hz, 1H), 3.08 (s, 3H), 1.98 (m, 1H), 1.63 (m, 1H), 1.2 (m, 21H), 0.85, 0.84 (s, 9H), 0.00, -0.02 (s, 6H). ¹³C NMR (100 MHz, CD₃COCD₃) 191.2, 185.2, 162.4, 160.7, 159.0, 158.0, 156.4, 138.7, 138.2, 131.1, 129.2, 128.8, 128.4, 128.3, 128.2, 128.1, 124.2, 120.8, 115.0, 107.4, 106.8, 106.6, 95.3, 94.1, 74.9, 70.8, 61.3, 56.0, 48.7, 35.1, 26.4, 18.4, 18.3, 12.9, -5.2. IR (neat) 2947, 2866, 1667, 1593, 1469, 1377, 1256, 1100 cm⁻¹. HRMS-EI (m/z): M⁺Na calcd for C₅₅H₇₂O₉Si₂, 955.4607; found, 955.4556. Anal. Calcd for C₅₅H₇₂O₉Si₂: C, 70.78; H, 7.78. Found: C, 70.96; H, 7.76. **5-Keto-[2',6'-***bis-*(*O*-**benzyl)-phenyl]-3-**(*t*-**butyldimethyl-silyloxy-2-ethyl)-4,6-***bis-*(*O*-**benzyl)-2,3-dihydro-benzofuran-2-yloxy]-triisopropyl-silane** (**16**). Tetrabenzylether **16** (clear oil, 0.68 g, 0.70 mmol, 78%, TLC R_f 0.25 - 20% EtOAc in hexanes) was prepared from the mixture of tribenzylethers prepared above (0.84 g, 0.90 mmol) according to *Procedure C*. ¹H NMR (400 MHz, CD₃COCD₃) δ 7.2 (m, 21H), 6.60 (d, J = 8.4 Hz, 2H), 6.40 (s, 1H), 6.03 (s, 1H), 4.80 (s, 6H), 4.63 (m, 2H), 3.65 (m, 2H), 3.47 (dd, J = 8.6 Hz, 1H), 1.95 (m, 1H), 1.61 (m, 1H), 1.15 (m, 21H), 0.81 (s, 9H), 0.00, -0.02 (s, 6H). ¹³C NMR (100 MHz, CD₃COCD₃) δ 191.2, 185.1, 162.5, 160.6, 158.1, 156.6, 138.8, 138.2, 137.7, 131.0, 129.1, 129.0, 128.8, 128.4, 128.2, 124.1, 120.3, 114.1, 107.4, 106.7, 92.2, 74.9, 72.7, 71.2, 70.7, 61.3, 48.7, 35.1, 26.4, 18.8, 18.4, 18.3, 12.9, -5.2. IR (neat) 2946, 2866, 1663, 1592, 1453, 1376, 1255, 1100 cm⁻¹. HRMS-EI (m/z): M⁺Na calcd for C₆₀H₇₄O₈Si₂, 1001.4814; found, 1001.4829. Anal. Calcd for C₆₀H₇₄O₈Si₂: C, 73.58; H, 7.62. Found: C, 73.67; H, 7.56. **5-Keto-[2',6'-bis-(***O***-benzyl)-phenyl]-4,6-bis-(***O***-benzyl)-[2,3-b]-benzo-2,3,3a,8a-tetrahydro-bisfuran (18).** Tetrahydrobisfuran **18** (white solid, mp = 58-60 °C, 0.30 g, 0.43 mmol, 86%, TLC R_f 0.30 - 20% EtOAc in hexanes) was prepared from disilylether **16** (0.48 g, 0.50 mmol) according to *Procedure D*. ¹H NMR (400 MHz, CD₃COCD₃) δ 7.2 (m, 20H), 7.06 (m, 1H), 6.65 (d, J = 8.4 Hz, 2H), 6.34 (d, J = 5.6 Hz, 1H), 6.32 (s, 1H), 4.74 (m, 8H), 3.94 (m, 2H), 3.42 (m, 1H), 1.99 (m, 2H). ¹³C NMR (100MHz, CD₃COCD₃) δ 191.1, 163.6, 160.6, 158.3, 156.4, 138.9, 138.1, 137.6, 131.3, 129.1, 129.0, 128.9, 128.5, 128.4, 128.4, 128.3, 123.9, 120.4, 113.0, 112.5, 106.8, 91.1, 74.9, 71.2, 70.9, 67.8, 45.8, 32.5. IR (neat) 2975, 2873, 1662, 1592, 1452, 1376, 1249, 1097 cm⁻¹. HRMS-EI (m/z): M⁺Na calcd for C₄₅H₃₈O₇, 713.2510; found, 713.2543. Anal. Calcd for C₄₅H₃₈O₇: C, 78.24; H, 5.54. Found: C, 78.19, H, 5.56. (*Linear*) 4,6-Dihydroxy-2,3,3a,12a-tetrahydrofuro[2,3-b]furo-xanth-5-one (21) and (*Angular*) 6,8-Dihydroxy-1,2,3a,12c-tetrahydrofuro[2,3-c]furo-xanth-7-one (22). Tetrahydrobisfuran (18, 100 mg 0.14 mmol), Pd black (100 mg, 0.94 mmol), and EtOAc (4 mL) were shaken 12 h under H₂ (30 psi). The product mixture was gravity filtered, washed with EtOAc and concentrated. This crude mixture was used a source of the angular xanthone 22 [TLC R_f 0.33; 20% EtOAc in hexanes, 1 H NMR (400 MHz, CDCl₃) δ 12.16 (s, 1H), 11.89 (s, 1H), 7.72 (t, J = 8.4 Hz, 1H), 7.05 (d, J = 8.4 Hz, 1H), 6.81 (d, J = 8.4 Hz, 1H), 6.54 (d, J = 5.6 Hz, 1H), 6.26 (s, 1H), 4.15 (m, 2H), 3.63 (m, 1H), 2.15 (m, 2H)]. Pure 21 was isolated as a white solid (9 mg, 0.03 mmol, 20% yield, 245 °C dec, TLC R_f 0.43; 20% EtOAc in hexanes) following elution of the crude product mixture through a plug of silica gel with 60% EtOAc in hexanes. 