Discovery of Diphenyloxazole and $\mathbf{N} \delta-\mathbf{Z}$-Ornithine Derivatives as Highly Potent and Selective EP_{4} Receptor Antagonists

Kouji Hattori, Akira Tanaka, Naoaki Fujii, Hisashi Takasugi, Yoshiyuki Tenda, Masayuki Tomita, Shoko Nakazato, Keiko Nakano, Yasuko Kato, Yutaka Kono, Hidetsugu Murai, Kazuo Sakane,

Supporting Information

Experimental method

3-\{[(1S)-2-(4,5-diphenyl-1,3-oxazol-2-yl)-2-cyclohexen-1-yl]methyl\}benzoic acid (3): To a solution of 6 (42g) in dichloromethane $(800 \mathrm{~mL})$ were added trifluoromethanesulfonic acid anhydride $(26 \mathrm{~mL})$ and $2,6-$ lutidine $(24 \mathrm{~mL})$ at $-78 \square$. After being stirred fof 2 h at the same temperature, the solvent was evaporated in vacuo. The residue was diluted with ethyl acetate and the mixture was washed with water, sat. NaHCO_{3} and brine. The dried solventwas evaporated in vacuo and the residure was solved into a mixtue of methanol(200 mL) and $\operatorname{DMF}(400 \mathrm{~mL})$. To the mixture were added 1,3-bis(diphenylphosphino)propane $(7.8 \mathrm{~g})$, palladium acetate $(4.2 \mathrm{~g})$, and triethylamine. (40 mL) After being stired for 5 h at $80 \square$ under CO_{2} atmosphere, the mixture was partitioned between ethyl acetate and water and the organic layer was washed with $1 \mathrm{~N}-\mathrm{HCl}, \mathrm{sat}, \mathrm{NaHCO}_{3}$, and brine. The dried solvent was evaporated in vacuo and the obtained residure was purified by chromatography on silica gel to give corresponding methyl ester. To a solution of the ester derivative of a mixture of methanol $(500 \mathrm{~mL})$ and THF $(500 \mathrm{~mL})$ was added $1 \mathrm{~N}-\mathrm{NaOH}(400 \mathrm{~mL})$. After being stirred over night, the solvent was removed. The residure was partitioned between ethyl acetate and $1 \mathrm{H}-\mathrm{HCl}$ and the organic layer was washed with brine. The dried solvent was evaporated in vacuo and the obtained solid was washed with ether to afford 3 - $\{[(1 \mathrm{~S})$-2-(4,5-diphenyl-1,3-oxazol-2-yl)-2-cyclohexen-1-yl]methyl\}benzoic acid (3) (69% from 6, 31.5g).

1 H NMR ($200 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 1.4-1.9(4 \mathrm{H}, \mathrm{m}), 2.2-2.4(2 \mathrm{H}, \mathrm{m}), 2.65(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.0,13.0 \mathrm{~Hz}), 3.2(1 \mathrm{H}, \mathrm{m}), 3.35(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.0,13.0 \mathrm{~Hz})$, $6.93(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=3.8 \mathrm{~Hz}), 7.2-7.8(12 \mathrm{H}, \mathrm{m}), 7.93(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 8.10(1 \mathrm{H}, \mathrm{s})$
API-ESMS: $436\left(\mathrm{M}^{+}+\mathrm{H}\right)$.
Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{2} \mathrm{NO}_{3}+0.76 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 77.54 ; \mathrm{H}, 5.92 ; \mathrm{N}, 3.12$. Found: C, $77.54 ; \mathrm{H}, 6.11 ; \mathrm{N}, 2.97$.

N-(benzyloxy)-3-\{[(1S)-2-(4,5-diphenyl-1,3-oxazol-2-yl)-2-cyclohexen-1-yl]methyl\}benzamide (7): To a solution of $\mathbf{3}$ (100mg, 1eq) in DMF were added TBTU (1.5eq) and benzyloxyamine (2eq). After being stirred for 2 h , the mixture was partitioned between ethyl acetate and water and the organic layer was washed with $1 \mathrm{~N}-\mathrm{HCl}, \mathrm{sat}, \mathrm{NaHCO}_{3}$, and brine. The dried solvent was evaporated in vacuo and the obtained residure was purified by chromatography on silica gel to afford N -(benzyloxy)-3-\{[(1S)-2-(4,5-diphenyl-1,3-oxazol-2-yl)-2-cyclohexen-1-yl]methyl\}benzamide (7) ($89 \%, 110 \mathrm{mg}$).
1 H NMR ($200 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 1.4-1.8(4 \mathrm{H}, \mathrm{m}), 2.2-2.4(2 \mathrm{H}, \mathrm{m}), 2.59(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.8,12.0 \mathrm{~Hz}), 3.1(1 \mathrm{H}, \mathrm{m}), 3.31(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.8,12.0 \mathrm{~Hz})$, $6.92(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=3.8 \mathrm{~Hz}), 7.2-7.8(14 \mathrm{H}, \mathrm{m}), 8.61(1 \mathrm{H}, \mathrm{s})$
API-ESMS: $541\left(\mathrm{M}^{+}+\mathrm{H}\right)$.
Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{3}+0.99 \mathrm{H}_{2} \mathrm{O}$: C, 79.70; H,6.31; N, 5.16. Found: C, 79.70; H, 6.31; N, 5.16.

