Supporting Information

A Bivalent Ligand (KDAN-18) Containing δ Antagonist and κ Agonist Pharmacophores Bridges δ_{2} and κ_{1} Opioid Receptor Phenotypes.

David J. Daniels, Amol Kulkarni, Zhihua Xie, Rashmi G. Bhushan, Philip S. Portoghese*

Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA

Experimental

All reactions involving moisture sensitive reagents were conducted in oven-dried glassware under nitrogen atmosphere. Solvents were dried when necessary. All other chemicals and solvents were reagent grade unless specified otherwise and were obtained from Aldrich Chemical Company, Milwaukee, Wisconsin. Naltrexone was obtained from Mallinckrodt \& Co. ${ }^{1} \mathrm{H}$ NMR Spectra were recorded on a Varian 300 MHz spectrometer and referenced to the solvent. Chemical shifts are expressed in ppm and coupling constants (J) are in hertz (Hz). Peak multiplicities are abbreviated: broad, br; singlet, s ; doublet, d ; triplet, t ; quartet, q ; pentet, p , and multiplet, m. Fast-atom bombardment (FAB) mass spectra (MS) were obtained on a VG 7070EHF instrument. Flash chromatography was performed on Merck Science silica gel 60 (230-400) mesh. Thin layer chromatography (TLC) was performed on analytical Uniplate silica gel GF glass plates (250 mm by $2.5 \times 20 \mathrm{~cm}^{2}$). Preparative TLC was performed on 1.0 or 0.5 mm Analtech silica gel plates. Plates were visualized by UV light, iodine vapor or ninhydrin solution.

Chemistry

3 (NTI)

4 (ICI 199,441)

The key intermediates were the 7^{\prime}-amino derivative ${ }^{1}$ of naltrindole (3) and the m-amino derivative ${ }^{2}$ of ICI-199441 (4). The amino group does not radically change the selectivity or potency in either of these derivatives and it serves as a point of attachment for the spacer. The first step in this convergent pathway was to couple the amino derivatives of $\mathbf{3}$ and $\mathbf{4}$ to either N -Cbz-glycine or N-Cbz-glycylglycine, followed by deprotection to afford 11-14. The naltrindole intermediates were then reacted with succinic or adipic anhydride to give 15-17. Coupling of the carboxylic acid derivatives (15-17) with the arylacetamide intermediates ($\mathbf{1 3}$ or $\mathbf{1 4}$) afforded the target bivalent ligands ($\mathbf{2}, \mathbf{5}, \mathbf{6}$). Matched monovalent analogs $\mathbf{7 - 1 0}$ were prepared by a similar route using the succinyl or adipyl derivatives of N -methylglycinamide or N methylglycylglycinamide.

12, $n=1$

16, $n=2$

2 (KDAN-18) $m=2, n=2$

7 (KA-12) $\mathrm{m}=1$ 8 (KA-18) $\mathrm{m}=2$

$\mathbf{N}-\{([(3-\{(\mathbf{S})-\alpha-[\mathbf{N}-\{2-(3,4-D i c h l o r o p h e n y l)-a c e t y l\}-N '-m e t h y l-a m i n o]-\alpha-[p y r r o l i d i n-1-y l-$ methyl]-methyl\}-phenylaminocarbonyl)-methyl]-aminocarbonyl)-methyl\}-N'-(\{[(naltrindol-7'-ylaminocarbonyl)-methyl]-aminocarbonyl\}-methyl)-succinamide (2, KDAN-18). A solution of carboxylic acid $16(0.175 \mathrm{~g}, 0.272 \mathrm{mmol}, 1.0 \mathrm{eq})$, DCC (0.056 g , $0.272 \mathrm{mmol}, 1.0 \mathrm{eq})$, and $\operatorname{HOBt}(0.110 \mathrm{~g}, 0.816 \mathrm{mmol}, 3.0 \mathrm{eq})$ in DMF $(0.75 \mathrm{~mL})$ was reacted with stirring at $0{ }^{\circ} \mathrm{C}$ for 30 min . Amine $14(0.312 \mathrm{~g}, 0.641 \mathrm{mmol}, 1.0 \mathrm{eq})$ was added in one portion, and the reaction mixture was stirred under N_{2} at $0{ }^{\circ} \mathrm{C}$ for 2 h than rt for another 48 h . The DCU precipitate was collected via vacuum filtration and the solvent was removed in vacuo from the filtrate to give the crude product. Further purification via flash chromatography (silica gel, D/M/A, 89.0/10.0/1.0, v/v/v (2L), gave 2 as an off-white solid (69.0%); $\mathrm{R}_{f} 0.26$ (silica gel,

