SUPPORTING INFORMATION

Enantioselective Addition of Nitrones to Activated Cyclopropanes

Mukund P. Sibi* Zhihua Ma and Craig P. Jasperse
Department of Chemistry, North Dakota State University
Fargo, North Dakota, 58105-5516.

General Experimental Procedures. Methylene chloride was distilled from calcium hydride prior to use. $\mathrm{Ni}\left(\mathrm{ClO}_{4}\right)_{2} 6 \mathrm{H}_{2} \mathrm{O}$ was used as received from Strem. The other Lewis acids were purchased form Aldrich or Strem. Activated molecular sieves Powder 4A (MS 4A) was purchased from Aldrich and dried at $250-300{ }^{\circ} \mathrm{C}$ under vacuum before use. The cyclopropyl malonates $\mathbf{1 a}$ and $\mathbf{1 b}$ were used as received from Aldrich. The cyclopropyl malonate 1c was prepared from t-butyl malonate and 1,2-dibromoethane in dry DMF using $\mathrm{K}_{2} \mathrm{CO}_{3}$ as base in low yield and the reaction was not optimized. The cyclopropy! malonate 1d was prepared with methyl malonate and 1,2-dibromopropane in dry DMF using $\mathrm{K}_{2} \mathrm{CO}_{3}$ as base in low yield (30-50\%) and the reaction was not optimized. The cyclopropyl. malonates $\mathbf{1 e}$ and $\mathbf{1 f}$ were synthesized according to literature procedure. ${ }^{1}$ The nitrones 2a-g were synthesized using N -methylhydroxylamine hydrochloride or N benzylhydroxylamine with corresponding aldehyde according to the literature. ${ }^{2}$ Diphenyl nitrone $\mathbf{2 d}$ was used as received from Lancaster. The ligands $\mathbf{4 a - d}{ }^{\mathbf{3}}$ and $\mathbf{4 g}^{\mathbf{4}}$ were synthesized according to literature procedure. Ligand $\mathbf{4 f}$ was synthesized according to the method reported by our laboratory. ${ }^{5}$ Flash chromatography was performed using EM Science silica gel 60 (230-400 mesh). All glassware was oven dried, assembled hot, and cooled under a stream of dry nitrogen before use. Reactions with air sensitive materials were carried out by standard syringe techniques.

Melting points were recorded on a Fisher-Johns melting point apparatus and are uncorrected. ${ }^{1} \mathrm{H}$ NMR was recorded on a Varian Unity/Inova-500 NB (500 MHz), or a Varian Mercury-400 (400 MHz). Chemical shifts are reported in parts per million (ppm) down field from TMS, using residual $\mathrm{CDCl}_{3}(7.27 \mathrm{ppm})$ or $\mathrm{C}_{6} \mathrm{D}_{6}(7.15 \mathrm{ppm})$ as an internal standard. Data are reported as follows: chemical shift, multiplicity ($\mathrm{s}=$ singlet, d $=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{qn}=$ quintet, $\mathrm{dd}=$ doublets of doublets, $\mathrm{dt}=$ doublets of triplets, $\mathrm{dq}=$ doublets of quartets, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad, AB sys $=\mathrm{AB}$ system , coupling constant(s) and integration. ${ }^{13} \mathrm{C}$ NMR was recorded on a Varian Unity/Inova$500 \mathrm{NB}(125 \mathrm{MHz})$ or a Varian Mercury-400 (100 MHz) spectrometers using broad band proton decoupling. Chemical shifts are reported in parts per million (ppm) down field from TMS, using the middle resonance of $\mathrm{CDCl}_{3}(77.23 \mathrm{ppm})$ as an internal standard. HPLC analyses were carried out on Waters 515 HPLC pump and a 2487 dual λ absorbance detector connected to a PC with millennium workstation. Rotations were recorded on a JASCO-DIP-370 instrument. High-resolution mass spectra (HRMS) [EI + or FAB] were obtained from the Mass Spectrometry Laboratory, Ohio State University, Columbus, Ohio.

General Rationale for the Assignment of Regioselectivity: Regioselectivity is consistent with that observed by Kerr for analogous reactions, and the NMR spectra for products 3b and 3n match those for known compounds. ${ }^{6}$ In addition, ${ }^{1} \mathrm{H}$ NMR for products 3a-i and 3k-n shows a 1 H singlet for the benzylic hydrogen, which would not be expected for the opposite regioisomers in which the oxygen end of the nitrone attached to the malonate carbon. The regioselectivity of the reaction in which $\mathbf{3 1}$ and $\mathbf{3 m}$ are formed is assigned based on analogy with $\mathbf{3 n}$, and on the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ chemical shifts for the
methylene hydrogens. The regioselectivity for $\mathbf{3 0}$ and $\mathbf{3 p}$ is also assigned based on the ${ }^{1} \mathrm{H}$-NMR chemical shifts for the methylene hydrogens.

