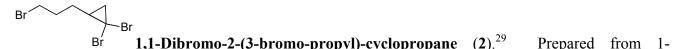
Supporting Information

Ketyl-Allene Cyclizations Promoted By Samarium(II) Iodide

Gary A. Molander* and Elizabeth Pollina Cormier

Roy and Diana Vagelos Laboratories, Department of Chemistry, University Pennsylvania,

Philadelphia, Pennsylvania 19104-6323


Contents:

Experimental Data	
References	
NMR spectra	
X-Ray Data	

Experimental Section

General Procedures (Reagents). Tetrahydrofuran (THF) and diethyl ether (Et₂O) were distilled from sodium and benzophenone under a nitrogen atmosphere. Samarium metal (99.9%, ~40 mesh) was purchased from a commercial supplier and stored in an inert atmosphere. Diiodomethane was distilled under nitrogen, stored over copper beads, and protected from light. HMPA was distilled under nitrogen and stored over 4Å molecular sieves in a Schlenk flask. HMPA is a cancer suspect agent and should be handled with discretion. Standard flash chromatography procedures were followed using 32-63 mm silica gel.¹ The residual CHCl₃ was applied as an internal standard ($\delta = 7.27$ ppm) for ¹H spectra while the CDCl₃ signal served as internal standard ($\delta = 77.00$) for ¹³C spectra. Standard benchtop techniques were employed for handling air-sensitive reagents.²

Br H_1 **Dibromo-2-(2-bromo-ethyl)-cyclopropane** (1).³ Bromoform (41.90 mL, 480 mmol), 1-bromobutene (6.10 mL, 60 mmol), and benzyltriethylammonium chloride (0.68 g, 3 mmol) were combined in a two-necked round bottomed flask equipped with an addition funnel and reflux condenser. To this solution was added a 50% w/v solution of NaOH in H₂O (72 mL) over 1.5 h at 60 °C. The color of the reaction mixture changed from colorless to yellow to brown after stirring overnight. The reaction was then filtered through a pad of Celite. The reaction mixture was subjected to an aqueous workup, washed with 1 M HCl, then brine and concentrated. The crude material was distilled to provide 13.6 g (74%) of **1** as a clear colorless liquid. ¹H NMR (500 MHz, CDCl₃) δ 3.57-3.54 (m, 2H), 2.25-2.18 (m, 1H), 2.08-2.01 (m, 1H), 1.87-1.76 (m, 2H), 1.32 (app t, *J* = 6.9 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 35.7, 30.7, 30.0, 28.3, 27.2; HRMS calcd for (M-H)⁺ C₅H₆Br₃ 302.8029, found 302.8034.

bromopentene (17.85 g, 120 mmol) according to the procedure of **1** to afford **2** in 81% yield (31.27 g, 97.0 mmol) as a clear, colorless liquid. ¹H NMR (500 MHz, CDCl₃) δ 3.51-3.43 (m, 2H), 2.17-2.01 (m, 2H), 1.80-1.64 (m, 3H), 1.60-1.54 (m, 1H), 1.26 (app t, J = 7.4 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 32.8, 31.3, 31.1, 30.4, 28.5, 28.4; IR (neat) 2959, 2943, 1432, 1250, 1206, 1116 cm⁻¹; HRMS triple Br pattern calcd for C₆H₉Br₃ (M⁺) 317.8254, found 317.8240, calcd for C₆H₉Br₂⁸¹Br (M⁺) 319.8234, found 319.8225, calcd for C₆H₉Br⁸¹Br₂ (M⁺) 321.8213, found 321.8207.

Br **5-Bromo-penta-1,2-diene** (**3**).^{4,5} To a solution of **1** (13.20 g, 43.0 mmol) in Et₂O (17 mL) was added MeLi (29.5 mL as a 1.6 M solution in Et₂O, 47.3 mmol) via a syringe pump over 45 min at – 40 °C. The reaction mixture was warmed to 0 °C, then was carefully quenched with water followed by an aqueous workup. The crude mixture was purified by a bulb to bulb distillation to provide 4.50 g (72%) of **3** as a clear colorless liquid. ¹H NMR (500 MHz, CDCl₃) δ 5.16 (dddd, *J* = 6.7, 6.7, 6.7, 6.7, 6.7 Hz, 1H), 4.76 (ddd, *J* = 6.7, 3.0, 3.0 Hz, 2H), 3.44 (t, *J* = 7.1 Hz, 2H), 2.60-2.54 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 209.0, 87.6, 75.9, 31.8, 31.7.

Br **6-Bromo-hexa-1,2-diene** (**4**).⁴ Prepared from **2** (4.00 g, 12.47 mmol) according to the procedure for **2** to provide 1.66 g (83%) of **4** as a clear colorless liquid. ¹H NMR (500 MHz, CDCl₃) δ 5.09 (dddd, *J* = 6.7, 6.7, 6.7, 6.7 Hz, 1H), 4.70 (ddd, *J* = 6.6, 3.3, 3.3 Hz, 2H), 3.46 (appt t, *J* = 6.7 Hz, 2H), 2.18-2.13 (m, 2H), 2.01-1.95 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 208.6, 88.3, 75.3, 32.8,

31.8, 26.5; IR (neat) 2940, 1956, 1704, 1436, 846 cm⁻¹; HRMS calcd for $C_6H_{10}Br$ (M+H⁺) 160.9966, found 160.9974.

Cĺ

^{OH} **4-Chloro-but-2-yn-1-ol** (**46**).⁶ To a solution of but-2-yne-1,4-diol (64.59 g, 0.75 mol) in a mixture of benzene (75 mL) and pyridine (67.1 mL, 0.825 mol) was added thionyl chloride (60.17 mL, 0.825 mmol) dropwise over 5 h at 0 °C. The reaction mixture was stirred overnight and allowed to warm to rt. The reaction mixture was then poured into ice water (200 mL) and then extracted with Et₂O, washed with an aqueous solution of sodium bicarbonate and water, then dried with MgSO₄. The crude mixture was distilled to provide 30.0 g (40%) of 4-chloro-but-2-yn-1-ol as well as 15.2 g (17%) of 1,4-dichloro-but-2-yne. ¹H NMR (500 MHz, CDCl₃) δ 4.29 (t, *J* = 2.0 Hz, 2H), 4.16 (t, *J* = 2.0 Hz, 2H), 3.05 (bs, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 84.6, 80.5, 50.9, 30.3.

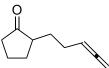
HO **Buta-2,3-dien-1-ol** (5).⁷ To a solution of **46** (20.91 g, 200 mmol) in Et₂O (400 mL) in a three-necked round bottom flask equipped with a stirrer, solid addition funnel, and reflux condenser was added LiAlH₄ (8.40 g of 95% solid, 210 mmol) slowly to maintain a gentle reflux. After the addition of the solid was complete, the addition funnel was rinsed with Et₂O (20 mL). The suspension was stirred for an additional 30 min and then cooled to 0 °C. The reaction mixture was then quenched with water (8.4 mL), and a 15% aqueous solution of NaOH (8.4 mL), followed by an additional 25.2 mL of ice/water. The gray slurry was stirred overnight, filtered, dried, and then distilled to provide 12.18 g (87%) of **5** as a clear colorless liquid. ¹H NMR (500 MHz, CDCl₃) δ 5.35 (dddd, *J* = 6.2, 6.2, 6.2, 6.2 Hz, 1H), 4.86 (ddd, *J* = 6.6, 3.0, 3.0 Hz, 2H), 4.15 (ddd, *J* = 6.1, 3.0, 3.0 Hz, 2H), 1.65 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 207.8, 90.6, 77.2, 60.2.

Br **4-Bromo-buta-1,2-diene** (6). Prepared according to a literature procedure⁸ from **5**, then purified via a bulb to bulb distillation to afford 8.04 g (60%) of **6**. ¹H NMR (500 MHz, CDCl₃) δ 5.43 (dddd, *J* = 8.2, 8.2, 6.5, 6.5 Hz, 1H), 4.91 (ddd, *J* = 6.6, 2.0, 2.0 Hz, 2H), 3.93 (ddd, *J* = 8.2, 2.0, 2.0 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 209.6, 89.3, 77.1, 29.8.

