SUPPORTING INFORMATION (7 pages)

WAVELENGTH-DEPENDENT STEREODIFFERENTIATION IN THE FLUORESCENCE QUENCHING OF ASYMMETRIC NAPHTHALENE-BASED DYADS BY AMINES

Sergio Abad,¹ Uwe Pischel,*² Miguel A. Miranda*¹

¹ Instituto de Tecnología Química, Universidad Politécnica de Valencia, Av. de los Naranjos s/n, E-46022 Valencia, Spain. Tel.: +34 96 3877 807, Fax: +34 96 3877 809, Email: mmiranda@gim.upv.es

² REQUIMTE/Departamento de Química, Faculdade de Ciências, Universidade do Porto, Rua Campo Alegre, 4169-007 Porto, Portugal. Tel.: +351 22 608 2885, Fax:
 +351 22 608 2959, Email: upischel@fc.up.pt

Contents

- S.1: this page
- **S.2**: Data for measurements in air-equilibrated solution, photophysical parameters (top) and quenching rate constants by triethylamine (bottom).
- **S.3**: ¹H-NMR spectrum for (*S*)-NPX-M (top). ¹³C-NMR spectrum for (*S*)-NPX-M (bottom).
- S.4: ¹H-NMR spectrum for (R)-NAP-M (top). ¹³C-NMR spectrum for (R)-NAP-M (bottom).
- **S.5**: ¹H-NMR spectrum for (S,S)-NPX-NAP (top). ¹³C-NMR spectrum for (S,S)-NPX-NAP (bottom).
- **S.6**: ¹H-NMR spectrum for (S,R)-NPX-NAP (top). ¹³C-NMR spectrum for (S,R)-NPX-NAP (bottom).
- **S.7**: AM1 optimized folded conformations of (S,S)- and (S,R)-NPX-NAP.

• Data for measurements in air-equilibrated solutions

	$arPhi_{ m f}$	$arPhi_{ m f}$	$ au_{\mathrm{f}}$ / ns	$ au_{ m f}$ / ns
	$(\lambda_{\text{exc}} = 290 \text{ nm})^{a})$	$(\lambda_{exc} = 325 \text{ nm})^{a})$	$(\lambda_{exc} = 290 \text{ nm})^{b})$	$(\lambda_{exc} = 325 \text{ nm})^{b})$
(<i>S,S</i>)- NPX-NAP	0.13	0.17	5.4	5.5
(<i>S,R</i>)- NPX-NAP	0.13	0.19	5.4	5.5
NPX-M ^{c)}	0.16	0.22	5.4	5.5
NAP-M ^{d)}	0.02		7.5	

a) Fluorescence quantum yield, measured with (S)-naproxen as standard ($\Phi_{\rm f}$ = 0.47 under nitrogen); 5 %

error.

^{b)} Fluorescence lifetime measured at $\lambda_{obs} = 347$ nm; 5 % error.

c) (S)-enantiomer.

^{d)} (R)-enantiomer.

Quenching data of the dyads and relevant model compounds by triethylamine in aerated *n*-hexane

	$k_{\rm q}/{\rm M}^{-1}{\rm s}^{-1}$ ($\lambda_{\rm exc}$ = 290 nm) NAP	$k_{\rm q}/{\rm M}^{-1}{\rm s}^{-1}$ ($\lambda_{\rm exc}$ = 325 nm) NPX	k_{SSET} / M ⁻¹ s ⁻¹ ($\lambda_{\text{exc}} = 290 \text{ nm}$)
(S,S)- NPX-NAP	7.3×10^{8}	1.6×10^{8} a) 1.4×10^{8} b)	4.5×10^{8}
(<i>S,R</i>)- NPX-NAP	1.3×10^9	1.3×10^{8} a) 1.1×10^{8} b)	4.5×10^8
NPX-M			
NAP-M	4.5×10^9		

^{a)} Steady-state measurements.

b) Time-resolved measurements.

S.3

(R)-NAP-M ¹H-NMR

(R)-NAP-M ¹³C-NMR

(S,S)-NPX-NAP ¹H-NMR

(S,R)-NPX-NAP ¹H-NMR

(S,R)-NPX-NAP ¹³C-NMR

* solvent traces

• AM1 optimized folded conformations of (S,S)- and (S,R)-NPX-NAP

(S,S)-NPX-NAP

(S,R)-NPX-NAP