General procedure for the preparation of the racemic samples: A modified literature procedure was used. ${ }^{6}$ A flame-dried vial was charged with $\mathrm{Yb}(\mathrm{OTf})_{3}-\mathrm{xH}_{2} \mathrm{O}(0.090 \mathrm{mmol})$, freshly dried 4A molecular sieves (150 mg) and substrate (0.30 mmol), and dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1.5 \mathrm{~mL})$ and dry THF (1.5 mL) were added. The mixture was then stirred at room temperature for 15 min before nitrone $(0.45 \mathrm{mmol})$ was added. The solution was then stirred at room temperature for 1 to 3 days (TLC). The reaction mixture was then filtered through a 35 mm layer of silica gel $(7 \mathrm{~g})$. The silica gel layer was washed with $40-60 \mathrm{~mL}$ of $\mathrm{Et}_{2} \mathrm{O}$ (TLC). The solvent was removed under reduced pressure to give the crude product, which was separated by FC (silica gel, hexane/ethyl acetate 95:5-80:20), giving standard racemic samples. When 2 -substitutated cyclopropyl substrates were used, the less polar isomer was the trans-isomer, and the more polar compound was the cis-isomer. Generally, cis isomers were the major products and both cis and trans isomers could be obtained in analytically pure form using this method.

Enantioselective Nitrone Cycloadditions with Cyclopropyl Malonates

General procedure for the enantioselective nitrone cycloadditions with cyclopropyl
. malonates: A flame-dried vial was charged with $\mathrm{Ni}\left(\mathrm{ClO}_{4}\right)_{2}-6 \mathrm{H}_{2} \mathrm{O}$ (or other Lewis acid) $(0.090 \mathrm{mmol})$ and the corresponding ligand $(0.099 \mathrm{mmol})$ and $150-250 \mathrm{mg}$ freshly dried 4A molecular sieves was added. (For reactions shown in Table 3, 0.030 mmol of $\mathrm{Ni}\left(\mathrm{ClO}_{4}\right)_{2}-6 \mathrm{H}_{2} \mathrm{O}$ and 0.033 mmol of ligand $\mathbf{4 g}$ were used.) Dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added under nitrogen, and the mixture was then stirred at room temperature overnight (or 2 hours), till all $\mathrm{Ni}\left(\mathrm{ClO}_{4}\right)_{2}-6 \mathrm{H}_{2} \mathrm{O}$ (or other Lewis acid) was dissolved. To the pale green
solution, cyclopropyl substrate $\mathbf{1}(0.30 \mathrm{mmol})$ in 0.3 mL dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added via syringe and then the reaction mixture changed slightly to a darker blue/green. After the mixture was stirred at room temperature for 15 min , nitrone $2(0.40 \mathrm{mmol})$ was added. An immediate color change to a more yellow/green was normally observed. The solution was then stirred at room temperature for the appropriate time. The starting cyclopropanes 1 normally did not show up very easily by TLC, so conservatively long times were normally used. The reaction mixture was then filtered through a 35 mm layer of silica gel $(7 \mathrm{~g})$. The silica gel layer was washed with $40-60 \mathrm{~mL}$ of $\mathrm{Et}_{2} \mathrm{O}$ (TLC). The solvent was removed under reduced pressure to give the crude product, which was used to determine the diastereomer ratio (for products 3I-n) with ${ }^{1} \mathrm{H}$ NMR, comparing to the data of the standard trans and cis samples. The diastereomers were separated by FC (silica gel, hexane/ethyl acetate 95:5-80:20). The ee was estimated on the basis of HPLC analysis using a chiral column (Diacel Chiralcel OD or AD column with hexane $/ i-\mathrm{PrOH}$ as eluent). The absolute stereochemistry for the tetrahydro-1,2-oxazine products has not been established.

Relative rate study, for the reaction of cyclopropanes $1 \mathbf{a}, \mathrm{~b}, \mathrm{~d}, \mathrm{e}, \mathrm{f}$ with nitrone 2 a using the general procedure for the enantioselective nitrone cycloadditions

The general procedure (see above) was used. At time intervals, $0.2-\mathrm{mL}$ aliquots were removed, diluted to 1 mL with CDCl_{3}, and analyzed by ${ }^{1} \mathrm{H}$ NMR. Integration was used to monitor conversion. For substrates $\mathbf{1 a}, \mathbf{1 b}, \mathbf{1 d}$, and $\mathbf{1 e}$, the reactions were clean, so integration of starting material and product was uncomplicated. For $\mathbf{1 f}$, side products were observed in addition to product, so measurement of conversion is less precise.

Substrate	\% Conversion after Indicated Time					
	20 min	1 h	2 h	8 h	24 h	48 h
	-	-	20%	60%	96%	100%
1a in THF	-	-	15%	60%	95%	100%
1b	-	-	20%	60%	97%	100%
1d	-	-	92%	100%	-	-
1d in THF	-	-	60%	90%	100%	-
1e	80%	97%	100%	-	-	-
1e in THF	-	-	100%	-	-	-
1f	70%	$\sim 97 \%$	100%	-	-	-

2-Methyl-3-phenyl-[1,2]oxazinane-4,4-dicarboxylic acid dimethyl ester (3a).

3a
General procedure for the enantioselective 1,3-dipolar cycloadditions and ligand 4 was used, 2 days. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 2.26(\mathrm{dt}, \mathrm{J}=14.5 \mathrm{~Hz}, 2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}$, $3 \mathrm{H}), 2.65(\mathrm{ddd}, \mathrm{J}=14.5 \mathrm{~Hz}, 13.5 \mathrm{~Hz}, 5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.94(\mathrm{dt}, \mathrm{J}=$ $3.0 \mathrm{~Hz}, 12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.19$ (br s, 1H), $4.68(\mathrm{~s}, 1 \mathrm{H}), 7.28-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.52-7.53(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \oint 25.7,43.8,52.5,53.3,58.2,66.7,69.7,128.1,128.4$, 131.0, 135.3, 168.9, 170.5. $[\alpha]_{\mathrm{D}}{ }^{25}=+199.1\left(c 1.0, \mathrm{CHCl}_{3}\right), 90 \%$ ee estimated on the basis of HPLC analysis using a chiral column (Diacel Chiralcel AD with hexane/i-PrOH $=97 / 3 \mathrm{v} / \mathrm{v}, 0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{t}=18.2 \mathrm{~min}($ major), $\mathrm{t}=20.4 \min ($ minor $)$). HRMS calcd. for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{5} \mathrm{Na}^{+}$is 316.1155 and Observed $=316.1158$.