General Procedure for Alkylation of β-Keto Esters.¹¹

CO₂Me

2-Oxo-1-penta-3,4-dienyl-cyclopentanecarboxylic Acid, Methyl Ester (8). To a suspension of NaH (0.295 g of a 60% dispersion in mineral oil, 7.4 mmol) in DMF (6 mL) was added 2-oxo-cyclopentanecarboxylic acid, methyl ester (952 mg, 6.70 mol) at 0 °C. The reaction mixture was stirred for 1 h and allowed to warm to rt. After 3 h at rt, the reaction mixture was cooled to 0 °C and to it was added 5-bromo-penta-1,2-diene 3 (1.0 g, 7.4 mmol). The reaction was stirred for 24 h and then quenched with a saturated aqueous solution of NH₄Cl and subjected to an aqueous workup. Purification by column chromatography (15% Et₂O in petroleum ether) provided the desired β -keto ester in 55% yield (770 mg, 3.70 mmol) as a colorless oil. R_f = 0.52 (30% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 5.07 (dddd, *J* = 6.5, 6.5, 6.5, 6.5 Hz, 1H), 4.67 (ddd, *J* = 6.5, 3.2, 3.2 Hz, 2H), 3.71 (s, 3H), 2.55-2.51 (m, 1H), 2.40-2.36 (m, 1H), 2.29-2.22 (m, 1H), 2.07-1.88 (m, 6H), 1.71-1.65 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 214.4, 208.7, 171.3, 89.3, 75.5, 60.1, 52.4, 37.8, 33.1, 32.8, 23.7, 19.5; IR (neat) 2954, 1955, 1750, 1724, 848 cm⁻¹; HRMS calcd for C₁₂H₁₇O₃ (M+H⁺) 209.1178, found 209.1188; LRMS (CI) *m/z* 209, 191, 177, 149, 131.


 CO_2Me **1-Buta-2,3-dienyl-2-oxo-cyclopentanecarboxylic Acid, Methyl Ester** (7).¹² Prepared with slight modification of the general procedure for alkylations of β -keto esters using bromoallene **6** (3.99 g, 30 mmol, 1.5 equiv) and heating the reaction mixture for 12 h to 50 °C to afford 3.66 g (94%) of **7** as a colorless oil. $R_f = 0.15$ (15% Et₂O in petroleum ether); ¹H NMR (500 MHz, CDCl₃) δ 4.99 (dddd, J = 7.6, 7.6, 6.7, 6.7 Hz, 1H), 4.65 (ddd, J = 6.7, 2.6, 2.6 Hz, 2H), 3.65 (s, 3H), 2.62-2.57 (m, 1H), 2.45-2.36 (m, 2H), 2.31-2.20 (m, 2H), 2.08-1.89 (m, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 214.0, 210.0, 171.0, 84.9, 74.7, 60.1, 52.2, 37.9, 32.7, 32.1, 19.3; IR (neat) 2955, 1955, 1751, 1726, 849 cm⁻¹; HRMS calcd for C₁₁H₁₄O₃Na (M+Na⁺) 217.0841, found 217.0851. LRMS (CI) *m/z* 195, 177, 163, 135, 117.

CO₂Me

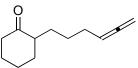
1-Hexa-4,5-dienyl-2-oxo-cyclopentanecarboxylic Acid, Methyl Ester (9). Prepared according to the general procedure for alkylations of β-keto esters using bromoallene 4 (848 mg, 5.27 mmol) to afford 706 mg (61%) of 9 as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 5.04 (dddd, J = 6.7, 6.7, 6.7, 6.7, 6.7 Hz, 1H), 4.63 (ddd, J = 6.6, 3.2, 3.2 Hz, 2H), 3.68 (s, 3H), 2.53-2.50 (m, 1H), 2.40-2.35 (m, 1H), 2.28-2.20 (m, 1H), 2.00-1.86 (m, 6H), 1.61-1.55 (m, 1H), 1.47-1.39 (m, 1H), 1.36-1.29 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 214.5, 208.5, 171.4, 89.3, 74.9, 60.4, 52.4, 37.8, 33.3, 32.7, 28.3, 24.3, 19.5; IR (neat) 2953, 1955, 1752, 1724, 847 cm⁻¹; HRMS calcd for C₁₃H₁₈O₃Na (M+Na⁺) 245.1155, found 245.1142. CO₂Et

2-Oxo-1-penta-3,4-dienyl-cyclohexanecarboxylic Acid, Ethyl Ester (10). Prepared from 2-oxo-1-penta-3,4-dienyl-cyclohexanecarboxylic acid, ethyl ester (2.50 g, 18.50 mmol) according to the general procedure for alkylations of β -keto esters to afford 10 in 57% yield (2.37 g, 10.5 mmol) as a pale yellow, clear oil. ¹H NMR (500 MHz, CDCl₃) δ 5.04 (dddd, J = 6.6, 6.6, 6.6, 6.6, 6.6 Hz, 1H), 4.62 (ddd, J = 6.6, 3.3, 3.3 Hz, 2H), 4.20-4.11 (m, 2H), 2.48-2.36 (m, 3H), 1.98-1.93 (m, 3H), 1.87-1.81 (m, 1H), 1.70-1.59 (m, 4H), 1.44-1.39 (m, 1H), 1.22 (t, J = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 208.3, 207.5, 171.8, 89.5, 75.3, 61.1, 60.4, 41.0, 36.1, 33.9, 27.5, 23.0, 22.5, 14.0; IR (neat) 2940, 1956, 1716, 850 cm⁻¹; HRMS calcd for C₁₄H₂₁O₃ (M+H⁺) 237.1491, found 237.1687; LRMS (CI) *m/z* 265, 191, 171.

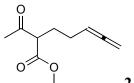
General Procedure for Synthesis of Carbonyl Substrates via Alkylation of Hydrazones.^{13,14}

2-Penta-3,4-dienyl-cyclopentanone (12).¹⁵ To a solution of LDA (13.2 mmol) in THF (22 mL) was added *N*-cyclopentylidene-*N*,*N*-dimethyl-hydrazine (1.51 g, 12 mmol) at -78 °C. The resulting suspension was stirred for 2 h, warming to rt. The reaction mixture was then cooled to -78 °C, followed by addition of 5-bromo-penta-1,2-diene **3** (1.78 g, 13.2 mmol). The reaction was then stirred overnight, warming to rt.

Aqueous workup afforded the crude alkylated hydrazone, which could be used without further purification in the next step. To a solution of the crude alkylated hydrazone in acetone (50 mL) was added wet Amberlyst ion-exchange resin (6 g). The reaction was stirred for 4 h at rt. The reaction was filtered then concentrated. The residue was diluted with Et₂O. This was followed by an aqueous


workup and purification by via column chromatography (15% Et₂O in petroleum ether) to afford 1.53 g (85%) of **12** as a colorless, clear oil. ¹H NMR (500 MHz, CDCl₃) δ 5.07 (dddd, *J* = 6.7, 6.7, 6.7, 6.7, 6.7 Hz, 1H), 4.65 (ddd, *J* = 6.7, 3.2, 3.2 Hz, 2H), 2.28-2.20 (m, 2H), 2.13-1.98 (m, 5H), 1.88-1.86 (m, 1H), 1.78-1.75 (m, 1H), 1.54-1.49 (m, 1H), 1.40-1.34 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 221.2, 208.5, 89.3, 75.0, 48.5, 38.1, 29.5, 28.9, 26.1, 20.7; IR (neat) 2940, 1955, 1736, 1452, 844 cm⁻¹; HRMS calcd for C₁₀H₁₄O (M+) 150.1045; found 150.1050.

2-Buta-2,3-dienyl-cyclopentanone (11).¹⁵ Prepared with slight modification of the general procedure for carbonyl substrates by alkylation with bromoallene **6** (500 mg, 3.76 mmol, 1 equiv) to afford 358 mg (70%) of **11** as a pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 5.09 (dddd, *J* = 6.7, 6.7, 6.7, 6.7, Hz, 1H), 4.70-4.67 (m, 2H), 2.47-2.42 (m, 1H), 2.30-2.15 (m, 3H), 2.13-2.08 (m, 1H), 2.04-1.98 (m, 2H), 1.82-1.78 (m, 1H), 1.64-1.60 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 220.3, 208.9, 87.6, 75.2, 48.7, 38.1, 29.1, 28.4, 20.6; IR (neat) 2963, 1956, 1739 cm⁻¹; HRMS calcd for C₉H₁₂O (M⁺) 136.0888, found 136.0893.


2-Hexa-4,5-dienyl-cyclopentanone (13). Prepared according to the general procedure for carbonyl substrates by alkylation with bromoallene **4** (665 mg, 4.12 mmol) to afford 636 mg (94% yield, 90% pure) of **13** as a pale yellow, clear oil. ¹H NMR (500 MHz, CDCl₃) δ 5.07 (dddd, *J* = 6.7, 6.7, 6.7, 6.7, 6.7, Hz, 1H), 4.64 (ddd, *J* = 6.7, 3.3, 3.3 Hz, 2H), 2.31-2.18 (m, 2H), 2.14-1.98 (m, 5H), 1.82-1.71 (m, 2H), 1.56-1.42 (m, 3H), 1.32-124 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 221.4, 208.5,

89.6, 74.8, 49.0, 38.1, 29.6, 29.1, 28.1, 27.0, 20.7; IR (neat) 2936, 1955, 1732, 1455, 843 cm⁻¹; HRMS calcd for $C_{10}H_{16}O(M^+)$ 164.1201, found 164.1196; calcd for (M+H⁺) 165.1279, found 165.1282.