D/M/A. 87/12/1. v/v/v); mp $176{ }^{\circ} \mathrm{C}$ (softens), $211{ }^{\circ} \mathrm{C}$ (decomposes); ${ }^{1} \mathrm{H}$ NMR (DMSO-d6) δ $10.63(\mathrm{~s}, 1 \mathrm{H}), 9.63(\mathrm{~s}, 1 \mathrm{H}), 9.50(\mathrm{~s}, 1 \mathrm{H}), 8.83(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.21(\mathrm{~m}, 2 \mathrm{H}), 8.13-8.09(\mathrm{~m}, 2 \mathrm{H}), 7.45-$ $7.38(\mathrm{~m}, 3 \mathrm{H}) 7.33(\mathrm{~s}, 1 \mathrm{H}) 7.29(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.08(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.82(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.38-6.31(\mathrm{~m}, 2 \mathrm{H}), 5.70-5.65(\mathrm{~m}, 1 \mathrm{H}), 5.41(\mathrm{~s}$, $1 \mathrm{H}), 4.63(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.87(\mathrm{~m}, 2 \mathrm{H}), 3.81$ (unresolved, 1 H), 3.74-3.70 (m, 2H), 3.62-3.57 (m, 4H), 3.52 (unresolved, 1H), 3.15 (unresolved, 1 H), $2.92(\mathrm{~d}, J=18.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{~m}, 1 \mathrm{H}), 2.63$ (unresolved, 1 H), 2.56 (s, 3 H), 2.53-2.50 (m, 4H), 2.35-2.27 (unresolved m, 10H), 2.18-2.14 (m, $1 \mathrm{H}), 2.01(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 4 \mathrm{H}), 1.42$ (unresolved, 1 H$), 0.74(\mathrm{~m}, 1 \mathrm{H}), 0.36(\mathrm{~m}, 2 \mathrm{H}), 0.02(\mathrm{~m}$, $2 \mathrm{H})$; UHR-ESI MS $m / z \quad 1167.6(\mathrm{M}+\mathrm{Na})^{+}, \mathrm{C}_{59} \mathrm{H}_{66} \mathrm{Cl}_{2} \mathrm{~N}_{10} \mathrm{O}_{10}$ requires 1144.43. Anal. $\left(\mathrm{C}_{59} \mathrm{H}_{66} \mathrm{Cl}_{2} \mathrm{~N}_{10} \mathrm{O}_{10}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

N-[(3-\{(S)- $\alpha-[\mathbf{N}-\{2-(3,4-D i c h l o r o p h e n y l)-a c e t y l\}-N '-m e t h y l-a m i n o]-\alpha-[p y r r o l i d i n-1-y l-~$ methyl]-methyl\}-phenylaminocarbonyl)-methyl]-N'-[(naltrindol-7'-ylaminocarbonyl)-methyl]-succinamide (5, KDAN-12). A solution of carboxylic acid 15 ($0.165 \mathrm{~g}, 0.281 \mathrm{mmol}$,