2-Methyl-3-phenyl-[1,2]oxazinane-4,4-dicarboxylic acid diethyl ester (3b)

General procedure for the enantioselective 1,3-dipolar cycloadditions and ligand 4 was used, 1.5 days. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.93(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.24(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}$, $3 \mathrm{H}), 2.23(\mathrm{dt}, \mathrm{J}=14.4 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.63(\mathrm{ddd}, \mathrm{J}=14.4 \mathrm{~Hz}, 11.6 \mathrm{~Hz}, 5.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.72(\mathrm{dq}, \mathrm{J}=10.8 \mathrm{~Hz}, 7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{dq}, \mathrm{J}=10.8 \mathrm{~Hz}, 7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{dt}$, $\mathrm{J}=3.2 \mathrm{~Hz}, 11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.13-4.18(\mathrm{br} \mathrm{dm}, 1 \mathrm{H}), 4.25(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.65(\mathrm{~s}, 1 \mathrm{H})$, 7.23-7.26 (m, 3H), 7.49-7.51 (m, 2H). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) ~ \oint 13.8,14.2,25.9$, $43.7,58.0,61.5,62.0,66.7,69.5,128.0,128.3,131.1,135.4,168.6,170.0 .[\alpha]_{\mathrm{D}}{ }^{25}=$ $+172.4\left(\right.$ c $\left.1.0, \mathrm{CHCl}_{3}\right), 92 \%$ ee estimated on the basis of HPLC analysis using a chiral column (Diacel Chiralcel AD with hexane $/ i-\operatorname{PrOH}=97 / 3 \mathrm{v} / \mathrm{v}, 0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{t}=15.5 \mathrm{~min}$ (major), $\mathrm{t}=20.1 \mathrm{~min}$ (minor)). HRMS calcd. for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{5} \mathrm{Na}^{+}$is 344.1474: observed: 344.1512

2,3-Diphenyl-[1,2]oxazinane-4,4-dicarboxylic acid dimethyl ester (3d)

General procedure for the enantioselective 1,3-dipolar cycloadditions and ligand 4 was used, 1.5 days. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 2.44(\mathrm{dt}, \mathrm{J}=14.5 \mathrm{~Hz}, 1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.85$ (ddd, J = $14.5 \mathrm{~Hz}, 13.0 \mathrm{~Hz}, 5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.94(\mathrm{ddd}, \mathrm{J}=13.0 \mathrm{~Hz}$,
$12.0 \mathrm{~Hz}, 3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{dd}, \mathrm{J}=12.0 \mathrm{~Hz}, 5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{~s}, 1 \mathrm{H}), 6.80-6.83(\mathrm{~m}$, $1 \mathrm{H}), 7.03-7.05(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.20(\mathrm{~m}, 5 \mathrm{H}), 7.53-7.57(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125\right.$ MHz) δ 25.7, 52.7, 53.5, 58.6, 66.9, 67.7, 116.0, 121.8, 128.1, 128.2, 128.7, 130.7, 135.3, 148.9, 168.6, 170.2. $[\alpha]_{\mathrm{D}}{ }^{25}=+88.0\left(c 1.0, \mathrm{CHCl}_{3}\right), 91 \%$ ee estimated on the basis of HPLC analysis using a chiral column (Diacel Chiralcel AD with hexane $/ i-\mathrm{PrOH}=97 / 3$ $\mathrm{v} / \mathrm{v}, 0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{t}=19.8 \mathrm{~min}$ (major), $\mathrm{t}=29.4 \mathrm{~min}($ minor $)$). HRMS calcd. for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{5} \mathrm{Na}^{+}$is 378.1312 and Observed $=378.1333$.

2,3-Diphenyl-[1,2]oxazinane-4,4-dicarboxylic acid diethyl ester (3e)

General procedure for the enantioselective 1,3-dipolar cycloadditions and ligand 4 was used, 1.5 days. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.00(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.31(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}$, 3H), 2.23 (d-qn, J = $14.4 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.85 (ddd, J = $14.4 \mathrm{~Hz}, 13.2 \mathrm{~Hz}, 5.6 \mathrm{~Hz}, 1 \mathrm{H}$), $3.84(\mathrm{dq}, \mathrm{J}=10.8 \mathrm{~Hz}, 7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{dq}, \mathrm{J}=10.8 \mathrm{~Hz}, 7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{ddd}, \mathrm{J}=13.2$ $\mathrm{Hz}, 11.6 \mathrm{~Hz}, 2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.28-4.39(\mathrm{~m}, 3 \mathrm{H}), 5.67(\mathrm{~s}, 1 \mathrm{H}), 6.77-7.00(\mathrm{~m}, 1 \mathrm{H}), 7.01-$ $7.04(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.24(\mathrm{~m}, 5 \mathrm{H}), 7.50-7.55(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \oint$ $13.9,14.3,25.7,58.4,61.9,62.4,66.9,67.8,116.0,121.7,127.9,128.1,128.6,130.8$, 135.3, 149.0, 168.2, 169.7. $[\alpha]_{\mathrm{D}}{ }^{25}=+95.1\left(c 1.0, \mathrm{CHCl}_{3}\right), 94 \%$ ee estimated on the basis of HPLC analysis using a chiral column (Diacel Chiralcel AD with hexane $/ i-\mathrm{PrOH}=97 / 3$ $\mathrm{v} / \mathrm{v}, 0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{t}=15.5 \mathrm{~min}$ (major), $\mathrm{t}=21.1 \mathrm{~min}$ (minor)). HRMS calcd. for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{Na}^{+}$is 406.1630 and Observed $=406.1482$