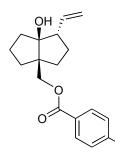
cyclohexanone (694 mg, 4.95 mmol) according to the general procedure for carbonyl substrates to afford 2.98 g (60%) of **14** as a clear, colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 5.08 (dddd, *J* = 6.5, 6.5, 6.5, 6.5 Hz, 1H), 4.66 (ddd, *J* = 6.5, 3.2, 3.2 Hz, 2H), 2.42-2.27 (m, 3H), 2.14-2.10 (m, 1H), 2.07-1.99 (m, 3H), 1.97-1.91 (m, 1H), 1.89-1.84 (m, 1H), 1.74-1.61 (m, 2H), 1.42-1.37 (m, 1H), 1.36-1.28 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 213.1, 208.5, 89.7, 74.9, 49.9, 42.1, 33.9, 28.6, 28.0, 25.7, 25.0; IR (neat) 2933, 1954, 1750, 1709, 1448, 843 cm⁻¹; HRMS calcd for C₁₁H₁₆O (M⁺) 164.1201, found 164.1205, calcd for C₁₁H₁₅ (M-OH⁺) 147.1177, found 147.1178.

2-Hexa-4,5-dienyl-cyclohexanone (15).¹⁶ Prepared from the hydrazone of cyclohexanone (695 mg, 4.95 mmol) according to the general procedure for carbonyl substrates by alkylation with bromoallene **4** (806 mg, 5.0 mmol) to afford 573 mg (65%) of **15** as a clear, colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 5.09 (dddd, *J* = 6.6, 6.6, 6.6, 6.6, 6.6 Hz, 1H), 4.65 (ddd, *J* = 6.5, 3.2, 3.2 Hz, 2H), 2.42-2.36 (m, 1H), 2.33-2.25 (m, 2H), 2.15-2.08 (m, 1H), 2.07-1.95 (m, 3H), 1.89-1.78 (m, 2H), 1.74-1.59 (m, 2H), 1.44-1.35 (m, 3H), 1.28-1.20 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 213.2, 208.4, 89.7, 74.7, 50.5, 41.9, 33.8, 28.8, 28.2, 28.0, 26.6, 24.8; IR (neat) 2933, 1956, 1711, 842 cm⁻¹; HRMS calcd for C₁₂H₁₉O (M+H⁺) 179.1436, found 179.1830.

2-Acetyl-hepta-5,6-dienoic Acid, Methyl Ester (16). Prepared from 3-oxobutyric acid, methyl ester (1.28 g, 11.0 mmol) according to the general procedure for alkylation of β keto esters to afford 6.59 g (60% yield, 88% pure by GC/MS) of 16. ¹H NMR (500 MHz, CDCl₃) δ 5.07 (dddd, J = 6.4, 6.4, 6.4, 6.4 Hz, 1H), 4.73-4.69 (m, 2H), 3.75 (s, 3H), 3.54 (dd, J = 7.0, 6.3 Hz, 1H), 2.25 (s, 3H), 2.05-1.97 (m, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 208.7, 202.8, 170.1, 88.6, 75.5, 58.6, 52.4, 29.0, 27.2, 25.1; IR (neat) 2954, 1955, 1744, 1716, 849 cm⁻¹; HRMS calcd for C₁₀H₁₅O₃ (M+H⁺) 183.1021, found 183.1029.

Octa-6,7-dien-2-one (17).¹⁷ Prepared from the hydrazone of acetone (400 mg, 4.00 mmol) according to the general procedure for carbonyl substrates to afford 1.49 g (31%) of 17 as a clear, colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 5.08 (dddd, J = 6.6, 6.6, 6.6, 6.6, 6.6 Hz, 1H), 4.68 (ddd, J = 6.6, 3.2, 3.2 Hz, 2H), 2.48 (t, J = 7.4 Hz, 2H), 2.14 (s, 3H), 2.05-1.99 (m, 2H), 1.72 (dddd, J = 7.4, 7.4, 7.4, 7.4 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 208.7, 208.6, 89.2, 76.0, 42.8, 29.9, 27.5, 23.0; IR (neat) 2941, 1956, 1716, 1439, 846 cm⁻¹; HRMS calcd for C₈H₁₃O (M+H⁺) 125.0966, found 125.09697.

Hepta-5,6-dienal (18).²⁶ Prepared from the hydrazone of acetaldehyde (379 mg, 4.40 mmol) according to the general procedure for carbonyl substrates to afford 107 mg (24%) of **18** as


an oil. ¹H NMR (300 MHz, CDCl₃) δ 9.76 (t, J = 1.7 Hz, 1H), 5.07 (dddd, J = 6.7, 6.7, 6.7, 6.7 Hz, 1H), 4.67 (ddd, J = 6.6, 3.2 Hz, 2H), 2.48 (td, J = 7.3, 1.7 Hz, 2H), 2.05-1.99 (m, 2H), 1.76 (dddd, J = 7.2, 7.2, 7.2, 7.2 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 208.7, 202.2, 89.0, 75.2, 43.1, 27.3, 21.2; IR (neat) 2936, 2362, 1956, 1742 cm⁻¹; HRMS calcd for C₇H₉ (M-OH⁺) 93.0704, found 93.0704.

Nona-7,8-dien-2-one (**19**). Prepared from the hydrazone of acetone (440 mg, 4.40 mmol) with modification to the general procedure for carbonyl substrates by alkylation with bromoallene **4** (644 mg, 4.00 mmol) to afford 182 mg (30%) of **19**. ¹H NMR (500 MHz, CDCl₃) δ 5.07 (dddd, J = 6.8, 6.8, 6.8, 6.8 Hz, 1H), 4.65 (ddd, J = 7.3, 3.2, 3.2 Hz, 2H), 2.43 (t, J = 7.4 Hz, 2H), 2.13 (s, 3H), 2.03-1.98 (m, 2H), 1.64-1.59 (m, 2H), 1.45-1.39 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 208.8, 208.5, 89.5, 74.8, 43.5, 29.8, 29.3, 27.9, 23.2; IR (neat) 2923, 2360, 1713 cm⁻¹; HRMS calcd for C₉H₁₃ (M-OH⁺) 121.1017, found 121.1014.

H Octa-6,7-dienal (20).²⁷ Prepared from the hydrazone of acetaldehyde (379 mg, 4.40 mmol) with modification to the general procedure for carbonyl substrates by alkylation with bromoallene **4** (600 mg, 3.7 mmol) to afford 238 mg (27% yield, 80% pure by GC/MS) of **20** as a clear, colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 9.77 (t, *J* = 1.8 Hz, 1H), 5.09 (dddd, *J* = 6.7, 6.7, 6.7, 6.7, Hz, 1H), 4.66 (ddd, *J* = 6.6, 3.2, 3.2 Hz, 2H), 2.44 (td, *J* = 7.3, 1.8 Hz, 2H), 2.06-2.00 (m, 2H), 1.71-1.65 (m, 2H), 1.50-1.45 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 208.6, 202.5, 89.4, 74.9, 43.6, 28.4, 27.8, 21.5; IR (neat) 2929, 1954, 1724, 844 cm⁻¹; HRMS calcd for C₈H₁₂O (M⁺) 124.0888, found 124.0883. General Procedure for the Ketyl-Allene Cyclization Reactions Using Samarium(II) Iodide.

 $\overline{CO_2Me}$ (1*R**, 3aS*, 6aR*) 6a-Hydroxy-1-vinyl-hexahydro-pentalene-3a-carboxylic Acid, Methyl Ester (21). To a vigorously stirred suspension of Sm metal (211 mg, 1.4 mmol) in dry THF (13 mL) under N₂ was added diiodomethane (100.4 µL, 1.25 mmol). The resultant mixture was stirred for a minimum of 2 h at ambient temperature and protected from light to afford a deep blue solution. To this solution was added HMPA (1.74 mL, 10 mmol), changing the reagent color to purple, followed by dropwise addition of a 0.1 M solution of 8 (104 mg, 0.5 mmol) via cannula in THF (5 mL). The reaction mixture was stirred for 0.5 - 4 h until completion (determined by TLC or GC) and guenched with an aqueous solution of Rochelle's salt¹⁹ (potassium sodium tartrate) and extracted with Et₂O or EtOAc (4 x 6 mL). The combined organic layers were then washed with H₂O (5 x 3 mL) and with brine, then dried over MgSO₄. The product was purified by flash chromatography (30% Et₂O in petroleum ether) to afford 72 mg (68%, >95:5 ds) of **21** as a clear, colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 5.93-5.87 (m, 1H), 5.12-5.08 (m, 2H), 3.73 (s, 3H), 2.67 (bs, 1H), 2.65-2.60 (m, 1H), 2.50-2.45 (m, 1H), 2.32 (ddd, J = 13.1, 11.8, 7.5 Hz, 1H), 1.83-1.74 (m, 2H), 1.72-1.65 (m, 1H), 1.64-1.54 (m, 3H), 1.51-1.42 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 177.0, 137.0, 116.0, 93.5, 61.9, 54.5, 51.0, 37.7, 36.8, 35.0, 27.9, 25.2; IR (neat) 3500, 3078, 2952, 1713, 1435, 1640 cm⁻¹; HRMS calcd for $C_{12}H_{19}O_3$ (M+H⁺) 211.1334, found 211.1338.