 $1.0 \mathrm{eq})$, DCC ($0.058 \mathrm{~g}, 0.281 \mathrm{mmol}, 1.0 \mathrm{eq}$), and HOBt ($0.114 \mathrm{~g}, 0.844 \mathrm{mmol}, 3.0 \mathrm{eq}$) in DMF $(0.75 \mathrm{~mL})$ was reacted with stirring at $0^{\circ} \mathrm{C}$ for 30 min . Amine $13(0.312 \mathrm{~g}, 0.641 \mathrm{mmol}, 1.0 \mathrm{eq})$ was then added in one portion, and the reaction mixture was stirred under N_{2} at $0^{\circ} \mathrm{C}$ for 2 h then rt for another 72 h . Analysis by TLC (D/M/A [dichloromethane/methanol/ammonium hydroxide], $89 / 10 / 1, \mathrm{v} / \mathrm{v} / \mathrm{v}$) showed the reaction was complete. The DCU precipitate was collected via vacuum filtration and the solvent was removed in vacuo from the filtrate to give the crude product. Further purification via flash chromatography (silica gel, starting with D/M/A, $96.5 / 3.0 / 0.5, \mathrm{v} / \mathrm{v} / \mathrm{v}(1 \mathrm{~L})$, then $96.0 / 3.5 / 0.5$, $\mathrm{v} / \mathrm{v} / \mathrm{v}(1 \mathrm{~L})$, finally $95.5 / 4 / 0.5 \mathrm{v} / \mathrm{v} / \mathrm{v}(2 \mathrm{~L})$) gave 5 as an off-white solid (55.2%); $\mathrm{R}_{f} 0.55$ (silica gel, D/M/A. 89/10/1. v/v/v); mp $167{ }^{\circ} \mathrm{C}$ (softens), $186^{\circ} \mathrm{C}$ (decomposes); ${ }^{1} \mathrm{H}$ NMR (DMSO-d6) $\delta 10.69(\mathrm{~s}, 1 \mathrm{H}), 9.86(\mathrm{~s}, 1 \mathrm{H}), 9.67(\mathrm{~s}, 1 \mathrm{H}), 8.93(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $8.31(\mathrm{t}, 1 \mathrm{H}), 8.28(\mathrm{t}, 1 \mathrm{H}), 7.55-7.47(\mathrm{~m}, 2 \mathrm{H}) 7.46(\mathrm{~s}, 1 \mathrm{H}) 7.39(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.20(\mathrm{~m}$, $3 \mathrm{H}) 7.13(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~m}, 2 \mathrm{H})$, $5.80(\mathrm{~m}, 1 \mathrm{H}), 5.54(\mathrm{~s}, 1 \mathrm{H}), 4.73(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(1 \mathrm{H}), 3.84(\mathrm{~d}, J=6.0$ $\mathrm{Hz}, 2 \mathrm{H}), 3.68(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(1 \mathrm{H}) 3.05(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}) 2.91(\mathrm{~m}, 1 \mathrm{H}), 2.78(1 \mathrm{H})$, $2.69(\mathrm{~s}, 3 \mathrm{H}), 2.64(\mathrm{~s}, 1 \mathrm{H}), 2.57-2.39(\mathrm{~m}, 13 \mathrm{H}), 2.25-2.13(\mathrm{~m}, 2 \mathrm{H}), 1.62(\mathrm{~s}, 4 \mathrm{H}), 1.54(1 \mathrm{H}), 0.88$ $(\mathrm{m}, 1 \mathrm{H}), 0.49(\mathrm{~m}, 2 \mathrm{H}), 0.13(\mathrm{~m}, 2 \mathrm{H})$; HR-ESI MS $\mathrm{m} / \mathrm{z} 1031.396(\mathrm{M}+\mathrm{H})^{+}, \mathrm{C}_{55} \mathrm{H}_{60} \mathrm{Cl}_{2} \mathrm{~N}_{8} \mathrm{O}_{8}$ requires 1030.391. Anal. $\left(\mathrm{C}_{55} \mathrm{H}_{60} \mathrm{Cl}_{2} \mathrm{~N}_{8} \mathrm{O}_{8} \bullet 1 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.$\mathbf{N}-\{([(3-\{(\mathbf{S})-\alpha-[\mathbf{N}-\{2-(3,4-D i c h l o r o p h e n y l)-a c e t y l\}-N '-m e t h y l-a m i n o]-\alpha-[p y r r o l i d i n-1-y l-$ methyl]-methyl\}-phenylaminocarbonyl)-methyl]-aminocarbonyl)-methyl\}-N'-
(\{[(naltrindol-7'-ylaminocarbonyl)-methyl]-aminocarbonyl\}-methyl)-adipamide (6, KDAN20). A solution of carboxylic acid $17(0.131 \mathrm{~g}, 0.195 \mathrm{mmol}, 1.0 \mathrm{eq})$, DCC ($0.040 \mathrm{~g}, 0.195 \mathrm{mmol}$, $1.0 \mathrm{eq})$, and $\operatorname{HOBt}(0.053 \mathrm{~g}, 0.390 \mathrm{mmol}, 2.0 \mathrm{eq})$ in DMF (1 mL) was reacted with stirring at 0 ${ }^{\circ} \mathrm{C}$ for 30 min . Amine $14(0.102 \mathrm{~g}, 0.195 \mathrm{mmol}, 1.0 \mathrm{eq})$ was added in one portion, and the reaction mixture was stirred under N_{2} at $0^{\circ} \mathrm{C}$ for 2 h then rt for another 48 h . The DCU precipitate was collected via vacuum filtration and the solvent was removed in vacuo to give the crude product. Further purification via flash chromatography (silica gel, with D/M/A, 91.5/7.0/0.5, v/v/v (1L), then D/M/A, 91.0/7.5/0.5, v/v/v (1L), then D/M/A, 90.0/9.0/1.0, v/v/v (1L)) gave 6 as an off-white solid (46.7 \%); $\mathrm{R}_{f} 0.28$ (silica gel, D/M/A. 87/12/1. v/v/v); mp 184 ${ }^{\circ} \mathrm{C}$ (softens), $217{ }^{\circ} \mathrm{C}$ (decomposes); ${ }^{1} \mathrm{H}$ NMR (DMSO-d6) $\delta 10.65(\mathrm{~s}, 1 \mathrm{H}), 9.65(\mathrm{~s}, 1 \mathrm{H}), 9.49(\mathrm{~s}$, $1 \mathrm{H}), 8.81(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.08-8.00(\mathrm{~m}, 4 \mathrm{H}), 7.41-7.36(\mathrm{~m}, 3 \mathrm{H}) 7.31(\mathrm{~s}, 1 \mathrm{H}) 7.28(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.15-7.03 (m, 2H) $6.98(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$,
6.37-6.30 (m, 2H), 5.68-5.63 (m, 1H), $5.39(\mathrm{~s}, 1 \mathrm{H}), 4.62(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.86-3.84(\mathrm{~m}, 2 \mathrm{H}), 3.72-3.65$ $(\mathrm{m}, 3 \mathrm{H}), 3.60(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.55(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.50$ (unresolved, 1H), 3.16 (unresolved, 1 H), 2.95-2.88 (m, 2H), 2.57 (unresolved, 1 H), $2.54(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{~s}, 1 \mathrm{H}), 2.40(\mathrm{~m}$, $2 \mathrm{H}), 2.33-2.25(\mathrm{~m}, 7 \mathrm{H}), 2.18-2.13(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.99(\mathrm{~m}, 5 \mathrm{H}), 1.48(\mathrm{~s}, 4 \mathrm{H}), 1.35(\mathrm{~m}, 5 \mathrm{H}), 0.79-$ $0.66(\mathrm{~m}, 1 \mathrm{H}), 0.37-0.32(\mathrm{~m}, 2 \mathrm{H}), 0.00(\mathrm{~m}, 2 \mathrm{H})$; HR-FAB MS $m / z 1173.472(\mathrm{M}+\mathrm{H})^{+}$, $\mathrm{C}_{60} \mathrm{H}_{68} \mathrm{Cl}_{2} \mathrm{~N}_{10} \mathrm{O}_{10}$ requires 1172.4653. Anal $\left(\mathrm{C}_{60} \mathrm{H}_{68} \mathrm{Cl}_{2} \mathrm{~N}_{10} \mathrm{O}_{10} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

