The Relationship between Ratio of Ligand/Metal and Coordinating Ability of Anions. Synthesis and Structural Properties of AgX Bearing Bis(4-pyridyl)dimethylsilane ($X^- = NO_2^-, NO_3^-, CF_3SO_3^-, and PF_6^-$)

Jung Woon Lee,[†] Eun Ae Kim,[†] Yun Ju Kim,[†] Young-A Lee, [‡] Youngshang Pak,[†] and Ok-Sang Jung^{*,†}

Table S1. Calculation of Ag...Ag Interaction in [Ag(NO₂)(L)]

final report.txt

- \$ Calculation setI
 - * only one Ag atom optimization

DFT method : B3LYP

Basis set : LanL2DZ HF energy : -145.758 Hartree

* two Ag atoms optimization

DFT method : B3LYP

Basis set : LanL2DZ HF energy : -291.574 Hartree

=> Ag-Ag bonding energy : -0.058 Hartree = 36.395 kcal/mol

\$ Calculation set II

* unit I - included one Ag atom.

DFT method : B3LYP

: 6-31G*

HF energy : -1428.8823092 Hartree Dipole : 3.133173441 Debye

* unit II - included two Ag atom.

DFT method : B3LYP

Basis set : Gen
********* each C H O Si N atom : 6-31G*
********* Ag : LanL2DZ

HF energy : -2857.7946356 Hartree Dipole : 9.340236115*10(-3) Debye

=> unit I & unit II bonding energy : -0.030017 Hartree = 18.83595366 kcal/mol

Figure S1. TGA and DSC of $[Ag(NO_2)(L)]$

Figure S2. TGA and DSC of $[Ag_2(L)_3](CF_3SO_3)_2$

Figure S1. TGA and DSC of $[Ag(L)_2](PF_6)$