NO₂ (1*R**, 3a*R**, 4*R**) 4-Nitro-benzoic Acid, 6a-Hydroxy-1-vinyl-hexahydro-

pentalen-3a-yl Methyl Ester (22). To a solution of 6a-hydroxymethyl-3-vinyl-hexahydro-pentalen-3aol, 53, (24 mg, 0.132 mmol) in CH₂Cl₂ (2.0 mL) was added pyridine (21 μ L, 0.26 mmol), DMAP (1 mg, catalytic), and 4-nitrobenzoyl chloride (31 mg, 0.17 mmol). The reaction was stirred overnight at room temperature, then subjected to an aqueous workup. The crude material was then purified via column chromatography (25% EtOAc in hexanes) to provided 31 mg (71%) of **22** as a white powder. ¹H NMR (500 MHz, CDCl₃) δ 8.31 (d, *J* = 8.9 Hz, 2H), 8.21 (d, *J* = 8.9 Hz, 2H), 5.95-5.88 (m, 1H), 5.16-5.12 (m, 2H), 4.41-4.36 (m, 2H), 2.54-2.45 (m, 1H), 2.00-1.22 (m, 11H); ¹³C NMR (125 MHz, CDCl₃) δ 164.9, 150.6, 137.3, 135.9, 130.6, 123.6, 116.3, 91.6, 70.3, 55.4, 53.7, 38.6, 38.4, 34.5, 27.1, 24.1; IR (neat) 3520, 3078, 1723, 1640, 1608, 1529, 1276 cm⁻¹; HRMS calcd for C₁₈H₂₂NO₅ (M+H⁺) 332.14980, found 332.1496, calcd for C₁₈H₂₀NO₄ (M-OH⁺) 314.1392, found 314.1391; mp 79 – 80 °C; X-ray structure see page S147.

$^{\overline{CO}_2Me}$ (3a*R**, 7*R**, 7a*R**) 7a-Hydroxy-7-vinyl-octahydro-indene-3a-carboxylic Acid, Methyl Ester (23). Prepared from 9 (114 mg, 0.5 mmol) according to the general procedure for cyclization using SmI₂ to afford 30 mg (27%) of 23. ¹H NMR (500 MHz, CDCl₃) δ 5.99 (ddd, *J* = 17.4, 10.6, 6.9 Hz, 1H), 5.08 (ddd, *J* =17.4, 1.7, 1.7 Hz, 1H), 5.06 (ddd, *J* =10.5, 1.8, 1.8 Hz, 1H), 3.73 (s, 3H), 3.50 (bs, 1H), 2.65-2.60 (m, 1H), 2.29-2.24 (m, 1H), 2.02-1.98 (m, 1H), 1.91-1.83 (m, 2H), 1.76-1.51 (m, 5H), 1.41-1.25 (m, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 177.7, 139.7, 114.8, 83.5, 56.9, 51.8, 47.4,

34.6, 33.5, 30.6, 29.1, 22.5, 18.7; IR (neat) 3524, 2947, 2864, 1709, 1452 cm⁻¹; HRMS calcd for $C_{13}H_{20}O_3(M^+)$ 224.1412, found 224.1415.

(1*R**, 3a*S**, 7a*R**) 7a-Hydroxy-1-vinyl-octahydro-indene-3a-carboxylic Acid, Ethyl Ester (24).²⁰ Prepared from 10 (112 mg, 0.50 mmol) according to the general procedure for cyclization using SmI₂ to afford 29 mg (24% yield, 84% pure) of 24. ¹H NMR (500 MHz, CDCl₃) δ 5.82 (ddd, *J* = 17.2, 10.6, 7.2 Hz, 1H), 5.08-5.03 (m, 2H), 4.34 (bd, *J* = 2.2 Hz, 1H), 4.20 (q, *J* = 7.1 Hz, 2H), 2.63 (br q, *J* = 9.6 Hz, 1H), 2.15-2.10 (m, 1H), 1.95-1.78 (m, 3H), 1.74-1.67 (m, 1H), 1.64-1.47 (m, 6H), 1.45-1.37 (m, 1H), 1.29 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 179.2, 137.7, 115.9, 79.7, 60.9, 52.4, 54.4, 29.8 (29.4), 28.8 (28.2), 26.8 (26.5), 23.7 (24.0), 20.8, 20.5, 14.1; IR (neat) 3482, 2935, 1955, 1693, 1649 cm⁻¹; HRMS calcd for C₁₄H₂₂O₃Na (M+Na⁺) 216.1467, found 261.1470.

H (3*R**, 3a*R**, 6*R**) 3-Vinyl-hexahydro-pentalen-3a-ol (25).¹⁵ Prepared from 12 (75 mg, 0.5 mmol) according to the general procedure for cyclization using SmI₂ to afford 51 mg (68%, >95:5 ds) of 25 as a clear, colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 5.86 (ddd, *J* = 17.5, 10.3, 7.3 Hz, 1H), 5.11-5.04 (m, 2H), 2.48-2.43 (m, 1H), 2.19 (appt q, *J* = 8.5 Hz, 1H), 2.13-2.07 (m, 1H), 1.93-1.85, (m, 1H), 1.78-1.71 (m, 2H), 1.67-1.60 (m, 2H), 1.51-1.41 (m, 3H), 1.31-1.25 (m, 1H), 1.12-1.06 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 138.0, 115.5, 92.6, 55.5, 50.5, 37.5, 34.8, 29.9, 29.6, 25.8; IR (neat) 3372, 2949, 2867, 1638 cm⁻¹; HRMS calcd for C₁₀H₁₇O (M+H⁺) 151.1123, found 151.1124; LRMS (CI) 135.11658.

(3a*R**, 4*R**) 4-Vinyl-octahydro-inden-3a-ol (26).²⁰ Prepared from 13 (82 mg, 0.5 mmol) according to the general procedure for cyclization using SmI₂ to afford 60 mg (72%, >95:5 ds) of 26 as an oil. ¹H NMR (500 MHz, CDCl₃) δ 5.79 (ddd, *J* = 17.2, 10.2, 8.6 Hz, 1H), 5.15-5.07 (m, 2H), 2.31-2.26 (m, 1H), 2.14-2.07 (m, 1H), 1.89-1.59 (m, 8H), 1.36-1.23 (m, 4H), 1.03-0.95 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 139.8, 116.1, 83.2, 50.8, 47.1, 31.2, 30.8, 29.6, 29.5, 25.0, 20.0; IR (neat) 3395, 3076, 2926, 2855, 2356, 1637 cm⁻¹; HRMS calcd for C₁₁H₁₈O (M⁺) 166.1358, found 166.1357.

 $(3R^*, 3aR^*)$ 3-Vinyl-octahydro-inden-3a-ol (27). Prepared from 14 (82 mg, 0.5 mmol) according to the general procedure for cyclization using SmI₂ to afford 73 mg (87%, >95:5 ds) of 27. ¹H NMR (500 MHz, CDCl₃) δ 5.76 (ddd, J = 17.1, 10.3, 8.3 Hz, 1H), 5.10-5.04 (m, 2H), 2.42 (ddd, J =9.4, 9.4, 9.4 Hz, 1H), 2.00-1.95 (m, 1H), 1.96-1.83 (m, 1H), 1.71-1.46 (m, 9H), 1.38-1.31 (m, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 139.0, 117.2, 79.9, 57.0, 44.9, 30.1, 26.6, 25.1, 24.6, 22.0, 21.2; IR (neat) 3395, 2930, 1639 cm⁻¹; HRMS calcd for C₁₁H₁₈O (M⁺) 166.1358, found 166.1359.

 $(4R^*, 4aR^*)$ 4-Vinyl-octahydro-naphthalen-4a-ol (28).²⁰ Prepared from 15 (89 mg, 0.5 mmol) according to the general procedure for cyclization using SmI₂ to afford 41 mg (15%, 88:12 ds) of 28. ¹H NMR (500 MHz, CDCl₃) δ 6.02 (ddd, J = 16.9, 10.0, 10.0 Hz, 1H), 5.09-5.00 (m, 2H), 2.15-2.11 (m, 1H), 2.09-2.00 (m, 1H), 1.67-1.17 (m, 15H); ¹³C NMR (125 MHz, CDCl₃) δ 138.95, (138.89), 115.9 (116.4), 72.0, (54.1), 51.4, (42.7), 39.2, 37.4, 28.8, 28.7, 28.0, 26.0, 21.7, 21.0; IR (neat) 3460,

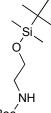
2928, 1715 cm⁻¹; HRMS calcd for $C_{12}H_{20}O (M+)$ 180.1514, found 180.1509; LRMS (CI) $m/z (M-OH)^+$ 163.1492.

