Supporting Information

Silacyclobutadiene Cobalt Complex

Yoshihiro Kon, Kenkichi Sakamoto, Chizuko Kabuto, and Mitsuo Kira*

Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan

Contents

- 1. X-ray Crystallographic Analysis of Silacyclobutadiene Cobalt Complex 1
- 2. Optimized Structures of Model Complexes **3** and **6** at the B3PW91/6-311G(d)
- 3. Comparison of the Geometrical Parameters of 1 with Those of Model Compounds 3 and 6
- 4. Theoretical ¹³C NMR Resonances of **3**, **6** and the Corresponding Free Cyclobutadienes

1. X-ray Crystallographic Analysis of Silacyclobutadiene Cobalt Complex 1

A. Crystal Data

Empirical Formula Formula Weight Crystal Color, Habit Crystal Dimensions Crystal System Lattice Type Detector Position Pixel Size Lattice Parameters

Space Group Z value D_{calc} F_{000} μ (MoK α) **B. Intensity Measurements** Detector Goniometer Radiation

Detector Aperture Data Images ω oscillation Range (χ =45.0, ϕ =0.0) Exposure Rate Detector Swing Angle ω oscillation Range (χ =45.0, ϕ =90.0) Exposure Rate Detector Swing Angle Detector Position Pixel Size $2\theta_{max}$ No. of Reflections Measured

Corrections

C. Structure Solution and Refinement Structure Solution Refinement Function Minimized Least Squares Weights $2\theta_{max}$ cutoff Anomalous Dispersion No. Observations (All reflections) No. Variables Reflection/Parameter Ratio Residuals: R (All reflections) Residuals: R1 (I>2.00 σ (I)) Residuals: wR2 (All reflections) Goodness of Fit Indicator Max Shift/Error in Final Cycle Maximum peak in Final Diff. Map Minimum peak in Final Diff. Map

C₂₈H₅₃CoSi₃ 532.92 red, plate 0.35 X 0.20 X 0.08 mm monoclinic Primitive 39.95 mm 0.137 mm a = 12.238(4) Å b = 15.096(4) Å c = 17.226(5) Å $\beta = 95.811(5)^{\circ}$ $V = 3166.0(16) \text{ Å}^3$ $P2_1/n$ (#14) 4 1.118 g/cm^3 1160.00 6.69 cm⁻¹ Rigaku Mercury **Rigaku AFC8** MoKα (λ = 0.71070 Å) graphite monochromated 70 mm x 70 mm 900 exposures -77.0 - 103.00 75.0 sec./0 13.120 -77.0 - 103.00 75.0 sec./0 13.120 39.95 mm 0.137 mm 55.00 Total: 30133 Unique: 7052 ($R_{int} = 0.055$) Lorentz-polarization Absorption (trans. factors: 0.8938 - 1.0000) Direct Methods (SIR92) Full-matrix least-squares on F² $\Sigma w (Fo^2 - Fc^2)^2$ $1/[0.0058Fo^2+1.0000\sigma(Fo^2)]/(4Fo^2)$ 0.00 All non-hydrogen atoms 6399 342 18.71 0.139 0.084 0.257 1.003 0.000