1 H NMR - (400 MHz, CDCl₃) δ 12.07 (s, 1H), 11.75 (s, 1H), 7.70 (t, J = 8.4 Hz, 1H), 7.00 (d, J = 8.4 Hz, 1H), 6.80 (d, J = 8.4 Hz, 1H), 6.57 (s, 1H), 6.53 (d, J = 5.6 Hz, 1H), 4.10 (m, 2H), 3.51 (m, 1H), 2.14 (m, 2H). 13 C NMR (100 MHz, CD₃SOCD₃) δ 184.0, 167.0, 160.2, 157.7, 156.7, 155.6, 137.4, 113.7, 110.7, 109.3, 107.1, 106.9, 102.5, 89.2, 67.3, 42.7, 30.5. HRMS-EI (m/z): M^+ H calcd for C_{17} H₁₂O₆, 313.0707; found, 313.0737. Preparation of bis-O-methylxanthone derivatives (Figure 2). ### 4,6-Dimethoxy-2,3,3a,12a-tetrahydrofuro[2,3-b]furo-xanth-5-one. Dihydroxyxanthone **21** (approximately 0.5 mg), dimethylsulfate (0.25 mL), and DMF (3 mL) were stirred at 0 °C and then NaH (0.5 g) was added. The ice bath was removed and stirring was continued 90 min. The mixture was then diluted with EtOAc and quenched with aq NaHCO₃. The organic layer was washed with water and brine, then dried over Na₂SO₄, and concentrated. White needles (approximately 0.3 mg) were recrystallized from EtOAc and hexanes. TLC R_f 0.31 – 50% EtOAc in hexanes (the dimethylether emits blue florescence under short wave UV light). ¹H NMR (400 MHz, CD₃COCD₃) δ 7.62 (t, J = 8.4 Hz, 1H), 6.99 (d, J = 8.4 Hz, 1H), 6.93 (d, J = 8.4 Hz, 1H), 6.54 (s, 1H), 6.44 (d, J = 5.6 Hz, 1H), 4.06 (m, 2H), 3.60 (m, 1H), 2.28 (m, 2H). #### 6,8-Dimethoxy-1,2,3a,12c-tetrahydrofuro[2,3-c]furo-xanth-7-one. Sterigmatocystin (30) (approximately 2.0 mg), 10% Pd on carbon (20 mg) and EtOAc (2 mL) were shaken 5 h under H_2 (30 psi). The mixture was gravity filtered, and washed with EtOAc. The resulting filtrate was concentrated and eluted through a silica plug with 30% EtOAc and hexanes. The sterigmatocystin TLC R_f was 0.32 and the reduced tetrahydrosterigmatocystin TLC R_f was 0.24 (30% EtOAc in hexanes). The resulting tetrahydrobisfuran was then combined with dimethylsulfate (0.25 mL) and DMF (3 mL). The mixture was stirred at 0 °C and NaH (0.5 g) was added. The ice bath was then removed and stirring was continued 90 min. The mixture was diluted with EtOAc and quenched with aq NaHCO₃. The organic layer was washed with water and brine, dried over Na₂SO₄ and concentrated. *O*-Methyldihydrohydrosterigmatocystin was eluted through a plug of silica gel with 50% EtOAc and hexanes. (TLC R_f 0.24; 50% EtOAc in hexanes; the dimethylether emits blue florescence under short wave UV light). ¹H NMR (400 MHz, CD₃COCD₃) δ 7.59 (t, J = 8.4 Hz, 1H), 7.02 (d, J = 8.4 Hz, 1H), 6.92 (d, J = 8.4 Hz, 1H), 6.47 (d, J = 5.6 Hz, 1H), 6.41 (s, 1H), 4.1 (m, 2H), 3.6 (m, 1H), 2.3 (m, 2H). ### **Microbiological Procedures** Organisms, media, and buffers were detailed in the accompanying report. Likewise, the whole-cell and ground-cell feeding experiments were conducted as described in that paper.