Methyl Ester (29). According to the general procedure for cyclization using SmI₂, **16** (103 mg with 88% purity, 0.50 mmol) cyclized to provide 52 mg (56%) of a mixture of diastereomers of **29** : **29b** : **29c** in a ratio of 73:20:7. **29**: ¹H NMR (500 MHz, CDCl₃) δ 5.81 (ddd, J = 17.5, 10.5, 7.3 Hz, 1H), 5.13-5.08 (m, 2H), 3.73 (s, 3H), 2.88 (app t, J = 9.8 Hz, 1H), 2.63-2.58 (m, 1H), 2.47 (bs, 1H), 2.03-1.84 (m, 3H), 1.61-1.52 (m, 1H), 1.01 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 173.6, 136.9, 116.7, 80.6, 55.1, 54.0, 51.6, 25.3, 22.2, 18.6; IR (neat) 3484, 2952, 1733, 1640, 1213 cm⁻¹; HRMS calcd for C₁₀H₁₇O₃ (M+H⁺) 185.1178, found 185.1178, calcd for (M-H⁺) 183.1021, found 183.1022.

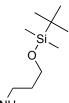
(29b). ¹H NMR (500 MHz, CDCl₃) δ 5.71 (ddd, J = 17.1, 10.2, 8.3 Hz, 1H), 5.09-5.04 (m, 2H), 3.73 (s, 3H), 3.11 (bs, 1H), 2.67-2.59 (m, 2H), 2.16-1.98 (m, 3H), 1.57-1.50 (m, 1H), 1.24 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 138.4, 115.7, 81.4, 54.5, 52.5, 51.7, 28.2, 26.4, 24.3; IR (neat) 3484, 2954, 1718, 1638, 1211 cm⁻¹; HRMS calcd for C₁₀H₁₄O₂ (M-H₂O⁺) 166.0994, found 166.0987.

¹H NMR (500 MHz, CDCl₃) δ 5.91 (ddd, J = 17.4, 10.3, 8.1 Hz, 1H), 5.15 (ddd, J = 10.3, 2.0, 0.6 Hz,

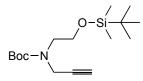
1H), 5.09 (ddd, J = 17.2, 2.0, 1.0 Hz, 1H), 3.74 (s, 3H), 2.67 (appt t, J = 9.74 Hz, 1H), 2.28-2.21 (m, 1H), 2.14-1.85 (m, 5H), 1.32 (s, 3H); IR (neat) 3506, 2955, 1714, 1602 cm⁻¹.


(*IR**, *2S**) 1-Methyl-2-vinyl-cyclopentanol (30). Prepared from 17 (125 mg, 1.00 mmol) according to the general procedure for cyclization using SmI₂ to afford 109 mg (87% 94:6 ds) of **30**. ¹H NMR (500 MHz, CDCl₃) δ 5.76-5.68 (m, 1H), 5.08-5.02 (m, 2H), 2.40 (app dt, *J* = 8.3 Hz 1H), 2.00-1.96 (m, 1H), 1.78-1.66 (m, 4H), 1.65 (s, 1H), 1.53-1.47 (m, 1H), 1.15 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 138.9, 115.5, 80.9, 55.4, 40.2, 29.3, 23.8, 20.7; IR (neat) 3358, 2961, 2874, 1638, 1456, 1375, 911 cm⁻¹; HRMS calcd for C₈H₁₄O (M⁺) 126.1045, found 126.1041, calcd for C₈H₁₂ (M-H₂O⁺) 108.0939, found 108.934.

^{HO} *trans-2-Vinyl-cyclopentanol* (**31**).²¹ Prepared from **18** (81 mg, 0.74 mmol) according to the general procedure for cyclization using SmI₂ to afford 58 mg (70%, >95:5 ds) of **31**. ¹H NMR (500 MHz, CDCl₃) δ 5.80-5.72 (m, 1H), 5.80-5.72 (m, 2H), 3.88 (app dq *J* = 6.7, 0 Hz, 1H), 2.39-2.27 (m, 1H), 2.02-1.89 (m, 2H), 1.80-1.71 (m, 2H), 1.68-1.54 (m, 2H), 1.48-1.40 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 140.5, 114.9, 78.3, 52.9, 33.6, 29.5, 21.2; IR (neat) 3336, 2958, 1649, 910 cm⁻¹; HRMS calcd for C₇H₁₁ (M-OH⁺) 95.0861, found 95.0854. OH OH

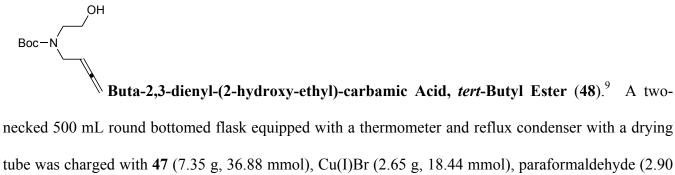

(*IR**, *2S**) 1-Methyl-2-vinyl-cyclohexanol (32).²² Prepared from 19 (138 mg, 1.0 mmol) according to the general procedure for cyclization using SmI₂ to afford 71 mg (51% >95:5 ds) of **32**. ¹H NMR (500 MHz, CDCl₃) δ 5.85-5.78 (m, 1H), 5.12-5.08 (m, 2H), 2.08-2.04 (m, 1H), 1.26-1.67 (m, 5H), 1.45-1.26 (m, 4H), 1.10 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 139.0, 116.5, 71.9, 52.8, 40.3, 29.2, 25.1, 23.7, 22.0; IR (neat) 3402, 2930, 1636, 1447, 910 cm⁻¹; HRMS calcd for C₉H₁₄ (M-H₂O⁺) 122.1096, found 122.1090.

trans-2-Vinyl-cyclohexanol (33).²³ According to the general procedure for cyclization using SmI₂, **20** (124 mg, 1.0 mmol) provided 38 mg (30% yield, 89:11 ds) of **33** and 11 mg (9%) of **33B**. **33**: ¹H NMR (500 MHz, CDCl₃) δ 5.70 (ddd, J = 17.3, 10.3, 8.8 Hz, 1H), 5.19-5.12 (m, 2H), 3.29-3.24 (m, 1H), 2.05-1.16 (m, 10H); ¹³C NMR (125 MHz, CDCl₃) δ 140.8, 116.7, 72.8, 51.2, 33.8, 31.1, 25.2, 24.8; IR (neat) 3388, 2928, 1640, 1450, 1057 cm⁻¹.


OH *cis*-2-Vinyl-cyclohexanol (33b).²³ ¹H NMR (500 MHz, CDCl₃) δ 5.95 (ddd, J = 17.3, 10.6, 6.6 Hz, 1H), 5.18-5.11 (m, 2H), 3.87 (bs, 1H), 3.21-2.27 (m, 1H), 1.80-1.26 (m, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 139.9, 116.9, 69.3, 45.3, 32.2, 25.5, 24.2, 20.9; IR (neat) 3423, 2923, 1728, 1649, 1459 cm⁻¹.

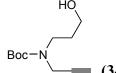
Boć [2-(*tert*-Butyl-dimethyl-silanyloxy)-ethyl]-carbamic Acid, *tert*-Butyl Ester (34). To a solution of (2-hydroxy-ethyl)-carbamic acid *tert*-butyl ester (65.7 mmol, 10.6 g) in CH₂Cl₂ (150 mL) was added TBSCl (72.27 mmol, 10.9 g), imidazole (98.55 mmol, 6.7 g) and DMAP (9.86 mmol, 1.23 g). The reaction was stirred at rt overnight then quenched with water. The mixture was extracted with CH₂Cl₂, then the combined organic layers were washed with water, a saturated aqueous solution of ammonium chloride, and then brine. The solution was dried with MgSO₄ and concentrated. The crude material was purified via column chromatography (30% EtOAC in hexanes) to provide 18.5 g (100%) of **34** as a clear colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 4.83 (bs, 1H), 3.25-3.22 (m, 2H), 3.66 (t, *J* = 5.0 Hz, 2H), 1.45 (bs, 9H), 0.90 (bs, 9H), 0.07 (bs, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 156.4, 79.6, 62.7, 43.3, 28.8, 26.3, 18.7, -5.0; IR (neat) 3360, 2931, 2859, 1707, 1508 cm⁻¹; HRMS calcd for C₁₃H₂₉NO₃Si (M+H⁺) 276.1995, found 276.1989.

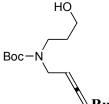
Boc-NH [3-(*tert*-Butyl-dimethyl-silanyloxy)-propyl]-carbamic Acid, *tert*-Butyl Ester (35).¹⁰ Prepared from (3-hydroxy-propyl)-carbamic acid, *tert*-butyl ester (13.0 g, 74.23 mmol) according to the procedure for 34 to afford 20.0 g (100%) of 35. ¹H NMR (500 MHz, CDCl₃) δ 5.08 (bs, 1H), 3.67 (t, J = 5.7 Hz, 2H), 3.24-3.21 (m, 2H), 1.69 (app q, J = 6.0 Hz, 2H), 1.39 (m, 9H), 0.86 (s, 9H), 0.02 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 155.9, 78.6, 62.0, 39.0, 32.0, 28.3, 25.8, 18.1, -5.6; IR (neat) 3358, 2930, 1700, 1506 cm ⁻¹; HRMS calcd for C₁₄H₃₁NO₃NaSi (M+Na⁺) 312.1971, found 312.1972.