2,3-Diphenyl-[1,2]oxazinane-4,4-dicarboxylic acid ditertiary butyl ester (3f)

General procedure for the enantioselective 1,3-dipolar cycloadditions and ligand 4 was used, 3 days. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.19(\mathrm{~s}, 9 \mathrm{H}), 1.55(\mathrm{~s}, 9 \mathrm{H}), 2.36(\mathrm{dm}, \mathrm{J}=14$ $\mathrm{Hz}, 1 \mathrm{H}), 2.83(\mathrm{dt}, \mathrm{J}=6.0 \mathrm{~Hz}, 14.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{dt}, \mathrm{J}=2.5 \mathrm{~Hz}, 12 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{dd}, \mathrm{J}=$ $12.0 \mathrm{~Hz}, 5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{~s}, 1 \mathrm{H}), 6.78-6.81(\mathrm{~m}, 1 \mathrm{H}), 7.01-7.03(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.17$ $(\mathrm{m}, 5 \mathrm{H}), 7.49-7.51(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ § 26.3, 27.6, 28.1, 58.8, 67.2, $67.9,82.2,82.3,116.0,121.5,127.8,128.0,128.6,131.3,135.3,149.2,167.4,168.9$. $[\alpha]_{\mathrm{D}}{ }^{25}=+59.4\left(c 1.0, \mathrm{CHCl}_{3}\right), 95 \%$ ee estimated on the basis of HPLC analysis using a chiral column (Diacel Chiralcel AD with hexane $/ i-\mathrm{PrOH}=95 / 5 \mathrm{v} / \mathrm{v}, 0.6 \mathrm{~mL} / \mathrm{min}, \mathrm{t}=29.3$ \min (minor), $\mathrm{t}=33.1 \mathrm{~min}$ (major)). HRMS calcd. for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{NO}_{5} \mathrm{Na}^{+}$is 462.2251 and Observed $=462.2250$.

3-(4-Bromo-phenyl)-2-methyl-[1,2]oxazinane-4,4-dicarboxylic acid diethyl ester (3g).

3 g
General procedure for the enantioselective 1,3-dipolar cycloadditions and ligand 4 was used, 2 days. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.01(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}$, $3 \mathrm{H}), 2.26(\mathrm{dt}, \mathrm{J}=14.5 \mathrm{~Hz}, 2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.58(\mathrm{ddd}, \mathrm{J}=14.5 \mathrm{~Hz}, 11.5 \mathrm{~Hz}, 5.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.79(\mathrm{dq}, \mathrm{J}=10.5 \mathrm{~Hz}, 7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.89-3.97(\mathrm{~m}, 2 \mathrm{H}), 4.16-4.18(\mathrm{br}, 1 \mathrm{H})$,
$4.28(\mathrm{q}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.64(\mathrm{~s}, 1 \mathrm{H}), 7.40-7.44(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \oint$ $13.9,14.2,25.9,43.7,57.9,61.7,62.2,66.7,68.8,122.6,131.2,132.8,134.5,168.4$, 169.8. $[\alpha]_{\mathrm{D}}{ }^{25}=+137.3\left(c 1.0, \mathrm{CHCl}_{3}\right), 91 \%$ ee estimated on the basis of HPLC analysis using a chiral column (Diacel Chiralcel AD with hexane $/ i-\operatorname{PrOH}=97 / 3 \mathrm{v} / \mathrm{v}, 0.5 \mathrm{~mL} / \mathrm{min}$, $\mathrm{t}=18.8 \min ($ major $), \mathrm{t}=28.8 \mathrm{~min}($ minor $)$). HRMS calcd. for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{BrNO}_{5} \mathrm{Na}^{+}$is 422.0574 and Observed $=422.0566$.

2-Benzyl-3-phenyl-[1,2]oxazinane-4,4-dicarboxylic acid diethyl ester (3h)