N-[(3-\{(S)- $\alpha-[\mathbf{N}-\{2-(3,4-D i c h l o r o p h e n y l)-a c e t y l\}-N '-m e t h y l-a m i n o]-\alpha-[p y r r o l i d i n-1-y l-~$ methyl]-methyl\}-phenylaminocarbonyl)-methyl]-N'-[(methylaminocarbonyl)-methyl]succinamide (7, KA-12). A solution of carboxylic acid N-methylaminocarbonylmethylsuccinamic acid ($0.252 \mathrm{~g}, 1.338 \mathrm{mmol}, 1.3 \mathrm{eq})$, DCC ($0.276 \mathrm{~g}, 1.338 \mathrm{mmol}, 1.3 \mathrm{eq})$, and HOBt $(0.181 \mathrm{~g}, 1.338 \mathrm{mmol}, 1.3 \mathrm{eq})$ in DMF $(1.0 \mathrm{~mL})$ were incubated with stirring at rt for 30 min . Amine 13 ($0.477 \mathrm{~g}, 1.029 \mathrm{mmol}, 1.0 \mathrm{eq}$) was dissolved in DMF (1.0 mL) and then added in one portion to the above reaction mixture. This was stirred under N_{2} at $50^{\circ} \mathrm{C}$ for 18 h . Analysis by TLC (D/M/A, 89/10/1, v/v/v) showed the starting amine was completely consumed. The DCU precipitate was collected via vacuum filtration and the solvent was removed in vacuo from the filtrate to give the crude product. Further purification via flash chromatography (silica gel, starting with D/M/A, 96.5/3.0/0.5, v/v/v (1L), then 96.0/3.5/0.5, v/v/v (1L), then 95.0/4.5/0.5 $\mathrm{v} / \mathrm{v} / \mathrm{v}(1 \mathrm{~L})$, finally $94.5 / 0.5 / 0.5, \mathrm{v} / \mathrm{v} / \mathrm{v}(1.5 \mathrm{~L})$) gave 7 as an off-white solid (34.0%); $\mathrm{R}_{f} 0.33$ (silica gel, D/M/A. 89/10/1. v/v/v); mp $91^{\circ} \mathrm{C}$ (softens), $102{ }^{\circ} \mathrm{C}$ (melts); ${ }^{1} \mathrm{H}$ NMR (DMSO-d6) δ $9.88(\mathrm{~s}, 1 \mathrm{H}), 8.32(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.53$ $(\mathrm{m}, 3 \mathrm{H}) 7.49(\mathrm{~s}, 1 \mathrm{H}), 7.29-7.34(\mathrm{~m}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{~m}, 1 \mathrm{H}), 3.89$ (unresolved, 1H), 3.85 (d, $J=5.1 \mathrm{~Hz}, 2 \mathrm{H}$), 3.71 (d, $J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H})$, $3.09(\mathrm{~m}, 1 \mathrm{H}), 2.71(\mathrm{~s}, 3 \mathrm{H}), 2.65(1 \mathrm{H}), 2.54(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.44-2.41(\mathrm{~m}, 8 \mathrm{H}), 1.66(\mathrm{~s}, 4 \mathrm{H}) ;$ HR-FAB MS m/z $633.234(\mathrm{M}+\mathrm{H})^{+}, \mathrm{C}_{30} \mathrm{H}_{38} \mathrm{Cl}_{2} \mathrm{~N}_{6} \mathrm{O}_{5}$ requires 632.2281. Anal. $\left(\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{Cl}_{2} \mathrm{~N}_{6} \mathrm{O}_{5}\right)$ C, H, N.