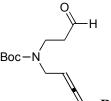

[2-(tert-Butyl-dimethyl-silanyloxy)-ethyl]-prop-2-ynyl-carbamic Acid, tert-

Butyl Ester (36). To a solution of **34** (18.20 g, 66.1 mmol) in THF (100 mL) was added NaH (3.95 g of a 60% dispersion in mineral oil, 98.55 mmol) in three portions at 0 °C. The suspension was then stirred for 1.5 h at rt and then cooled to 0 °C. To the reaction mixture was added propargyl bromide (24.2 mL of a 80% wt solution in toluene, 164.25 mmol) at 0 °C. The reaction mixture was stirred overnight warming to rt, and then quenched with MeOH. Water was then added to the dark brown reaction mixture, followed by an aqueous workup. The crude material was then purified by column chromatography (5% Et₂O in hexanes) to afford 12.70 g (62%) of **36**. ¹H NMR (500 MHz, CDCl₃) δ 4.16-4.11 (m, 2H), 3.77-3.75 (m, 2H), 3.43 (t, *J* = 5.8 Hz, 2H), 2.18 (s, 1H), 1.48 (s, 9H), 0.90 (s, 9H), 0.06 (s, 6); ¹³C NMR (125 MHz, CDCl₃) δ 155.0, 80.1, 71.3, 61.7, 48.5, 38.1 (37.1), 31.6, 28.4, 25.9, 22.6, 18.2, -5.4; IR (neat) 3313, 2931, 1702, 1249 cm⁻¹; HRMS calcd for C₁₆H₃₁NO₃Si (M+H⁺) 314.2151, found 314.2167.

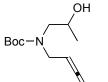
= [3-(tert-Butyl-dimethyl-silanyloxy)-propyl]-prop-2-ynyl-carbamic acid, tert-Butyl Ester (37). Prepared from 35 (14.70 g, 50.82 mmol) according to the procedure of 36 to afford $6.54 g (40%) of 37. ¹H NMR (500 MHz, CDCl₃) <math>\delta$ 4.04 (bs, 2H), 2.64 (t, *J* = 6.3 Hz, 2H), 3.39 (t, *J* = 7.2 Hz, 2H), 2.17 (app t, *J* = 2.4 Hz, 1H), 1.81-1.75 (m, 2H), 1.47 (s, 9H), 0.90 (s, 9H), 0.05 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 155.4, 80.0, 71.1, 60.7, 43.9, 36.6, 31.6, 28.8, 25.9, 22.6, 18.6, -5.4; IR (neat) 3317, 2955, 2119, 1694, 1410 cm⁻¹; HRMS calcd for C₁₇H₃₄NO₃Si (M+H⁺) 328.238, found 328.2300.


Boc-N = (2-Hydroxy-ethyl)-prop-2-ynyl-carbamic Acid, *tert*-Butyl Ester (47). To a solution of 36 (12.90 g, 41.15 mmol) in CH₂Cl₂ (200 mL) was added TBAF (50 mL of a 1.0 M solution in THF, 49.37 mmol) at rt. The reaction mixture was stirred overnight followed then quenched with an aqueous solution of NH₄Cl. Aqueous work up followed by column chromatography (40% EtOAc in hexanes) provided 8.00 g (98%) of (2-hydroxy-ethyl)-prop-2-ynyl-carbamic acid, tert-butyl ester as carbamate rotamers. ¹H NMR (500 MHz, CDCl₃) δ 4.08 bs, 2H), 3.77 (t, *J* = 5.1 Hz, 2H), 3.48 (t, *J* = 5.3 Hz, 2H), 2.82 (bs, 1H) 2.23 (t, J = 2.5 Hz, 1H), 1.47 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 156.0 (155.1), 80.8 (79.7), 71.6, 61.6 (60.3), 49.4, 37.8, 29.0, 28.4; IR (neat) 3428, 3296, 2977, 1682, 1411 cm⁻¹; HRMS calcd for $C_{10}H_{18}NO_3$ (M+H⁺) 200.1287, found 200.1278.


g, 92.20 mmol), and diisopropylamine (10.34 mL, 73.76 mmol) in dioxane (100 mL). The reaction mixture was heated to a gentle reflux for 3 h and allowed to stir overnight cooling to rt. The orangebrown solution was then filtered through a plug of Celite, concentrated, then diluted with H₂O (25 mL) and Et₂O (50 mL). The reaction mixture was acidified with 6 M HCl to a pH of 2. The ether laver was decanted and the organic layer was then extracted with Et₂O (3 x 20 mL). The combined organic layers were washed with water until a pH of 6.5 was obtained, followed by a wash with brine. The solution was dried with MgSO₄ and concentrated. The crude material was purified via column chromatography (40% EtOAc in hexanes) to provide 5.25 g (67%) of buta-2,3-dienyl-(2-hydroxy-ethyl)-carbamic acid, *tert*-butyl ester. ¹H NMR (500 MHz, CDCl₃) δ 5.17-5.11 (m, 1H), 4.78 (ddd, *J* = 6.6, 2.8, 2.8 Hz, 2H), 3.86 (bs, 2H), 3.74-3.72 (m, 2H), 3.40 (bt, *J* = 5.2 Hz, 2H), 2.98 (bs, 1H), 1.46 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 208.8, 157.0 (155.5), 87.3, 80.3, 76.5, 62.2, 50.0, 47.4, 28.4; IR (neat) 3433, 2977, 1957, 1674, 851 cm⁻¹; HRMS calcd for C₁₁H₂₀NO₃ (M+H⁺) 214.1443, found 214.1447.

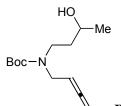

Buta-2,3-dienyl-(2-oxo-ethyl)-carbamic Acid, *tert*-**Butyl Ester** (**38**).²⁸ Prepared from **48** (4.00 g, 18.7 mmol) following a literature procedure for a Swern oxidation¹⁸ to provide **38** (3.80 g, 97% yield) as carbamate rotamers: ¹H NMR (500 MHz, CDCl₃) δ 9.55 (bs, 1H), 5.09 (bs, 1H), 4.78-4.75 (m, 2H), 3.93-3.83 (m, 4H), 1.44-1.41 (m, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 209.4 (209.0), 199.0, 154.7 (155.5), 86.6, 80.9 (80.7), 76.7, 56.6, (47.3) 47.0, 28.1; IR (neat) 2977, 2818, 1956, 1736, 1698, 854 cm⁻¹; HRMS calcd for C₁₁H₁₈NO₃ (M+H⁺) 212.1287, found 212.1289.

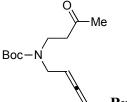
= (3-Hydroxy-propyl)-prop-2-ynyl-carbamic Acid, *tert*-Butyl Ester (49). Prepared from 37 (10.20 g, 31.10 mmol) according to the procedure of to provide 5.35 g (81%) of (3-hydroxypropyl)-prop-2-ynyl-carbamic acid, *tert*-butyl ester as carbamate rotamers. ¹H NMR (500 MHz, CDCl₃) δ 3.96 (bs, 2H), 3.57 (bs, 2H), 3.50-3.47 (m, 3H), 2.20 (app t, J = 2.5 Hz, 1H), 1.77 (bs, 2H), 1.49 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 156.2, 80.9, 79.5, 71.3, 58.3 (59.7), 42.8, 36.8 (36.0), 30.2 (30.9),
28.2; IR (neat) 3440, 3299, 2976, 1693, 1414, 1367, 1251, 1167 cm⁻¹; HRMS calcd for C₁₁H₂₀NO₃ (M+H⁺) 214.1443, found 214.1443.

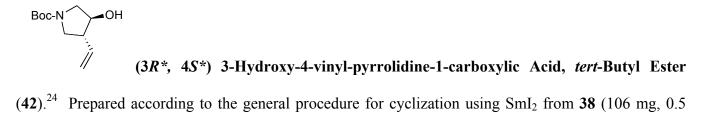


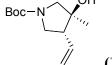
Buta-2,3-dienyl-(3-hydroxy-propyl)-carbamic Acid, *tert*-**Butyl Ester (50**). Prepared from **49** (3.90 g, 18.29 mmol) according to the procedure for **48** to yield 2.80 g (67%) of buta-2,3dienyl-(3-hydroxy-propyl)-carbamic acid, *tert*-butyl ester as carbamate rotamers. ¹H NMR (500 MHz, CDCl₃) δ 5.09 (dddd, J = 6.5, 6.5, 6.5, 6.5 Hz, 1H), 4.74 (ddd, J = 6.6, 2.8, 2.8 Hz, 2H), 3.80-3.67 (m, 3H), 3.54 (bs, 2H), 3.36 (bs, 2H), 1.66 (bs, 2H), 1.43 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 208.8, 156.6, 87.1, 80.1, 76.1, 58.4 (59.7), 46.2, 42.7, 30.6, 28.4; IR (neat) 3445, 2976, 1957, 1694, 1417 cm⁻¹; HRMS calcd for C₁₂H₂₁NO₃Na (M+Na⁺) 250.1419, found 250.1428.