0.99 e⁻/Å³

-0.72 e⁻/Å³

atom	Х	У	Z	Beq
Co(9)	0.45748(6)	0.42910(4)	0.24645(4)	3.21(2)
Si(1)	0.61970(11)	0.36302(11)	0.27772(8)	3.53(3)
Si(5)	0.7776(1)	0.43911(11)	0.32196(11)	4.41(4)
Si(6)	0.45468(12)	0.29395(12)	0.41211(9)	4.17(4)
C(2)	0.5024(3)	0.3137(2)	0.3101(2)	1.20(6)
C(3)	0.4536(4)	0.2999(3)	0.2235(3)	3.09(10)
C(4)	0.5413(4)	0.3432(4)	0.1851(3)	3.43(11)
C(7)	0.3577(5)	0.2383(4)	0.1946(4)	4.42(13)
C(8)	0.5682(7)	0.3490(5)	0.1008(4)	5.4(2)
C(10)	0.4481(8)	0.5538(5)	0.1998(5)	6.7(2)
C(11)	0.4677(6)	0.5594(4)	0.2834(5)	5.9(2)
C(12)	0.3809(6)	0.5180(4)	0.3142(4)	5.0(2)
C(13)	0.3060(6)	0.4879(5)	0.2523(5)	5.8(2)
C(14)	0.3460(8)	0.5107(5)	0.1839(5)	7.1(2)
C(15)	0.7984(7)	0.5364(5)	0.2587(6)	8.4(2)
C(16)	0.7707(9)	0.4891(8)	0.4199(6)	9.8(3)
C(17)	0.8976(5)	0.3609(5)	0.3273(4)	5.3(2)
C(18)	0.8728(8)	0.2802(6)	0.3753(6)	8.6(3)
C(19)	0.9195(8)	0.3245(9)	0.2495(6)	10.7(4)
C(20)	0.9985(8)	0.4062(9)	0.3705(9)	13.0(4)
C(21)	0.3104(6)	0.3188(7)	0.4307(5)	7.9(3)
C(22)	0.5460(7)	0.3735(5)	0.4725(4)	6.6(2)
C(23)	0.4900(5)	0.1759(5)	0.4503(3)	5.0(2)
C(24)	0.4113(9)	0.1064(6)	0.4168(5)	9.8(3)
C(25)	0.4882(7)	0.1785(8)	0.5399(4)	8.3(3)
C(26)	0.6057(7)	0.1519(5)	0.4358(4)	6.6(2)
C(27)	0.2723(5)	0.2349(5)	0.2506(5)	5.5(2)
C(28)	0.3003(6)	0.2605(7)	0.1166(4)	7.9(2)
C(29)	0.4058(6)	0.1419(5)	0.1921(6)	7.5(2)
C(30)	0.6685(7)	0.4124(7)	0.1031(4)	8.0(3)
C(31)	0.5947(11)	0.2573(7)	0.0720(5)	10.5(4)
C(32)	0.4797(8)	0.3889(7)	0.0422(4)	7.9(2)

Table S1.	Atomic	coordinates,	Biso/Beq	l and o	occupancy	of silacy	yclobutad	iene com	plex 1

 $B_{eq} = 8/3 \pi^2 (U_{11}(aa^*)^2 + U_{22}(bb^*)^2 + U_{33}(cc^*)^2 + 2U_{12}(aa^*bb^*)\cos\gamma + 2U_{13}(aa^*cc^*)\cos\beta + 2U_{23}(bb^*cc^*)\cos\alpha)$