$\mathbf{N}-\{([(3-\{(\mathbf{S})-\alpha-[\mathbf{N}-\{2-(3,4-D i c h l o r o p h e n y l)-a c e t y l\}-N '-m e t h y l-a m i n o]-\alpha-[p y r r o l i d i n-1-y l-$

 methyl]-methyl\}-phenylaminocarbonyl)-methyl]-aminocarbonyl)-methyl\}-N'($\{[$ (methylaminocarbonyl)-methyl $]$-aminocarbonyl $\}$-methyl)-succinamide (8, KA-18). A solution of carboxylic acid N -[(methylaminocarbonylmethyl-aminocarbonyl)-methyl]succinamic acid ($0.132 \mathrm{~g}, 0.538 \mathrm{mmol}, 1.4 \mathrm{eq})$, DCC ($0.111 \mathrm{~g}, 0.538 \mathrm{mmol}, 1.4 \mathrm{eq})$, and HOBt $(0.208 \mathrm{~g}, 1.536 \mathrm{mmol}, 4.0 \mathrm{eq})$ in DMSO $(0.7 \mathrm{~mL})$ was reacted with stirring at rt for 5 minutes. A solution of amine $14(0.200 \mathrm{~g}, 0.384 \mathrm{mmol}, 1.0 \mathrm{eq})$ in DMF (0.7 mL) was added in one portion to the reaction mixture. This was stirred under N_{2} at $0{ }^{\circ} \mathrm{C}$ for 2 h then rt for an additional 18 h . The DCU precipitate was collected via vacuum filtration and the DMF was removed in vacuo from the filtrate to give the crude product along with residual DMSO. The filtrate was added to ethyl ether $(100 \mathrm{~mL})$ to facilitate precipitation of the crude product and then collected by vacuum filtration; further purification via flash chromatography (silica gel, with D/M/A, 87/12/1, v/v/v) gave 8 as an off-white solid (38.3%); $\mathrm{R}_{f} 0.17$ (silica gel, D/M/A. 87/12/1. v/v/v); mp $219{ }^{\circ} \mathrm{C}$ (decomposes); ${ }^{1} \mathrm{H}$ NMR (DMSO-d6) $\delta 9.78(\mathrm{~s}, 1 \mathrm{H}), 8.35(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.29-8.22(\mathrm{~m}, 2 \mathrm{H})$, 8.11 (d, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.58-7.53(\mathrm{~m}, 3 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H}), 7.31-7.18(\mathrm{~m}, 2 \mathrm{H})$, $6.96(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~m}, 1 \mathrm{H}), 3.89$ (unresolved, 1 H), $3.84(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.70$ (unresolved, 1H), $3.70(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.68(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.61(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H})$, $3.08(\mathrm{~m}, 1 \mathrm{H}), 2.70(\mathrm{~s}, 3 \mathrm{H}), 2.64(\mathrm{~s}, 1 \mathrm{H}), 2.55(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.48(\mathrm{~m}, 4 \mathrm{H}), 2.41(\mathrm{~s}, 4 \mathrm{H}), 1.65$(s, 4H); HR-FAB MS m/z $769.261(\mathrm{M}+\mathrm{Na})^{+}, \mathrm{C}_{34} \mathrm{H}_{44} \mathrm{Cl}_{2} \mathrm{~N}_{8} \mathrm{O}_{7}$ requires 746.271. Anal. $\left(\mathrm{C}_{34} \mathrm{H}_{44} \mathrm{Cl}_{2} \mathrm{~N}_{8} \mathrm{O}_{7}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