General procedure for the enantioselective 1,3-dipolar cycloadditions and ligand 4 was used, 3 days. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.96(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.30(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 2.23(\mathrm{~d}, \mathrm{~J}=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{ddd}, \mathrm{J}=14.5 \mathrm{~Hz}, 12.5 \mathrm{~Hz}, 6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{AB}$ Sys, $\mathrm{J}=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.74-3.80(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{dq}, \mathrm{J}=11.0 \mathrm{~Hz}, 7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{dt}, \mathrm{J}$ $=2.5 \mathrm{~Hz}, 12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{dd}, \mathrm{J}=11.5 \mathrm{~Hz}, 5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.37(\mathrm{~m}, 2 \mathrm{H}), 4.86(\mathrm{~s}$, $1 \mathrm{H}), 7.23-7.33(\mathrm{~m}, 8 \mathrm{H}), 7.59-7.60(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \oint 13.8,14.3$, 25.7, 58.4, 59.7, 61.6, 62.0, 67.1, 67.4, 127.2, 128.1, 128.2, 128.3, 128.7, 131.3, 135.6, 137.6, 168.6, 169.9. $[\alpha]_{\mathrm{D}}{ }^{25}=+110.7\left(c 1.0, \mathrm{CHCl}_{3}\right), 93 \%$ ee estimated on the basis of HPLC analysis using a chiral column (Diacel Chiralcel AD with hexane $/ i-\mathrm{PrOH}=97 / 3$ $\mathrm{v} / \mathrm{v}, 0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{t}=17.3 \mathrm{~min}($ major $), \mathrm{t}=24.5 \mathrm{~min}($ minor $)$). HRMS calcd. for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{5} \mathrm{Na}^{+}$is 420.1781 and Observed $=420.1812$.

2-Benzyl-3-(4-methoxy-phenyl)-[1,2]oxazinane-4,4-dicarboxylic acid diethyl ester (3i)

General procedure for the enantioselective 1,3-dipolar cycloadditions and ligand 4 was used, 3days. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.00(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 2.32(\mathrm{~d}, \mathrm{~J}=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{ddd}, \mathrm{J}=14.5 \mathrm{~Hz}, 12.5 \mathrm{~Hz}, 5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{~d}, \mathrm{AB}$ Sys, $\mathrm{J}=14.5 \mathrm{~Hz}, 1 \mathrm{H}$), $3.73(\mathrm{~d}$ AB Sys, $\mathrm{J}=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.77-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H})$, 3.89 (dq, J = $11.5 \mathrm{~Hz}, 7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{dt}, \mathrm{J}=2.5 \mathrm{~Hz}, 13.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{dd}, \mathrm{J}=11.5$ $\mathrm{Hz}, 5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.36(\mathrm{~m}, 2 \mathrm{H}), 4.81(\mathrm{~s}, 1 \mathrm{H}), 6.85(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.31$ $(\mathrm{m}, 5 \mathrm{H}), 7.51(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \oint 13.9,14.3,25.6,55.3$, $58.5,59.6,61.6,62.0,67.1,113.4,127.2,127.5,128.2,128.4,128.7,132.5,137.7,159.5$, 168.6, 169.7. $[\alpha]_{\mathrm{D}}{ }^{25}=+117.3\left(c 1.9, \mathrm{CHCl}_{3}\right), 90 \%$ ee estimated on the basis of HPLC analysis using a chiral column (Diacel Chiralcel AD with hexane $/ i-\operatorname{PrOH}=97 / 3 \mathrm{v} / \mathrm{v}, 0.5$ $\mathrm{mL} / \mathrm{min}, \mathrm{t}=27.9 \mathrm{~min}$ (major), $\mathrm{t}=31.8 \mathrm{~min}$ (minor)). HRMS calcd. for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{NO}_{6} \mathrm{Na}^{+}$is 450.1887 and Observed $=450.1887$.

2-Methyl-3-styryl-[1,2]oxazinane-4,4-dicarboxylic acid diethyl ester (3j).

3j

General procedure for the enantioselective 1,3-dipolar cycloadditions and ligand 4 was used, 3 days. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.17(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}$,
$3 \mathrm{H}), 2.26(\mathrm{~d}, \mathrm{~J}=14.0 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{ddd}, \mathrm{J}=14.0 \mathrm{~Hz}, 11.0 \mathrm{~Hz}, 5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.54$ (s, 3H), $3.99-4.02(\mathrm{~m}, 2 \mathrm{H}), 4.11(\mathrm{~m}, 3 \mathrm{H}), 4.26(\mathrm{~m}, 2 \mathrm{H}), 6.49(\mathrm{dd}, \mathrm{J}=16.0 \mathrm{~Hz}, 9.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.59(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.39(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \oint 14.1,14.2,26.0,43.5,58.4,61.7,61.8,67.1,68.3,121.6$, $126.7,128.1,128.7,136.5,137.1,168.6,169.4 .[\alpha]_{\mathrm{D}}{ }^{25}=+196.73\left(c 2.2, \mathrm{CHCl}_{3}\right), 71 \%$ ee estimated on the basis of HPLC analysis using a chiral column (Diacel Chiralcel AD with hexane $/ i-\operatorname{PrOH}=97 / 3 \mathrm{v} / \mathrm{v}, 0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{t}=23.0 \mathrm{~min}$ (major), $\mathrm{t}=31.1 \mathrm{~min}$ (minor)). HRMS calcd. for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{Na}^{+}$is 370.1625 and Observed $=370.1613$.

3-Furan-2-yl-2-methyl-[1,2]oxazinane-4,4-dicarboxylic acid diethyl ester (3k).