atom	Х	У	Z	Beq
H(1)	0.8663	0.5637	0.2776	9.897
H(2)	0.8026	0.5162	0.2071	9.900
H(3)	0.7402	0.5761	0.2610	9.898
H(4)	0.8365	0.5177	0.4346	11.736
H(5)	0.7106	0.5303	0.4172	11.727
H(6)	0.7570	0.4435	0.4559	11.728
H(7)	0.8598	0.3005	0.4251	10.456
H(8)	0.8144	0.2510	0.3498	10.456
H(9)	0.9383	0.2449	0.3791	10.456
H(10)	0.8568	0.2919	0.2288	13.044
H(11)	0.9331	0.3721	0.2184	13.045
H(12)	0.9808	0.2862	0.2580	13.042
H(13)	1.0580	0.3654	0.3738	15.041
H(14)	1.0144	0.4562	0.3420	15.043
H(15)	0.9849	0.4228	0.4224	15.041
H(16)	0.2944	0.3767	0.4158	9.694
H(17)	0.2630	0.2780	0.4014	9.697
H(18)	0.3034	0.3103	0.4849	9.696
H(19)	0.6191	0.3583	0.4697	7.791
H(20)	0.5296	0.4307	0.4537	7.795
H(21)	0.5286	0.3693	0.5258	7.788
H(22)	0.3452	0.1199	0.4301	11.354
H(23)	0.4165	0.1017	0.3623	11.341
H(24)	0.4376	0.0492	0.4397	11.348
H(25)	0.5354	0.2233	0.5593	9.997
H(26)	0.4129	0.1950	0.5491	10.000
H(27)	0.5044	0.1236	0.5594	9.994
H(28)	0.6206	0.0961	0.4588	8.091
H(29)	0.6065	0.1490	0.3812	8.097
H(30)	0.6518	0.1957	0.4580	8.088
H(31)	0.2390	0.2907	0.2524	6.444
H(32)	0.2198	0.1910	0.2336	6.457
H(33)	0.3065	0.2192	0.3010	6.451
H(34)	0.2642	0.3161	0.1215	9.358
H(35)	0.3503	0.2625	0.0807	9.367
H(36)	0.2445	0.2165	0.1030	9.358
H(37)	0.3470	0.1026	0.1741	8.969
H(38)	0.4588	0.1416	0.1559	8.980
H(39)	0.4352	0.1271	0.2418	8.986
H(40)	0.7251	0.3896	0.1393	9.665
H(41)	0.6925	0.4137	0.0525	9.660
H(42)	0.6469	0.4688	0.1181	9.660
H(43)	0.5317	0.2242	0.0683	13.117
H(44)	0.6235	0.2638	0.0230	13.116
H(45)	0.6506	0.2321	0.1084	13.113
H(46)	0.4651	0.4472	0.0582	9.368
H(47)	0.5106	0.3919	-0.0073	9.383
H(48)	0.4190	0.3532	0.0387	9.376
H(49)	0.5280	0.5864	0.3120	6.832
H(50)	0.3720	0.5116	0.3671	6.058
H(51)	0.4911	0.5784	0.1636	8.144
H(52)	0.2404	0.4580	0.2581	6.820
H(53)	0.3089	0.4981	0.1358	8.200

Table S1. Atomic coordinates, B_{iso}/B_{eq} and occupancy of silacyclobutadiene complex 1.

 $B_{eq} = 8/3 \pi^2 (U_{11}(aa^*)^2 + U_{22}(bb^*)^2 + U_{33}(cc^*)^2 + 2U_{12}(aa^*bb^*)\cos\gamma + 2U_{13}(aa^*cc^*)\cos\beta + 2U_{23}(bb^*cc^*)\cos\alpha)$