N-[(Methylaminocarbonyl)-methyl]-N'-[(naltrindol-7'-ylaminocarbonyl)-methyl]succinamide ($9, \mathrm{DN}-12$). A solution of carboxylic acid N -methylaminocarbonylmethylsuccinamic acid ($0.060 \mathrm{~g}, 0.321 \mathrm{mmol}, 1.3 \mathrm{eq}$), DCC ($0.066 \mathrm{~g}, 0.321 \mathrm{mmol}, 1.3 \mathrm{eq}$), and HOBt $(0.133 \mathrm{~g}, 0.986 \mathrm{mmol}, 4.0 \mathrm{eq})$ in DMF (0.5 mL) were incubated with stirring at $0^{\circ} \mathrm{C}$ for 10 min . Amine $11(0.120 \mathrm{~g}, 0.247 \mathrm{mmol}, 1.0 \mathrm{eq})$ was added in one portion, and the reaction mixture was stirred under N_{2} at $0^{\circ} \mathrm{C}$ for 2 h then rt for another 36 h . The DCU precipitate was collected via vacuum filtration and the solvent was removed in vacuo from the filtrate to give the crude product. Further purification via flash chromatography (silica gel, starting with D/M/A, 93.0/6.5/0.5, v/v/v (1L), then 91.65/7.6/0.75, v/v/v (1L), finally 91.45/7.8/0.75 v/v/v (1L)) gave 9 as an off-white solid (84.6%); $\mathrm{R}_{f} 0.30$ (silica gel, D/M/A. 89/10/1. v/v/v); mp $194{ }^{\circ} \mathrm{C}$ (softens), $211{ }^{\circ} \mathrm{C}$ (decomposes); ${ }^{1} \mathrm{H}$ NMR (DMSO-d6) $\delta 10.73(\mathrm{~s}, 1 \mathrm{H}), 9.69(\mathrm{~s}, 1 \mathrm{H}), 8.97(\mathrm{~s}, 1 \mathrm{H}), 8.31(\mathrm{t}, J$ $=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.14$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.54-6.45$, (m, 2H), $5.56(\mathrm{~s}, 1 \mathrm{H}), 4.00(\mathrm{~d}, J=5.2 \mathrm{~Hz}$, $2 \mathrm{H}), 3.61(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.14(\mathrm{~m}, 1 \mathrm{H}), 3.04$ (unresolved, 1 H), 2.83-2.81(m, 1H), 2.75-2.67 $(\mathrm{m}, 2 \mathrm{H}), 2.55(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.49-2.24(\mathrm{~m}, 9 \mathrm{H}), 1.59(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.90(\mathrm{~m}, 1 \mathrm{H})$, $0.52(\mathrm{~m}, 2 \mathrm{H}), 0.16(\mathrm{~m}, 2 \mathrm{H})$; HR-FAB MS $m / z 657.306(\mathrm{M}+\mathrm{H})^{+}, \mathrm{C}_{35} \mathrm{H}_{40} \mathrm{~N}_{6} \mathrm{O}_{7}$ requires 656.296. Anal. $\left(\mathrm{C}_{35} \mathrm{H}_{40} \mathrm{~N}_{6} \mathrm{O}_{7} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
$\mathbf{N}-\{([($ Methylaminocarbonyl $)-m e t h y l]-a m i n o c a r b o n y l)-m e t h y l\}-\mathbf{N}^{\prime}$-($\{[($ naltrindol-7’-ylaminocarbonyl)-methyl]-aminocarbonyl\}-methyl)-succinamide (10, DN-18). A solution of the carboxylic acid N -[(methylaminocarbonylmethyl-aminocarbonyl)-methyl]-succinamic acid $(0.129 \mathrm{~g}, 0.525 \mathrm{mmol}, 1.2 \mathrm{eq})$, DCC ($0.108 \mathrm{~g}, 0.525 \mathrm{mmol}, 1.2 \mathrm{eq}$), and HOBt ($0.118 \mathrm{~g}, 0.875$ $\mathrm{mmol}, 2.0 \mathrm{eq})$ in DMSO $(1.0 \mathrm{~mL})$ was reacted with stirring at rt for 15 min . Amine $\mathbf{1 2}(0.238 \mathrm{~g}$, $0.438 \mathrm{mmol}, 1.0 \mathrm{eq})$ was added in one portion to the reaction mixture. This was stirred under N_{2} at rt for 18 h . The DCU precipitate was collected via vacuum filtration and the filtrate was added to ethyl ether (100 mL) to facilitate precipitation of the crude product. The product was collected by vacuum filtration and washed with ethyl ether (100 mL); further purification via flash chromatography (silica gel, with D/M/A, 86/13/1, v/v/v) gave 10 as an off-white solid (57.0 $\%$); $\mathrm{R}_{f} 0.12$ (silica gel, D/M/A. 87/12/1. v/v/v); mp $220^{\circ} \mathrm{C}$ (decomposes); ${ }^{1} \mathrm{H}$ NMR (DMSO-d6) δ $10.62(\mathrm{~s}, 1 \mathrm{H}), 9.48(\mathrm{~s}, 1 \mathrm{H}), 8.82(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.12-8.06(\mathrm{~m}, 2 \mathrm{H}), 7.96(\mathrm{t}, J=$ $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.34-6.30(\mathrm{~m}, 2 \mathrm{H}), 5.40(\mathrm{~s}, 1 \mathrm{H}), 3.86-3.83(\mathrm{~m}, 2 \mathrm{H}), 3.60(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.52(\mathrm{~d}, J$ $=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.46(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.16(\mathrm{~d}, 1 \mathrm{H}), 2.92(\mathrm{~d}, J=18.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.64-2.52(\mathrm{~m}$, 3 H), $2.41(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.32-2.26(\mathrm{~m}, 6 \mathrm{H}), 2.18-2.14(\mathrm{~m}, 1 \mathrm{H}), 2.10-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~d}$, $\mathrm{J}=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.74(\mathrm{~m}, 1 \mathrm{H}), 0.38-0.33(\mathrm{~m}, 2 \mathrm{H}), 0.00(\mathrm{~m}, 2 \mathrm{H})$; HR-FAB MS m/z $771.348(\mathrm{M}$ $+\mathrm{H})^{+}, \mathrm{C}_{39} \mathrm{H}_{46} \mathrm{~N}_{8} \mathrm{O}_{9} \bullet \mathrm{H}^{+}$requires 771.347. Anal. $\left(\mathrm{C}_{39} \mathrm{H}_{46} \mathrm{~N}_{8} \mathrm{O}_{9}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Expression and co-expression of the DOR and KOR in HEK293 cells: cDNAs encoding the rat KOR and mouse DOR were inserted separately into the mammalian expression vector pcDNA3 and tagged with FLAG or c-Myc epitope respectively. HEK293 cells were cultured at $37^{\circ} \mathrm{C}$ in DMEM medium supplemented with 10% fetal bovine serum and P / S antibiotics. The cells, grown to about 50% confluence, were transfected with the expression vectors containing DOR or KOR cDNA using Calcium Phosphate Transfection Kit. For co-epression, the cells
were first transfected with the pcDNA3 vecotr of KOR and then with the vector for DOR. An equal amount of pcDNA3 vector was co-transfected with each receptor construct to keep the total DNA used equivalent. Geneticin and hygromycin were used to obtain stable KOR and DOR cells.