General procedure for the enantioselective 1,3-dipolar cycloadditions and ligand 4 was used, 4 days. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.01(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 2.30(\mathrm{~d}, \mathrm{~J}=14.5 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.51(\mathrm{ddd}, \mathrm{J}=14.0 \mathrm{~Hz}, 12.5 \mathrm{~Hz}, 5.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.91-4.01(\mathrm{~m}, 4 \mathrm{H}), 4.02-4.29(\mathrm{~m}, 2 \mathrm{H}), 4.86(\mathrm{~s}, 1 \mathrm{H}), 6.32(\mathrm{dd}, \mathrm{J}=3.0 \mathrm{~Hz}, 2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.40(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, \mathrm{~J}=1.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ $\oint 13.9,14.2,25.9,43.1,57.2,61.7,62.2,63.0,66.9,110.3,111.6,142.2,148.8,168.2$, 169.1. $[\alpha]_{\mathrm{D}}{ }^{25}=+153.6\left(c 2.0, \mathrm{CHCl}_{3}\right), 79 \%$ ee estimated on the basis of HPLC analysis using a chiral column (Diacel Chiralcel AD with hexane $/ i-\operatorname{PrOH}=97 / 3 \mathrm{v} / \mathrm{v}, 0.5 \mathrm{~mL} / \mathrm{min}$, $t=18.8 \min$ (major), $t=24.2 \min$ (minor)). HRMS calcd. for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{6} \mathrm{Na}^{+}$is 334.1261 and Observed $=334.1264$.

Experimental procedure for reactions with mono- and disubstituted cyclopropanes

1d-g.

The same general procedure as outlined before was used, except that shorter reaction times were required. For 31-n, the crude product was submitted to ${ }^{1} \mathrm{H}$ NMR for determination of cis/trans diastereomer ratios, and diastereomers were separated by FC (silica gel, hexane/ethyl acetate 95:5-80:20). The stoichiometry for these reactions were cyclopropane: nitrone: chiral catalyst $=1: 1.4: 0.3 . \quad$ As shown in the time table above, reactions are complete within a few hours.

Assignment of regiochemistry and relative stereochemistry for products 31-p. The regioselectivity of the reaction in which $\mathbf{3 n}$-cis and $\mathbf{3 n}$-trans forms is assigned because these are known compounds, which have been previously reported by Kerr and characterized by X-ray crystallography. ${ }^{6}$ The regioselectivity in the formation of 31-cis, 3l-trans, 3m-cis, and 3m-trans is assigned based on analogy, and on the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ chemical shifts for the methylene hydrogens H_{a} and H_{b}. Had the nitrone oxygen instead added to the non-substituted carbon of the cyclopropane ring, the oxygen-bearing methylene group should have shown two hydrogens further downfield than is observed. The regioselectivity for $\mathbf{3 o}$ and $\mathbf{3 p}$ is also assigned based on the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ chemical shifts for the methylene hydrogens.

The relative cis/trans stereochemistry for $\mathbf{3 n}$-cis and $\mathbf{3 n}$-trans is assigned by comparison to the known compounds, which have been previously reported by Kerr and characterized by X-ray crystallography. ${ }^{6}$ The relative stereochemistry for $\mathbf{3 m}$-cis, 3mtrans, 31-cis and 31-trans is assigned based on ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analogy with the known compounds $\mathbf{3 n}$-cis and $\mathbf{3 n}$-trans. In each case, the benzylic hydrogen H_{d} is further
downfield in the cis isomer; the hydrogen H_{c} on the oxygen-bearing carbon is further upfield in the cis isomer; and the chemical shift difference between methylene protons H_{a} and H_{b} is much smaller in the cis isomer. The optical rotations for the trans isomers are also negative, whereas the cis isomers consistently gave the normal positive rotation.

	31-cis	31-trans	3m-cis	3m-trans	3n-cis	3n-trans
H_{a}	2.19	1.64	2.64	2.04	2.67	2.08
H_{b}	2.34	2.42	2.66	2.67	2.73	2.72
H_{c}	3.95	4.65	4.90	5.64	4.91	5.70
H_{d}	4.69	4.12	4.83	4.29	4.86	4.37
$[\alpha]_{\mathrm{D}}{ }^{25}$	+168.0	-61.2	+121.0	-60.9	+154.7	-49.1

cis 3-(4-Bromo-phenyl)-2,6-dimethyl-[1,2]oxazinane-4,4-dicarboxylic acid dimethyl ester (31 cis) (Absolute stereochemistry has not been determined)

31 cis
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.30(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.19(\mathrm{dd}, \mathrm{J}=14.5 \mathrm{~Hz}, 12.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.34(\mathrm{dd}, \mathrm{J}=14.5 \mathrm{~Hz}, 2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.95(\mathrm{~m}$, $1 \mathrm{H}), 4.69(\mathrm{~s}, 1 \mathrm{H}), 7.40-7.44(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \oint 20.4,31.8,43.4$, $52.7,53.5,59.0,67.3,72.2,122.7,131.3,132.8,133.9,168.6,170.3 .[\alpha]_{\mathrm{D}}{ }^{25}=+168.0(c$ $\left.1.0, \mathrm{CHCl}_{3}\right), 90 \%$ ee estimated on the basis of HPLC analysis using a chiral column
(Diacel Chiralcel AD with hexane $/ i-\operatorname{PrOH}=97 / 3 \mathrm{v} / \mathrm{v}, 0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{t}=14.5 \mathrm{~min}$ (major), t $=21.7 \mathrm{~min}$ (minor)). HRMS calcd. for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{BrNO}_{5} \mathrm{Na}^{+}$is 408.0417 and Observed $=$ 408.0414 .
trans 3-(4-Bromo-phenyl)-2,6-dimethyl-[1,2]oxazinane-4,4-dicarboxylic acid dimethyl ester ($\mathbf{3 1}$ trans) (Absolute stereochemistry has not been determined)