atom	U11	U22	U33	U12	U13	U23
Co(9)	0.0456(4)	0.0313(4)	0.0436(4)	0.0114(3)	-0.0034(3)	-0.0014(3)
Si(1)	0.0369(7)	0.0501(9)	0.0472(8)	-0.0016(6)	0.0036(6)	0.0009(7)
Si(5)	0.0569(10)	0.0429(9)	0.0672(11)	-0.0050(7)	0.0031(8)	0.0054(7)
Si(6)	0.0405(8)	0.0681(11)	0.0509(9)	-0.0014(7)	0.0095(6)	-0.0164(8)
C(2)	0.029(2)	0.010(2)	0.008(2)	-0.001(1)	0.0022(13)	0.0000(12)
C(3)	0.036(3)	0.034(3)	0.044(3)	0.004(2)	-0.012(2)	-0.008(2)
C(4)	0.055(3)	0.041(3)	0.034(2)	0.017(2)	0.004(2)	0.005(2)
C(7)	0.044(3)	0.051(3)	0.068(4)	0.003(3)	-0.015(3)	-0.022(3)
C(8)	0.100(5)	0.058(4)	0.053(4)	0.009(4)	0.037(3)	0.008(3)
C(10)	0.119(7)	0.044(4)	0.095(6)	0.030(4)	0.023(5)	0.022(4)
C(11)	0.079(5)	0.035(3)	0.102(6)	0.017(3)	-0.023(4)	-0.020(3)
C(12)	0.076(4)	0.046(4)	0.070(4)	0.023(3)	0.012(3)	-0.011(3)
C(13)	0.057(4)	0.055(4)	0.105(6)	0.021(3)	-0.005(4)	-0.007(4)
C(14)	0.105(6)	0.055(4)	0.100(6)	0.051(5)	-0.036(5)	-0.006(4)
C(15)	0.079(5)	0.064(5)	0.170(9)	-0.027(4)	-0.021(6)	0.055(6)
C(16)	0.103(7)	0.131(9)	0.137(8)	-0.019(6)	0.003(6)	-0.062(7)
C(17)	0.047(3)	0.080(5)	0.073(4)	-0.006(3)	0.002(3)	0.023(4)
C(18)	0.109(7)	0.090(6)	0.132(8)	0.038(6)	0.028(6)	0.037(6)
C(19)	0.103(7)	0.199(13)	0.111(7)	0.091(8)	0.045(6)	0.034(7)
C(20)	0.075(6)	0.135(10)	0.27(2)	-0.015(6)	-0.065(9)	0.028(10)
C(21)	0.067(4)	0.160(9)	0.080(5)	0.015(5)	0.042(4)	-0.004(5)
C(22)	0.092(5)	0.078(5)	0.076(5)	-0.002(4)	-0.007(4)	-0.018(4)
C(23)	0.063(4)	0.082(5)	0.044(3)	-0.020(3)	0.006(3)	0.014(3)
C(24)	0.171(10)	0.081(6)	0.107(7)	-0.058(7)	-0.042(7)	0.046(5)
C(25)	0.087(6)	0.174(10)	0.055(4)	-0.001(6)	0.008(4)	0.030(5)
C(26)	0.108(6)	0.063(5)	0.085(5)	0.016(4)	0.030(5)	0.017(4)
C(27)	0.047(4)	0.054(4)	0.104(5)	-0.007(3)	-0.011(3)	-0.007(4)
C(28)	0.064(5)	0.162(9)	0.071(5)	-0.012(5)	-0.012(4)	-0.036(5)
C(29)	0.071(5)	0.056(4)	0.157(8)	-0.007(4)	0.011(5)	-0.045(5)
C(30)	0.092(6)	0.159(9)	0.055(4)	0.030(6)	0.026(4)	0.035(5)
C(31)	0.206(12)	0.109(8)	0.100(7)	0.042(8)	0.096(8)	0.004(5)
C(32)	0.141(8)	0.120(7)	0.036(3)	-0.029(6)	-0.006(4)	0.020(4)

 Table S2. Anisotropic displacement parameters of silacyclobutadiene complex 1.

The general temperature factor expression: $exp(-2\pi^2(a^{*2}U_{11}h^2 + b^{*2}U_{22}k^2 + c^{*2}U_{33}l^2 + 2a^{*}b^{*}U_{12}hk + 2a^{*}c^{*}U_{13}hl + 2b^{*}c^{*}U_{23}kl))$

atom	atom	distance	atom	atom	distance
Co(9)	Si(1)	2.238(2)	Co(9)	C(2)	2.102(3)
Co(9)	C(3)	1.989(5)	Co(9)	C(4)	2.016(5)
Co(9)	C(10)	2.046(7)	Co(9)	C(11)	2.067(6)
Co(9)	C(12)	2.065(7)	Co(9)	C(13)	2.067(7)
Co(9)	C(14)	2.060(8)	Si(1)	Si(5)	2.310(2)
Si(1)	C(2)	1.757(4)	Si(1)	C(4)	1.801(5)
Si(5)	C(15)	1.861(9)	Si(5)	C(16)	1.86(1)
Si(5)	C(17)	1.879(7)	Si(6)	C(2)	1.930(4)
Si(6)	C(21)	1.864(8)	Si(6)	C(22)	1.881(8)
Si(6)	C(23)	1.933(7)	C(2)	C(3)	1.564(6)
C(3)	C(4)	1.469(7)	C(3)	C(7)	1.541(7)
C(4)	C(8)	1.524(8)	C(7)	C(27)	1.492(9)
C(7)	C(28)	1.490(9)	C(7)	C(29)	1.572(9)
C(8)	C(30)	1.55(1)	C(8)	C(31)	1.52(1)
C(8)	C(32)	1.53(1)	C(10)	C(11)	1.44(1)
C(10)	C(14)	1.41(1)	C(11)	C(12)	1.38(1)
C(12)	C(13)	1.41(1)	C(13)	C(14)	1.37(1)
C(17)	C(18)	1.52(1)	C(17)	C(19)	1.50(1)
C(17)	C(20)	1.54(1)	C(23)	C(24)	1.50(1)
C(23)	C(25)	1.545(9)	C(23)	C(26)	1.51(1)

 Table S3. Bond lengths(Å) of silacyclobutadiene complex 1.