Buta-2,3-dienyl-(3-oxo-propyl)-carbamic Acid, *tert*-Butyl Ester (39).²⁸ Prepared from 50 (2.80 g, 12.3 mmol) following a literature procedure for a Swern oxidation¹⁸ to provide 39 (1.75 g, 63% yield) as carbamate rotamers: ¹H NMR (500 MHz, CDCl₃) δ 9.77 (t, J = 1.7 Hz, 1H), 5.10-5.06 (m, 1H), 4.75 (ddd, J = 5.7, 2.8, 2.8 Hz, 2H), 3.81 (bs, 2H), 3.52 (bs, 2H), 2.69 (bs, 2H), 1.43 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 208.8, 200.8, 155.0, 87.2, 80.0, 76.4, 46.6 (46.2), 43.3, 40.9,


28.3; IR (neat) 2977, 1957, 1731, 1694, 854 cm⁻¹; HRMS calcd for $C_{12}H_{20}NO_3$ (M+H⁺) 226.1443, found 226.1438.

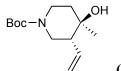

Buta-2,3-dienyl-(2-hydroxy-propyl)-carbamic Acid, *tert*-**Butyl Ester (51)**. To a solution of **38** (1.00 g, 4.74 mmol) in THF (10 mL) was added methylmagnesium bromide (1.74 mL of a 3.0 M solution. in Et₂O, 5.21 mmol) at 0 °C. The reaction was stirred for 2 h. The reaction mixture was quenched with water followed by an aqueous workup. Crude material was purified via column chromatography (30% EtOAc in hexanes) to provide 1.05 g (98%) of buta-2,3-dienyl-(2-hydroxy-propyl)-carbamic acid, *tert*-butyl ester. ¹H NMR (500 MHz, CDCl₃) δ 5.16-5.13 (m, 1H), 4.81-4.78 (m, 2H), 4.02-3.97 (m, 1H), 3.87 (bs, 2H), 3.32-3.18 (m, 3H), 1.47 (s, 9H), 1.17-1.16 (m, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 208.8, 157.2, 87.3, 80.3, 76.5, 67.5, 55.2, 47.9, 28.4, 20.9; IR (neat) 3430. 2975, 1957, 1693, 848 cm⁻¹; HRMS calcd for C₁₂H₂₂NO₃ (M+H⁺) 228.1600, found 228.1599.


Buta-2,3-dienyl-(2-oxo-propyl)-carbamic Acid, *tert*-Butyl Ester (40). Prepared from **51** (1.00 g, 4.40 mmol) following a literature procedure for a Swern oxidation¹⁸ to provide **40** (880 mg, 89% yield) as carbamate rotamers: ¹H NMR (500 MHz, CDCl₃) δ 5.02 (bs, 1H), 4.69-4.66 (m, 2H), 3.99 (bs, 1H), 3.92 (bs, 1H), 3.88-3.85 (m, 2H), 2.15 (s, 3H), 1.46 (s, 4.5H), 1.41 (s, 4.5H); ¹³C NMR (125 MHz, CDCl₃) δ 209.1, (208.7), 204.1 (204.0), 155.1 (154.7), (86.7) 86.6, 80.4, 76.1 (76.0), 56.0 (56.2), 46.9 (46.6), (28.1) 28.0, 26.7 (26.5); IR (neat) 2977, 1957, 1736, 1698, 1456, 852 cm⁻¹; HRMS calcd for C₁₂H₂₀NO₃ (M+H⁺) 226.1443, found 226.1453.


Buta-2,3-dienyl-(3-hydroxy-butyl)-carbamic Acid, *tert*-Butyl Ester (52). Prepared from **39** (1.20 g, 5.30 mmol) according to the procedure for **51** to provide 1.12 g (88%) of buta-2,3-dienyl-(3-hydroxy-butyl)-carbamic acid, *tert*-butyl ester as carbamate rotamers. ¹H NMR (500 MHz, CDCl₃) δ 5.12, (bs, 1H), 4.79-4.78 (m, 2H), 4.01 (bs, 1H), 3.90-3.61 (m, 4H), 3.41 (bs, 0.5H), 3.21 (bs, 0.5H), 3.00-2.98 (m, 1H), 1.70-1.67 (m, 1H), 1.47 (s, 9H), 1.20-1.19 (m, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 208.8, 87.2, 80.2, 76.2, (65.17) 63.6, 46.2, (39.5) 43.2, 37.6, 28.4, 22.7; IR (neat) 3440, 2973, 1957, 1674, 1170 cm⁻¹; HRMS calcd for $C_{13}H_{24}NO_3$ (M+H⁺) 242.1756, found 242.1760.

Buta-2,3-dienyl-(3-oxo-butyl)-carbamic Acid, *tert*-Butyl Ester (41). Prepared from 52 (1.06 g, 4.39 mmol) following a literature procedure for a Swern oxidation¹⁸ to provide 41 (580 mg, 90% yield) as carbamate rotamers: ¹H NMR (500 MHz, CDCl₃) δ 5.09 (bs, 1H), 4.78-4.76 (m, 2H), 3.81 (bs, 2H), 3.44 (bt, J = 6.4 Hz, 2H), 2.71 (bs, 2H), 2.14 (s, 3H), 1.44 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 208.6, 207.3, 155.1, 87.4, 79.6, 76.3, 46.8 (46.1), 42.5, 42.2 (41.9), 30.1, 28.4; IR (neat) 2976, 1956, 1694, cm⁻¹; HRMS calcd for C₁₃H₂₂NO₃ (M+H⁺) 240.1600, found 240.1603.

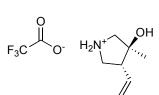
mmol) to afford 82 mg (77%, 92:8 ds) of **42** as carbamate rotamers. ¹H NMR (500 MHz, CDCl₃) δ 5.72 (ddd, J = 17.5, 10.4, 7.7 Hz, 1H), 5.21-5.14 (m, 2H), 4.10 (app q, J = 5.7 Hz, 1 H), 3.65 (bs, 2H), 3.23 (bs, 2H), 2.68 (bs, 1H), 2.03 (bs, 1H), 1.46 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 154.6, 136.4, 117.1, 79.5, 74.8 (74.1), 52.2 (52.0), 50.3 (49.7), 48.8 (48.2), 28.4; IR (neat) 3401, 2977, 1687, 1647, 1478, 1416 cm⁻¹; HRMS calcd for C₁₁H₁₉NO₃ (M+Na⁺) 236.1263, found 236.1260.



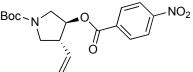
(*3R**, *4S**) 3-Hydroxy-3-methyl-4-vinyl-pyrrolidine-1-carboxylic Acid, *tert*-Butyl Ester (43). Prepared according to the general procedure for cyclization using SmI₂ from 40 (112 mg, 0.5 mmol) to afford 112 mg (98% 95:5 ds) of 43 as carbamate rotamers. ¹H NMR (500 MHz, CDCl₃) δ 5.73-5.65 (m, 1H), 5.15-5.12 (m, 2H), 3.72-3.64 (m, 1H), 3.40-3.21 (m, 3H), 2.69-2.63 (m, 1H), 2.11 (s, 0.85H), 1.85 (s, 0.15H), 1.46 (s, 9H), 1.25 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 154.6, 135.3 (135.2), 117.6 (117.5), 79.5, 78.2 (77.6), 57.9 (57.4), 53.5 (52.9), 49.7 (49.1) 28.5, 22.3; IR (neat) 3408, 2977, 2933, 1682, 1478, 1367 cm⁻¹; HRMS calcd for C₁₂H₂₂NO₃ (M+H⁺) 228.1600, found 228.1591.

Prepared from **39** (225 mg, 1.0 mmol) according to the general procedure for cyclization using SmI₂ to afford a 130 mg mixture of **44** and reduced starting material in 57% yield as a 4:1 mixture (with carbamate rotamers). ¹H NMR (500 MHz, CDCl₃) δ 5.64 (ddd, J = 17.4, 10.4, 8.4 Hz, 1H), 5.30-5.24 (m, 2H), 4.12-3.74 (m, 2H), 3.48-3.42 (m, 1H), 2.82-2.78 (m, 1H), 2.63-2.58 (m, 1H), 2.11-2.05 (m, 1H), 1.99-1.69 (m, 3H), 1.47 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 154.6, 136.4, 118.8, 79.7, 71.6,

49.3, 46.5, 42.5, 32.7, 28.4 (29.6); IR (neat) 3434, 2927, 1957, 1694, 1573, 1422 cm⁻¹; HRMS calcd for $C_{12}H_{21}NO_3$ (M⁺) 227.1521, found 227.1527.



(3*R**, 4*R**) 4-Hydroxy-4-methyl-3-vinyl-piperidine-1-carboxylic Acid, *tert*-Butyl Ester (45). Prepared according to the general procedure for cyclization using SmI₂ from 41 (120 mg, 0.5 mmol) to afford 105 mg of a mixture 45 : reduced starting material in 87% yield as a 3.5:1 mixture (with carbamate rotamers). ¹H NMR (500 MHz, CDCl₃) δ 5.72 (ddd, *J* = 17.1, 10.4, 8.8 Hz, 1H), 5.20-5.12 (m, 2H), 3.86-3.65 (m, 2H), 3.31-2.99 (m, 2H), 2.17 (bs, 1H), 1.90-1.66 (m, 2H), 1.56-1.51 (m, 1H), 1.45 (s, 9H), 1.17 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 155.3, 136.2, 118.5, 76.1 (72.3), 68.7 (68.6), 51.4, 45.3 (44.5), 42.4 (42.3), 41.5 (40.6), 38.24 (37.4), 20.2, 28.3 (28.4), 26.1 (26.3); IR (neat) 3430, 2976, 1958, 1694, 1672 cm⁻¹; HRMS calcd for C₁₃H₂₃NO₃Na (M+Na⁺) 264.1576, found 264.1581.