31 trans
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.19(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.64(\mathrm{dd}, \mathrm{J}=13.5 \mathrm{~Hz}, 10.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{dd}, \mathrm{J}=14.0 \mathrm{~Hz}, 2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 4.12(\mathrm{~s}$, $1 \mathrm{H}), 4.65(\mathrm{~m}, 1 \mathrm{H}), 7.23(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $125 \mathrm{MHz}) \oint 20.2,39.3,45.4,52.1,52.7,57.9,71.1,72.5,122.2,130.9,131.6,136.6$, 170.0, 171.1. $[\alpha]_{\mathrm{D}}{ }^{25}=-61.2\left(c 1.0, \mathrm{CHCl}_{3}\right), 96 \%$ ee estimated on the basis of HPLC analysis using a chiral column (Diacel Chiralcel OD-H with hexane $/ i-\mathrm{PrOH}=96 / 4 \mathrm{v} / \mathrm{v}$, $0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{t}=47.5 \mathrm{~min}$ (major), $\mathrm{t}=50.4 \mathrm{~min}$ (minor)). HRMS calcd. for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{BrNO}_{5} \mathrm{Na}^{+}$is 408.0417 and Observed $=408.0403$.
cis 3-(4-Bromo-phenyl)-2-methyl-6-phenyl-[1,2]oxazinane-4,4-dicarboxylic acid dimethyl ester (3 m cis) (Absolute stereochemistry has not been determined)

3 m cis
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 2.53(\mathrm{~s}, 3 \mathrm{H}), 2.64-2.66(\mathrm{~m}, 2 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}$, $3 \mathrm{H}), 4.83(\mathrm{~s}, 1 \mathrm{H}), 4.90(\mathrm{dd}, \mathrm{J}=8.5 \mathrm{~Hz}, 5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.52(\mathrm{~m}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 31.0,43.5,52.8,53.6,59.4,67.5,78.1,122.8,126.5,128.4,128.8$, $131.5,132.8,133.9,140.0,168.5,170.3 .[\alpha]_{\mathrm{D}}{ }^{25}=+121.0\left(c 1.0, \mathrm{CHCl}_{3}\right), 90 \%$ ee estimated on the basis of HPLC analysis using a chiral column (Diacel Chiralcel AD with hexane $/ i-\operatorname{PrOH}=97 / 3 \mathrm{v} / \mathrm{v}, 0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{t}=25.1 \mathrm{~min}($ minor $), \mathrm{t}=33.6 \mathrm{~min}$ (major)). HRMS calcd. for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{BrNO}_{5} \mathrm{Na}^{+}$is 470.0574 and Observed $=470.0596$.
trans 3-(4-Bromo-phenyl)-2-methyl-6-phenyl-[1,2]oxazinane-4,4-dicarboxylic acid dimethyl ester (3 m trans) (Absolute stereochemistry has not been determined)

3m trans
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 2.04(\mathrm{t}, \mathrm{J}=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.67(\mathrm{dd}, \mathrm{J}=14.0$
$\mathrm{Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 4.29(\mathrm{~s}, 1 \mathrm{H}), 5.64(\mathrm{dd}, \mathrm{J}=10.5 \mathrm{~Hz}, 2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.29-7.44(\mathrm{~m}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \oint 39.4,45.5,52.1,52.6,57.9$, $72.6,76.9,122.3,126.4,128.2,128.7,131.0,131.6,136.5,140.4,170.1,170.8 .[\alpha]_{\mathrm{D}}{ }^{25}=$ -60.9 (c 2.0, CHCl_{3}), 95% ee estimated on the basis of HPLC analysis using a chiral column (Diacel Chiralcel AD with hexane $/ i-\operatorname{PrOH}=97 / 3 \mathrm{v} / \mathrm{v}, 0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{t}=19.2 \mathrm{~min}$ (minor), $\mathrm{t}=31.2 \mathrm{~min}$ (major)). HRMS calcd. for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{BrNO}_{5} \mathrm{Na}^{+}$is 470.0574 and Observed $=470.0576$.
cis 2-Methyl-3,6-diphenyl-[1,2]oxazinane-4,4-dicarboxylic acid dimethyl ester (3n cis) (Absolute stereochemistry has not been determined)

$3 n$ cis
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 2.55(\mathrm{~s}, 3 \mathrm{H}), 2.63-2.77(\mathrm{~m}, 2 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}$, $3 \mathrm{H}), 4.86(\mathrm{~s}, 1 \mathrm{H}), 4.91(\mathrm{dd}, \mathrm{J}=12.0 \mathrm{~Hz}, 3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.37(\mathrm{~m}, 4 \mathrm{H}), 7.41-7.44(\mathrm{~m}$, $2 \mathrm{H}), 7.48-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.62(\mathrm{br} \mathrm{s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta$. 31.1, 43.6, 52.6, $53.5,59.6,76.8,78.1,126.6,128.3,128.3,128.4,128.8,131.1,134.9,140.3,168.7$, 170.5. $[\alpha]_{\mathrm{D}}{ }^{25}=+154.7\left(c 1.0, \mathrm{CHCl}_{3}\right), 90 \%$ ee estimated on the basis of HPLC analysis using a chiral column (Diacel Chiralcel AD with hexane $/ i-\operatorname{PrOH}=97 / 3 \mathrm{v} / \mathrm{v}, 0.5 \mathrm{~mL} / \mathrm{min}$, $\mathrm{t}=20.1 \mathrm{~min}($ minor $), \mathrm{t}=33.7 \mathrm{~min}$ (major)). HRMS cacld. for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{5} \mathrm{Na}^{+} 392.1468$ and Observed $=392.1452$.
trans 2-Methyl-3,6-diphenyl-[1,2]oxazinane-4,4-dicarboxylic acid dimethyl ester (3n trans) (Absolute stereochemistry has not been determined)