Table S4. Bond angl	es (deg) of silacyclo	obutadiene complex 1.
---------------------	-----------------------	-----------------------

atom	atom	atom	angle	atom	atom	atom	angle
Co(9)	Si(1)	C(2)	62.1(1)	C(2)	Co(9)	Si(1)	47.6(1)
C(3)	Co(9)	Si(1)	67 3(1)	Co(9)	Si(1)	C(4)	58 7(2)
C(4)	$C_0(9)$	Si(1)	49.8(1)	C(10)	$C_0(9)$	Si(1)	1212(3)
C(1)	$C_0(\mathcal{I})$	S(1)	+9.0(1)	C(10)	$C_0(\mathcal{I})$	Si(1)	121.2(3) 126.6(3)
	C0(9)	SI(1)	109.0(2)	C(12)	C0(9)	SI(1)	120.0(2)
C(13)	Co(9)	S1(1)	163.3(2)	C(14)	Co(9)	$S_{1}(1)$	156.5(3)
Co(9)	Si(1)	Si(5)	123.35(9)	Co(9)	C(2)	Si(1)	70.3(1)
Co(9)	C(2)	C(3)	63.8(2)	C(3)	Co(9)	C(2)	44.9(2)
C(4)	Co(9)	C(2)	67.7(2)	C(10)	Co(9)	C(2)	165.7(3)
$\hat{\mathbf{C}}(1)$	$C_0(9)$	C(2)	128 6(2)	C(12)	$C_0(9)$	$\vec{C}(2)$	110.7(2)
C(13)	$C_0(9)$	C(2)	120.0(2) 121 3(2)	C(12)	$C_0(9)$	C(2)	153 3(3)
C_{13}	C(0)	C(2)	121.3(2) 121.0(2)	C_{14}	C(2)	C(2)	133.3(3)
Co(9)	C(2)	SI(0)	121.0(2)	Co(9)	C(3)	C(2)	/1.4(2)
Co(9)	C(3)	C(4)	69.5(3)	C(4)	Co(9)	C(3)	43.0(2)
C(10)	Co(9)	C(3)	145.6(3)	C(11)	Co(9)	C(3)	173.4(3)
C(12)	Co(9)	C(3)	138.3(2)	C(13)	Co(9)	C(3)	115.3(2)
C(14)	Co(9)	C(3)	118.7(3)	Co(9)	C(3)	C(7)	131.2(4)
$\dot{Co(9)}$	C(4)	Si(1)	71 5(2)	Co(9)	C(4)	$\vec{C(3)}$	67 5(3)
C(10)	$C_0(9)$	C(4)	113 4(3)	C(11)	$C_0(9)$	C(4)	1300(3)
C(12)	$C_0(0)$	C(4)	175.4(3)	C(12)	$C_0(0)$	C(4)	137.0(3) 142.9(2)
C(12)	CO(9)	C(4)	1/0.2(2)	C(13)	C0(9)	C(4)	143.0(3)
C(14)	Co(9)	C(4)	11/.1(3)	Co(9)	C(4)	C(8)	129.3(4)
Co(9)	C(10)	C(11)	70.4(4)	C(11)	Co(9)	C(10)	40.9(3)
C(12)	Co(9)	C(10)	67.2(3)	C(13)	Co(9)	C(10)	67.0(4)
Co(9)	C(10)	C(14)	70.5(4)	C(14)	Co(9)	C(10)	40.2(4)
Co(9)	C(11)	C(10)	68.7(4)	Co(9)	C(11)	C(12)	70.3(4)
C(12)	$C_0(9)$	C(11)	39 1(3)	C(13)	$C_0(9)$	C(11)	66 6(3)
C(12)	$C_0(9)$	C(11)	66 Q(3)	$C_{0}(9)$	C(12)	C(11)	70.5(4)
$C_{(14)}$	C(12)	C(11)	(0.9(3))	C(12)	C(12)	C(11)	70.3(+)
C0(9)	C(12)	C(13)	/0.1(4)	C(13)	C0(9)	C(12)	39.9(3)