^{OH} (*3R**, *4S**) 6a-Hydroxymethyl-3-vinyl-hexahydro-pentalen-3a-ol (53). To 21 (0.36 mmol, 75.0 mg) in Et₂O (2 mL) at 0 °C was added a solution of LiAlH₄ (0.75 mL of a 1 M solution in Et₂O, 0.75 mmol). The reaction was allowed to warm to rt followed by quenching with 20 μ L H₂O, 20 μ L of a 15% solution of NaOH, and then 600 μ L of water. The crude material was purified via column chromatography to provide 45 mg of 6a-hydroxymethyl-3-vinyl-hexahydro-pentalen-3a-ol in 70% yield. ¹H NMR (500 MHz, CDCl₃) δ 5.87 (ddd, *J* = 17.4, 10.3, 7.4 Hz, 1H), 5.13-5.08, (m, 2H), 3.61 (d, *J* = 10.8 Hz, 1H), 3.55 (d, *J* = 10.7 Hz, 1H), 2.75 (bs, 1H), 2.48-2.42 (m, 1H), 2.36 (s, 1H), 1.88-1.29 (m,

10H); ¹³C NMR (125 MHz, CDCl₃) δ 137.7, 116.0, 92.7, 67.7, 55.8, 54.8, 38.7, 38.4, 33.5, 27.3, 24.5; IR (neat) 3328, 2847, 1640, 1415 cm⁻¹; HRMS calcd for C₁₁H₁₉O₂ (M+H⁺) 183.1385, found 183.1392, calcd for C₁₁H₁₇O (M-OH⁺) 165.1279, found 165.1281, calcd for C₁₁H₁₆O (M-H₂O⁺) 164.1201, found 164.1196.

(3R*, 4S*) 3-Methyl-4-vinyl-pyrrolidin-3-ol, Trifluoro-Acetic Acid Salt

(54). To a solution of 43 in CH₂Cl₂ (2.5 mL) was added TFA (0.5 mL). The reaction mixture was stirred for 1 h and then concentrated to a purple oil. The oil was further dried under high-vacuum, then taken up into ether to provide crystals of 43B. ¹H NMR (500 MHz, CDCl₃) δ 8.76-8.60 (m, 2H), 5.64 (ddd, *J* = 17.0, 10.4, 8.8 Hz, 1H), 5.27-5.21 (m, 2H), 3.87-3.81 (m, 1H), 3.41-3.30 (m, 2H), 3.18-3.13 (m, 1H), 2.91-2.87 (m, 1H), 1.37 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 161.4 (161.1), 133.6, 119.3, 79.4, 55.4, 52.7, 49.5, 21.0; X-ray structure see page S147.

trans-3-(4-Nitro-benzoyloxy)-4-vinyl-pyrrolidine-1-carboxylic Acid,

tert-Butyl Ester (55). Prepared from 42 (80 mg, 0.22 mmol) according to the procedure for 22 to provide 92 mg (100%) of 55. ¹H NMR (500 MHz, CDCl₃) δ 8.27 (d, J = 8.8 Hz, 2H), 8.18 (d, J = 8.8 Hz, 2H), 5.79 (ddd, J = 17.5, 10.3, 7.3 Hz, 1H), 5.29 (m, 3H), 3.85-3.81 (m, 1H), 3.69 (bs, 1H), 3.55-3.41 (m, 2H), 3.05 (bs, 1H), 1.46 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 164.1, 154.3, 150.7, 135.0, 130.8, 123.6, 117.8, 79.9, 78.4, 77.7, 50.1 (49.7), 48.1 (48.7), 46.4 (47.4), 28.4; IR (neat) 2977, 1728, 1698, 1604, 1530 cm⁻¹; HRMS calcd for C₁₈H₂₃N₂O₆ (M+H⁺) 363.1556, found 363.1546, calcd for

 $C_{17}H_{19}N_2O_6$ (M-CH₃⁺) 347.1243, calcd for $C_{18}H_{21}N_2O_6$ found 347.1245, calcd for (M-H⁺) 361.1340, found 361.1395.

References

- 1. Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923-2925.
- 2. Brown, H. C. Organic Synthesis via Boranes; Wiley: New York, 1975.
- Prepared via a modified procedure from: De Lang, R. –J.; Brandsma, L. Synth. Commun. 1998, 28, 225-232.
- 4. Prepared according to the procedure of Skatterbøl, L. Acta Chem. Scand. 1963, 17, 1683-1693.
- Physical data agrees with literature: Coates, R. M.; Senter, P. D.; Baker, W. R. J. Org. Chem. 1982, 47, 3597-3607.
- Prepared according to the literature: Crombie, L.; Haigh, D., Jones, R. C. F.; Mat-Zin, A. R. J. Chem. Soc., Perkin Trans. I 1993, 17, 2047-2053.
- Prepared via a modified procedure from: Brandsma, L.; Verkruijsse, H. D. Synthesis of Acetylenes, Allenes and Cumulenes: A Laboratory Manual. Studies in Organic Chemistry; Elsevier Science Publishing Company: New York, 1981, Vol. 8, p 181.
- 8. Meguro, M.; Yamamoto, Y. J. Org. Chem. 1999, 64, 694-695.
- Crabbé, P.; Nassim, B.; Robert-Lopes, M. –T. Org. Syn. Coll. Vol. John Wiley & Sons, Inc.: New York, 1990, Vol. 7, p 276.
- Physical data agrees with literature: Kadota, I.; Saya, S.; Yamamoto, Y. *Heterocycles* 1997, 46, 335-348.

- Prepared via a modified procedure from: Molander, G. A.; Harris, C. R. J. Org. Chem. 1997, 62, 2944-2956.
- Physical data agrees with literature: Belotti, D.; Cossy, J.; Pete, J. P.; Portella, C. J. Org. Chem.
 1986, 51, 4196-4200.
- 13. Molander, G. A.; McKie, J. A. J. Org. Chem. 1994, 59, 3186-3196.
- 14. Hydrazones were prepared according to literature: a) Mino, T.; Masuda, S.; Nishio, M.;
 Yamashita, M. J. Org. Chem. 1997, 62, 2633-2635; b) Sharma, S. D.; Pandi, S. B. J. Org.
 Chem. 1990, 55, 2196-2200.
- 15. Physical data agrees with literature: a) Pattenden, G., Robertson, G. M. *Tetrahedron* 1985, *41*, 4001-4011; b) Pattenden, G.; Robertson, G. M. *Tetrahedron Lett.* 1983, *24*, 4617-4620.
- Physical data agrees with literature: Becker, D.; Harel, Z.; Nagler, M.; Gillon, A. J. Org. Chem.
 1982, 47, 3297-3306.
- 17. Physical data agrees with literature: Kang, S. -K.; Yoon, S. -K. Chem. Commun. 2002, 22, 2634-2639.
- Sammelson, R. E.; Gurusinghe, C. D.; Kurth, J. M.; Olmstead, M. M.; Kurth M. J. J. Org. Chem. 2002, 67, 876-882.
- a) Schwaebe, M.; Little, D. J. Org. Chem. 1996, 61, 3240-3244; b) Schwaebe, M.; Little, D.
 Synth. Commun. 1997, 27, 837-840.
- 20. Nokami, J.; Wakabayashi, S.; Okawara, R. Chem. Lett. 1984, 869-70.
- Physical data agrees with literature: Felkin, H.; Gault, Y.; Roussi, G. *Tetrahedron* 1970, 26, 3761-3778.

- 22. Physical data agrees with literature: Marvell, E. N.; Rusay, R. J. Org. Chem. 1977, 42, 3336-40.
- Physical data agrees with literature: Hoffmann, R. W.; Sander, T.; Hense, A. *Liebigs Ann*.
 1993, 771-775.
- Physical data agrees with literature: Hansen, S. U.; Bols, M. Acta Chem. Scand. 1998, 52, 1214-1222.
- Physical data agrees with literature: Hoffmann, R. W.; Hense, W. Liebigs Ann. 1996, 8, 1283-1288.
- 26. Viola, A.; Collins, J. J.; Filipp, N.; Locke, J. S. J. Org. Chem. 1993, 58, 5067-5075.
- 27. Semmelhack, M. F.; Brickner, S. J. J. Am. Chem. Soc. 1981, 103, 3945-3947.
- 28. Kang, S. -K.; Kim, K. -J.; Hong, Y. -T. Angew. Chem. Int. Ed. 2002, 41, 1584-1586.
- 29. Baird, M. S. J. Chem. Res. Miniprint 1981, 11, 4062-4082.