$3 n$ trans
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 2.08(\mathrm{t}, \mathrm{J}=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}), 2.72(\mathrm{dd}, \mathrm{J}=13.5$ $\mathrm{Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 4.37(\mathrm{~s}, 1 \mathrm{H}), 5.70(\mathrm{dd}, \mathrm{J}=10.0 \mathrm{~Hz}, 2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.28-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.44(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125\right.$ $\mathrm{MHz}) \delta 39.3,45.4,51.9,52.4,58.0,73.0,76.8,126.3,127.7,128.0,128.2,128.5,129.8$, 137.4, 140.6, 170.2, 170.8. $[\alpha]_{\mathrm{D}}{ }^{25}=-49.1\left(c 2.0, \mathrm{CHCl}_{3}\right), 96 \%$ ee estimated on the basis of HPLC analysis using a chiral column (Diacel Chiralcel AD with hexane $/ i-\mathrm{PrOH}=97 / 3$
$\mathrm{v} / \mathrm{v}, 0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{t}=19.5 \mathrm{~min}($ minor $), \mathrm{t}=29.7 \mathrm{~min}($ major $)$). HRMS cacld. for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{5} \mathrm{Na}^{+} 392.1468$ and Observed $=392.1464$.

3-(4-Bromo-phenyl)-2,6,6-trimethyl-[1,2]oxazinane-4,4-dicarboxylic acid dimethyl ester (30)

30
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 50^{\circ} \mathrm{C}\right) \delta 1.17(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~d}, \mathrm{~J}=14.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.40(\mathrm{~s}, 3 \mathrm{H}), 2.51(\mathrm{~d}, \mathrm{~J}=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 4.70(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{~d}, \mathrm{~J}$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}, 125 \mathrm{MHz}, 60{ }^{\circ} \mathrm{C}\right) \delta 19.9,25.4$, $29.6,36.9,43.9,52.1,52.6,59.1,75.0,122.9,131.7,132.7,133.1,169.3,171.5 .[\alpha]_{\mathrm{D}}{ }^{25}=$ +164.5 (c 1.0, $\left.\mathrm{CHCl}_{3}\right), 96 \%$ ee estimated on the basis of HPLC analysis using a chiral column (Diacel Chiralcel AD with hexane $/ i-\operatorname{PrOH}=97 / 3 \mathrm{v} / \mathrm{v}, 0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{t}=13.3 \mathrm{~min}$ (major), $\mathrm{t}=15.8 \mathrm{~min}$ (minor)). HRMS calcd. for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{BrNO}_{5} \mathrm{Na}^{+}$is 422.0574. Observed $=422.0559$.

3-(4-Bromo-phenyl)-2-methyl-1-oxa-2-aza-spiro[5.5]undecane-4,4-dicarboxylic acid dimethyl ester (3p).

3p
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 5{ }^{\circ} \mathrm{C}\right) \delta 1.19-1.72(\mathrm{~m}, 10 \mathrm{H}), 2.32(\mathrm{~d}, \mathrm{~J}=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.37$ $(\mathrm{d}, \mathrm{J}=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 4.70(\mathrm{~s}, 1 \mathrm{H}), 7.32-7.43(\mathrm{~m}$, $4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 125 \mathrm{MHz}, 60^{\circ} \mathrm{C}\right) \delta 22.7,26.5,32.4,35.1,36.2,38.9,44.4,52.3$, $52.7,57.6,67.1,75.6,122.9,131.6,133.6,134.1,169.3,171.6 .[\alpha]_{\mathrm{D}}{ }^{25}=-32.2$ (c 1.0, CHCl_{3}), 99% ee estimated on the basis of HPLC analysis using a chiral column (Diacel

Chiralcel AD-H with hexane $/ i-\operatorname{PrOH}=99 / 1 \mathrm{v} / \mathrm{v}, 0.8 \mathrm{~mL} / \mathrm{min}, \mathrm{t}=79.8 \mathrm{~min}$ (major), $\mathrm{t}=$ 86.0 min (minor)). HRMS cacld. for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{BrNO}_{5} \mathrm{Na}^{+}$is 462.0887 and observed $=$ 462.0876 .

References:

1. Verhe, R.; De Kimpe, N.; De Buyck, L.; Courtheyn, D.; Schamp, N. Synthesis 1978, 530.
2. Chan, K. S.; Yeung, M. L.; Chan, W.-K.; Wang, R.-J.; Mak, T. C. W. J. Org. Chem. 1995, 60, 1741.
3. (a) Desimoni, G.; Faita, G.; Filippone, S.; Mella, M.; Zampori, M. G.; Zema, M. Tetrahedron 2001, 57, 10203. (b) Desimoni, G.; Faita, G.; Guala, M.; Pratelli, C. Tetrahedron: Asymmetry 2002, 13, 1651-1654.
4. Iserloh, U.; Oderaotoshi, Y.; Kanemasa, S.; Curran, D. P. Org. Synth. 2003, 80, 46-56.
5. Sibi, M. P.; Venkatraman, L.; Liu, M.; Jasperse, C. P. J. Am. Chem. Soc. 2001, 123, 8444.
6. Young, I. S.; Kerr, M. A. Angew Chem. Int. Ed. 2003, 42, 3023.