C(14)	Co(9)	C(12)	66.0(3)	Co(9)	C(13)	C(12)	/0.0(4)
Co(9)	C(13)	C(14)	70.4(5)	C(14)	Co(9)	C(13)	38.6(4)
Co(9)	C(14)	C(10)	69.4(5)	Co(9)	C(14)	C(13)	70.9(5)
C(2)	Si(1)	Si(5)	142.1(1)	C(4)	Si(1)	Si(5)	136.7(2)
Si(1)	Si(5)	C(15)	1110(3)	Si(1)	Si(5)	CÌL	112.8(3)
Si(1)	Si(5)	C(17)	109 1(2)	Si(1)	C(2)	C(3)	80.9(2)
C(4)	Si(3)	C(1)	109.1(2) 90.2(2)	$\mathbf{Si}(1)$	C(2)	$\mathbf{S}(\mathbf{G})$	122 A(2)
C(4)	SI(1)	C(2)	30.3(2)	SI(1)	C(2)	SI(0)	133.4(2)
SI(1)	C(4)	C(3)	91.5(3)	SI(1)	C(4)	C(8)	133.4(4)
C(16)	S1(5)	C(15)	103.4(5)	C(17)	S1(5)	C(15)	111.9(4)
C(17)	Si(5)	C(16)	108.5(4)	Si(5)	C(17)	C(18)	109.5(5)
Si(5)	C(17)	C(19)	113.3(6)	Si(5)	C(17)	C(20)	109.2(6)
Si(6)	C(2)	C(3)	136.6(3)	C(21)	Si(6)	C(2)	120.3(3)
C(22)	Si(6)	C(2)	100.8(3)	C(23)	Si(6)	C(2)	112.0(2)
C(22)	Si(6)	C(21)	107.2(4)	C(23)	Si(6)	C(21)	108 1(4)
C(23)	Si(6)	C(22)	107.2(1) 107.5(3)	Si(6)	C(23)	C(24)	1137(5)
C(23)	C(22)	C(22)	107.5(5) 106.0(6)	Si(0)	C(23)	C(24)	110.7(5) 110.2(5)
SI(0)	C(23)	C(23)	100.9(0)	SI(0)	C(23)	C(20)	110.5(5)
C(2)	C(3)	C(4)	98.3(3)	C(2)	C(3)	C(7)	126.4(4)
C(7)	C(3)	C(4)	133.7(4)	C(3)	C(4)	C(8)	133.8(5)
C(3)	C(7)	C(27)	111.9(5)	C(3)	C(7)	C(28)	115.4(6)
C(3)	C(7)	C(29)	107.0(5)	C(4)	C(8)	C(30)	104.9(5)
C(4)	C(8)	C(31)	109.5(6)	C(4)	C(8)	C(32)	116.4(6)
C(28)	C(7)	C(27)	107.1(5)	C(29)	C(7)	C(27)	105.9(6)
C(29)	C(7)	C(28)	109 1(6)	C(31)	C(8)	C(30)	112 1(8)
C(22)	C(8)	C(20)	106.2(6)	C(32)	C(8)	C(31)	107.8(6)
C(32)	C(0)	C(30)	100.2(0)	C(32)	C(0)	C(31)	107.0(0)
C(10)		C(12)	107.5(7)	C(14)	C(10)		100.1(8)
C(10)	C(14)	C(13)	109.6(8)	C(11)	C(12)	C(13)	108.7(7)
C(12)	C(13)	C(14)	108.0(7)	C(19)	C(17)	C(18)	104.9(8)
C(20)	C(17)	C(18)	106.8(7)	C(20)	C(17)	C(19)	112.9(8)
C(25)	C(23)	C(24)	109.2(7)	C(26)	C(23)	C(24)	110.2(7)
C(26)	C(23)	C(25)	106.3(6)	~ /	· · /	× /	. /
· /	× /	· /	× /				

Figure S1. ORTEP drawings of silacyclobutadiene complex **1** with atom labeling scheme. Hydrogen atoms are omitted for clarity.