Radioligand Binding Assays: HEK293 cells of each 100 mm plate, expressing single or a combination of DOR and KOR were suspended in 2.5 mL of 25 mM HEPES Buffer (pH 7.4). Saturation binding was performed on whole cells using either $\left[{ }^{3} \mathrm{H}\right]$ deltorphin II or $\left[{ }^{3} \mathrm{H}\right] \mathrm{U} 69593$ to determine Bmax and Kd of the receptors. Each concentration was examined in duplicate. The IC_{50} values for the tested compounds were determined by competition binding is which whole cells were incubated at $25^{\circ} \mathrm{C}$ for 2 hours with either $\left[{ }^{3} \mathrm{H}\right]$ deltorphin II or $\left[{ }^{3} \mathrm{H}\right] \mathrm{U} 69593$ and 10 different concentrations ($10^{-15}-10^{-6} \mathrm{M}$) of compound, in a final reaction volume of $500 \mu \mathrm{~L}$. The concentration of the radioligand in the competition assay was \sim equivalent to its Kd value. Nonspecific binding was determined in the presence of $10 \mu \mathrm{M}$ of naloxone. The samples were filtered and washed 3 times through GF/C filters (Whatman) presoaked in 0.25% PEI using a Brandel 48 -well harvester. After filtration, the filters were incubated in 4 mL of Econo-Safe cocktail and counted in a LS3801 Beckman counter. The experiments were determined from displacement curves using Kaleidograph 3.1, and the Ki values were calculated using the ChengPrussoff equation. ${ }^{3}$

