The Relationship between Ratio of Ligand/Metal and Coordinating Ability of Anions. Synthesis and Structural Properties of AgX Bearing Bis(4-pyridyl)dimethylsilane ($X^- = NO_2^-, NO_3^-, CF_3SO_3^-, and PF_6^-$) Jung Woon Lee,[†] Eun Ae Kim,[†] Yun Ju Kim,[†] Young-A Lee, [‡] Youngshang Pak,[†] and Ok-Sang Jung^{*,†} ## Table S1. Calculation of Ag...Ag Interaction in [Ag(NO₂)(L)] ## final report.txt - \$ Calculation setI - * only one Ag atom optimization DFT method : B3LYP Basis set : LanL2DZ HF energy : -145.758 Hartree * two Ag atoms optimization DFT method : B3LYP Basis set : LanL2DZ HF energy : -291.574 Hartree => Ag-Ag bonding energy : -0.058 Hartree = 36.395 kcal/mol ## \$ Calculation set II * unit I - included one Ag atom. DFT method : B3LYP : 6-31G* HF energy : -1428.8823092 Hartree Dipole : 3.133173441 Debye * unit II - included two Ag atom. DFT method : B3LYP Basis set : Gen ********* each C H O Si N atom : 6-31G* ********* Ag : LanL2DZ HF energy : -2857.7946356 Hartree Dipole : 9.340236115*10(-3) Debye => unit I & unit II bonding energy : -0.030017 Hartree = 18.83595366 kcal/mol Figure S1. TGA and DSC of $[Ag(NO_2)(L)]$ Figure S2. TGA and DSC of $[Ag_2(L)_3](CF_3SO_3)_2$ Figure S1. TGA and DSC of $[Ag(L)_2](PF_6)$