Supporting information

A new synthesis of allyl sulfoxides via nucleophilic addition of sulfinyl carbanions to Group 6 Fischer carbene complexes
 José Barluenga, Martín Fañanás-Mastral, Fernando Aznar

General: ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Bruker AMX-400 (400 MHz) or Bruker DPX-300 (300 MHz). Chemical shifts are reported in ppm from tetramethylsilane with the residual solvent resonance as the internal standard $\left(\mathrm{CHCl}_{3}: \delta 7.26\right)$. Data are reported as follows: chemical shift, multiplicity (s: singlet, d: doublet, dd: double doublet, td: triplet of doublets, t: triplet, q: quarter, br: broad, m: multiplet), coupling constants (J in Hz), integration and assignment. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker AMX-400 (100 MHz) or Bruker DPX-300 (75 MHz) with complete proton decoupling. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as internal standard $\left(\mathrm{CDCl}_{3}: \delta 76.95\right)$. Bidimensional NMR experiments (COSY, HMQC, HMBC and NOESY) were recorded on a Bruker AMX-400 (400 MHz). High-resolution mass spectrometry was carried out on a Finnigan-Mat 95 spectrometer.
All reactions were carried out under nitrogen atmosphere. THF was distilled over benzophenone/sodium under nitrogen atmosphere. DMSO was dried by distillation from calcium hydride under reduced presure. Methyl lithium (1.5 M in pentane) and sulfoxides were purchased from Aldrich.

All Fischer carbenes complexes $\mathbf{1}$ were prepared according to literature procedures. ${ }^{1}$

General procedure for the preparation of allyl sulfoxides 4 and enol ethers 5.

To a solution of the sulfoxide $2(2.5 \mathrm{mmol})$ in THF (15 mL) cooled to $-20^{\circ} \mathrm{C}$, MeLi 1.5 M in pentane (2.6 mmol) is added. The resulting mixture is allowed to warm to room temperature and then is added dropwise to a solution of carbene complexe $\mathbf{1}(1 \mathrm{mmol})$ in THF $(20 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The mixture is stirred during 30 minutes and then is warmed to room temperature. Silica gel is added and, after evaporating solvents under reduced presure, the allyl sulfoxide $\mathbf{4}$ or enol ether $\mathbf{5}$ was obtained by cromatography as an oil.

Methyl 2-phenylallyl sulfoxide (4a). Yellow oil. $\mathrm{R}_{\mathrm{f}} 0.12$ (ethyl acetate). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 7.50-7.32(\mathrm{~m}, 5 \mathrm{H}), 5.70(\mathrm{~s}, 1 \mathrm{H}), 5.43(\mathrm{~s}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J=12.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.83(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.4,137.6$, 128.7, 128.5, 125.9, 119.6, 60.8, 37.8. HRMS calcd. for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{OS}: 180.0603$, found 180.0599 .

2-(4-Methoxyphenyl)allyl methyl sulfoxide (4b). Yellow oil. $\mathrm{R}_{\mathrm{f}} 0.15$ (ethyl acetate). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $2 \mathrm{H}), 5.55(\mathrm{~s}, 1 \mathrm{H}), 5.30(\mathrm{~s}, 1 \mathrm{H}), 4.06(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~d}, J=12.9$ Hz), $2.50(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.7,137.1,130.9,127.1,117.4$, 113.9, 61.2, 55.2, 37.9. HRMS calcd. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S}: 210.0715$, found 210.0718 .

[^0]2-(2-Furyl)allyl methyl sulfoxide (4c). Orange oil. $\mathrm{R}_{\mathrm{f}} 0.15$ (ethyl acetate). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40(\mathrm{bs}, 1 \mathrm{H}), 6.48(\mathrm{bs}, 1 \mathrm{H}), 6.43(\mathrm{bs}, 1 \mathrm{H}), 5.80(\mathrm{~s}, 1 \mathrm{H})$, $5.26(\mathrm{~s}, 1 \mathrm{H}), 3.92(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.3,142.8,127.3,115.5,111.5,107.8,58.8,38.0$. HRMS calcd. for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{~S}$: 170.0396, found 170.0398.

Methyl 2-methylene-4-phenyl-3-butynyl sulfoxide (4d). Yellow oil. $\mathrm{R}_{\mathrm{f}} 0.11$ (ethyl acetate). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{~m}, 3 \mathrm{H}), 5.71(\mathrm{~s}, 1 \mathrm{H})$, $5.60(\mathrm{~s}, 1 \mathrm{H}), 3.72(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 131.5,128.8,128.3,127.8,122.1,120.4,91.1,87.8,61.6$, 37.9. HRMS calcd. for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{OS}: 204.0609$, found 204.0601.
(\boldsymbol{E})-4-(2-Furyl)-2-methylene-3-butenyl methyl sulfoxide (4e). Yellow oil. R_{f} 0.10 (ethyl acetate). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40(\mathrm{bs}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=16.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.51(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{~m}, 2 \mathrm{H}), 5.52(\mathrm{~s}, 1 \mathrm{H}), 5.31(\mathrm{~s}, 1 \mathrm{H}), 3.89(\mathrm{~d}, J=12.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.56(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.3$, $146.3,145.0$, 131.9, 128.8, 112.7, 111.8, 108.9, 61.8, 36.5. HRMS calcd. for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~S}: 196.0558$, found 196.0564.