Figure S2. Views of crystal packing of silacyclobutadiene cobalt complex 1.

Figure S3. Views of crystal packing of silacyclobutadiene cobalt complex **1**. (a) along the a axis. (b) along the b axis. (c) along the c axis.

2. Optimized Structures at the B3PW91/6-311G(d) of Model Compounds 3 and 6

 Table S5.
 Optimized positional parameter (xyz) of cyclobutadiene Complex 3.

	Х	Y	Ζ
С	-0.698562	0.671815	1.819693
С	0.750816	0.593682	1.824810
С	0.673011	-0.853666	1.749325
С	-0.776284	-0.775630	1.744203
Н	-1.420208	1.470798	1.919271
Н	1.553948	1.309960	1.929306
Н	1.394004	-1.659033	1.772682
Н	-1.579161	-1.499505	1.763857
Co	-0.000959	-0.005867	0.118137
С	-0.809000	0.968094	-1.505302
С	0.604013	1.132420	-1.474663
С	1.199343	-0.161156	-1.519147
С	0.150931	-1.125320	-1.576749
С	-1.089840	-0.425399	-1.567684
Н	-1.541660	1.761990	-1.461987
Н	1.132085	2.073335	-1.405459
Н	2.258926	-0.374501	-1.492034
Н	0.274623	-2.199139	-1.600735
Н	-2.073246	-0.874536	-1.581520

Table S6. Optimized positional parameter (xyz) of silacyclobutadiene complex 6.

	Me ₃ Si Si H Co		
		6	
	Х	Y	Ζ
Si	-0.747403	0.929209	-0.000006
С	0.524811	1.629638	-1.132881
С	1.246701	2.152459	0.000002
С	0.524805	1.629633	1.132880
Si	-2.773467	-0.257563	0.000000
Н	0.756678	1.775963	-2.179892
Н	2.124618	2.793981	0.000006
Н	0.756667	1.775953	2.179892
С	-4.211424	0.963618	-0.000062
С	-2.845697	-1.322876	-1.554533
С	-2.845731	-1.322765	1.554607
Н	-4.190556	1.610280	0.881795
Н	-4.190528	1.610225	-0.881958
Н	-5.170430	0.433471	-0.000061
Co	1.394027	0.206438	-0.000002
С	1.465459	-1.847555	0.000046
С	2.116597	-1.318046	-1.150876
С	3.183307	-0.481218	-0.711653
С	3.183350	-0.481187	0.711581
С	2.116665	-1.317994	1.150905
Н	0.626494	-2.528817	0.000086
Н	1.840707	-1.507304	-2.178940
Н	3.856635	0.075001	-1.349286
Н	3.856716	0.075060	1.349150
Н	1.840832	-1.507203	2.178993
Н	-2.774615	-0.716764	-2.462292
Н	-2.035363	-2.055915	-1.582006
Н	-3.793679	-1.870390	-1.599385
Н	-2.035387	-2.055789	1.582158
Н	-2.774688	-0.716586	2.462324
Н	-3.793707	-1.870290	1.599468

3. Comparison of the Geometrical Parameters of 1 with Those of Model Compounds, 3 and 6

Table S7. Distances between Cb and Co (a, Å), and Co and Cp (b, Å) and angles between the average planes of Cp and Cb (α , deg) of cyclobutadiene complexes **3**, **6**, and **1**.

Entry	a (Å)	b (Å)	α (deg)
3(Exp.) ^{4d}	1.681(1)	1.660(1)	0.9
3(Calc.)	1.669	1.649	0.8
6(Calc.)	1.701	1.649	5.2
1(Exp.)	1.730(3)	1.681(4)	2.9

Figure S4. The angles (deg) between Si-C2-C4 and C2-C3-C4 planes, and Si1-C2-C3 and Si1-C3-C4 planes.

4. Theoretical ¹³C NMR Resonances of 3 and 6 with Their Free Cyclobutadienes at the GIAO/B3PW91/6-311+G(d,p)//B3PW91/6-311G(d) Level.