Appendix

Elemental Analyses:

Cmpd No.	Compound	Formula		C	H	N
2	KDAN-18	$\mathrm{C}_{59} \mathrm{H}_{66} \mathrm{Cl}_{2} \mathrm{~N}_{10} \mathrm{O}_{10}$	Calc	61.83	5.80	12.22
			Found	61.67	5.73	12.05
5	KDAN-12	$\mathrm{C}_{55} \mathrm{H}_{60} \mathrm{Cl}_{2} \mathrm{~N}_{8} \mathrm{O}_{8} \bullet 1 \mathrm{H}_{2} \mathrm{O}$	Calc	62.91	5.95	10.67
			Found	63.20	6.11	10.35
6	KDAN-20	$\mathrm{C}_{60} \mathrm{H}_{68} \mathrm{Cl}_{2} \mathrm{~N}_{10} \mathrm{O}_{10} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	Calc	60.54	6.16	11.57
			Found	60.80	6.30	11.69
7	KA-12	$\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{Cl}_{2} \mathrm{~N}_{6} \mathrm{O}_{5}$	Calc	56.87	6.05	13.26
			Found	56.74	5.87	13.12
8	KA-18	$\mathrm{C}_{34} \mathrm{H}_{44} \mathrm{Cl}_{2} \mathrm{~N}_{8} \mathrm{O}_{7}$	Calc	54.62	5.93	14.99
			Found	54.52	6.12	14.86
9	DN-12	$\mathrm{C}_{35} \mathrm{H}_{40} \mathrm{~N}_{6} \mathrm{O}_{7} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	Calc	60.68	6.40	12.13
			Found	60.89	6.46	11.83
10	DN-18	$\mathrm{C}_{39} \mathrm{H}_{46} \mathrm{~N}_{8} \mathrm{O}_{9}$	Calc	60.77	6.01	14.54
			Found	60.59	5.98	14.41

References

1. Portoghese, P.S.; Sultana, M.; Nelson, W.L.; Klein, P.; Takemori, A.E. δ - Opioid receptor antagonistic activity and binding studies of regioisomeric isothiocyanate derivatives of naltrindole: Evidence for opioid δ - receptor subtypes. J. Med. Chem. 1992, 35, 4089-4091
2. Chang, A.; Takemori, A.E.; Ojala, W.H.; Gleason, W.B.; Portoghese, P.S. א-Opioid receptor selective affinity labels: electrophilic benzeneacetamides as κ-selective opioid antagonists. J. Med. Chem. 1994, 37, 4490-4498
3. Cheng, Y.C.; Prusoff, W.H. Relationship between the inhibition constant (Ki) and the concentration of inhibitor which causes 50% inhibition $\left(\mathrm{I}_{50}\right)$ of an enzyme reaction. Biochem. Pharmacol. 1973, 22, 3099-3102