4-(1-Cyclopentenyl)-2-methylene-3-butynyl methyl sulfoxide (4f). Orange oil. $\mathrm{R}_{\mathrm{f}} 0.17$ (ethyl acetate). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.11$ (bs, 1 H), 5.64 (d, $J=1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.53(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.66$ $(\mathrm{s}, 3 \mathrm{H}), 2.50-2.44(\mathrm{~m}, 4 \mathrm{H}), 1.97-1.87(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.6$, 127.1, 123.6, 120.5, 89.0, 88.6, 61.6, 37.9, 36.1, 33.3, 23.2. HRMS calcd. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{OS}$: 179.0525 , found 179.0529 .

2-(4-Methoxyphenyl)allyl p-tolyl sulfoxide (4g). Colorless oil. $\mathrm{R}_{\mathrm{f}} 0.11$ (ethyl acetate). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.26(\mathrm{~m}, 4 \mathrm{H})$, $6.88(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.45(\mathrm{~s}, 1 \mathrm{H}), 4.99(\mathrm{~s}, 1 \mathrm{H}), 4.07(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}$, $3 \mathrm{H}), 3.79(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.5,141.6$, 140.3, 136.8, 131.3, 129.6, 127.2, 124.4, 117.9, 113.8, 65.0, 55.2, 21.3. HRMS calcd. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~S}: 286.1022$, found 286.1022 .

2-(2-Furyl)allyl p-tolyl sulfoxide (4h). Orange oil. $\mathrm{R}_{\mathrm{f}} 0.08$ (ethyl acetate). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}), 6.38(\mathrm{~s}, 2 \mathrm{H}), 5.69(\mathrm{~s}, 1 \mathrm{H}), 4.96(\mathrm{~s}, 1 \mathrm{H}), 3.91(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~d}, J=12.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.5,142.5,141.7,140.3,129.6$, 127.0, 124.3, 116.0, 111.3, 107.4, 62.7, 21.3. HRMS calcd. for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S}: 246.0709$, found 246.0720 .

4-Phenyl-2-methylene-3-butynyl p-tolyl sulfoxide (4i). Yellow oil. $\mathrm{R}_{\mathrm{f}} 0.12$ (ethyl acetate). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70-7.26(\mathrm{~m}, 9 \mathrm{H}), 5.65(\mathrm{~d}, J=1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.37(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.33$ $(\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.8,139.6,131.5,129.6,128.5,128.2,128.0$, 124.3, 122.3, 120.2, 90.6, 87.8, 64.9, 21.3. HRMS calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{OS}: 280.0922$, found 280.0927 .

1-Methoxy-4-(1-methoxy-2-phenylvinyl)benzene (5a). Orange oil. $\mathrm{R}_{\mathrm{f}} 0.45$ (HxH/AcOEt 5/1).

Mayor diastereoisomer: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.6-7.0(\mathrm{~m}, 9 \mathrm{H}), 5.9(\mathrm{~s}$, $1 \mathrm{H}), 3.9(\mathrm{~s}, 3 \mathrm{H}), 3.8(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.5,156.8,137.1,130.4$, 128.6, 128.2, 127.8, 124.9, 113.3, 100.6, 55.2, 54.9.

Minor diastereoisomer: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.9-7.1(\mathrm{~m}, 9 \mathrm{H}), 6.2(\mathrm{~s}$, $1 \mathrm{H}), 3.9(\mathrm{~s}, 3 \mathrm{H}), 3.7(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.6,157.0,136.0,130.3$, 128.3, 128.2, 127.7, 126.1, 113.7, 111.1, 57.6, 55.0.

2-(1-Methoxy-2-phenylvinyl)furan (5b). Colorless oil. $\mathrm{R}_{\mathrm{f}} 0.45$ (HxH/AcOEt 5/1).

Mayor diastereoisomer: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.63$ (bs, 1H), 7.50-7.20 $(\mathrm{m}, 5 \mathrm{H}), 6.62(\mathrm{bs}, 1 \mathrm{H}), 6.54(\mathrm{bs}, 1 \mathrm{H}), 6.01(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 147.4,142.5,137.1,135.0,128.5,127.8,126.7111 .6,110.7,107.6,55.4$,
(1-Methoxy-3-methyl-1-butenyl)benzene (5c). Yellow oil. $\mathrm{R}_{\mathrm{f}} 0.69$ (HxH/AcOEt 10/1).

Mayor diastereoisomer: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.60-7.25(\mathrm{~m}, 5 \mathrm{H}), 4.60$ $(\mathrm{d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.6,136.9,128.7,127.5,125.8,108.2,54.8,26.8,24.5$.

Minor diastereoisomer: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.60-7.25(\mathrm{~m}, 5 \mathrm{H}), 5.22$ $(\mathrm{d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 3.01(\mathrm{~m}, 1 \mathrm{H}), 1.11(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.8,135.9,128.4,127.3$ 122.3, 115.1, 58.7, 25.2, 23.3.

$6 \varepsilon \varepsilon 6$ ¢
£c9čLII－
£ていㄴてし—
LI980～に
GSZ1：LEL－

2189691－

してにばに

5899：79－

680t닌
89でった11—
18009911－

$\angle 000^{\circ} \angle 21=$
$9965621=$

0292．0h1

カカになこの一－

[^0]: ${ }^{1}$ (a) E. O. Fischer, A. Maasböl, Angew. Chem. Int. Ed. Engl., 1964, 76, 645. (b) E. O. Fischer, A. Maasböl, Angew. Chem. Int. Ed. Engl., 1964, 3, 580. R. Aumann, H. Heinen, Chem. Ber., 1987, 120, 537.