N-(benzylsulfonyl)-3-\{[(1S)-2-(4,5-diphenyl-1,3-oxazol-2-yl)-2-cyclohexen-1-yl]methyl\}benzamide (8): To a solution of 3 (15g,) and benzylsulfoneamide (5.9 g) in DMF (230 mL) were addedethyl-3-(3'-dimethylaminopropyl)carbodiimide hydrochloride (13 g) and 4-dimethylaminopyridine $(6.3 \mathrm{~g})$. After being stirred for 16 h , the mixture was partitioned between ethyl acetate and water and the organic layer was washed with $1 \mathrm{~N}-\mathrm{HCl}$, sat, NaHCO_{3}, and brine. The dried solvent was evaporated in vacuo and the obtained residure was
purified by chromatography on silica gel to afford N -(benzylsulfonyl)-3-\{[(1S)-2-(4,5-diphenyl-1,3-oxazol-2-yl)- 2-cyclohexen-1-yl]methyl\}benzamide (8) $(89 \%, 18.1 \mathrm{~g})$.
1 H NMR ($200 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 1.4-1.9(4 \mathrm{H}, \mathrm{m}), 2.2-2.5(2 \mathrm{H}, \mathrm{m}), 2.61(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.0,13.0 \mathrm{~Hz}), 3.05(1 \mathrm{H}, \mathrm{m}), 3.28(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.8$, $13.0 \mathrm{~Hz}), 4.66(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14.2 \mathrm{~Hz}), 4.76(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14.2 \mathrm{~Hz}), 6.92(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=3.8 \mathrm{~Hz}), 7.2-7.8(19 \mathrm{H}, \mathrm{m}), 8.67(1 \mathrm{H}, \mathrm{s})$

API-ESMS: $589\left(\mathrm{M}^{+}+\mathrm{H}\right)$.
Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}+1.98 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 69.25 ; \mathrm{H}, 5.60 ; \mathrm{N}, 4.49$. Found: C, $69.25 ; \mathrm{H}, 5.26 ; \mathrm{N}, 4.42$.

Solid phase synthesis for 11:

step-1. A solution of Fmoc-eAhx-OH(N-Fmoc-6-aminohexanoic acid)(180mg) and diisopropylethylamine (0.12mL) in dichloromethane (3 mL) was added to a reactin vessel containing Cl-trytyl resin ($200 \mathrm{mg}, 1.3 \mathrm{mmol} / \mathrm{g}$,loading). After the vessel was shaken for 12 h at a ambient temperature, the resin was washed with dichloromethane and THF, DMF, and dichloromethane.
step-2 After cleavage Fmoc using 20\% piperazine in DMF(5 mL), Fmoc-Orn(Z)-OH(254mg) and TBTU(170mg) and HOBT(70mg) and diisopropylethyamine $(0.18 \mathrm{~mL})$ was added to a solution of the obtained resine in $\operatorname{DMF}(3 \mathrm{~mL})$. After the vessel was shaken for 12 h at a ambient temperature, the resin was washed with dichloromethane and THF, DMF, and dichloromethane.
step-3.After cleavage Fmoc using 20% piperazine in DMF(5mL), benzofuran-2-carboxylic acid (210mg) and 1,3-diisopropylcarbodiimide $(0.21 \mathrm{~mL})$ and diisopropylethyamine $(0.23 \mathrm{~mL})$ was added to a solution of the obtained resine in dichloromethane $(3 \mathrm{~mL})$. After the vessel was shaken for 12 h at a ambient temperature, the resin was washed with dichloromethane and THF, DMF, and dichloromethane.
step-4. Cleavage from resin was performed with 1% trifluoromethanesulfonic acid in dichloromethane (5 mL) fro 10 min at an ambient temperature. After the filtrated solvent was evaporated under pressure, the residue was washed with ether to give 6-[((2S)-2-[(1-benzofuran-2-ylcarbonyl)amino]-5-\{[(benzyloxy)carbonyl]amino\} pentanoyl)amino]hexanoic acid (11) (100mg, 72%).
$1 \mathrm{HNMR}(200 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6) \delta 1.0-1.8(10 \mathrm{H}, \mathrm{m}), 1.86(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}), 2.9-3.2(4 \mathrm{H}, \mathrm{m}), 4.39(1 \mathrm{H}, \mathrm{m}), 4.98(2 \mathrm{H}, \mathrm{s}), 7.0-7.8(10 \mathrm{H}, \mathrm{m})$
API-ESMS: $546\left(\mathrm{M}^{+}+\mathrm{H}\right)$.
Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{NaO}_{7}+4.87 \mathrm{H}_{2} \mathrm{O}$: C,53.11; $\mathrm{H}, 5.93 ; \mathrm{N}, 6.37$. Found: C,53.11; H, 6.40; $\mathrm{N}, 6.64$.

Table 3. SAR of the dipeptide derivatives ${ }^{\text {a }}$

n_{1}	n_{2}	X	$\mathrm{EP}_{4:} \mathrm{Ki}(\mathrm{nM})$
3	3	NH	>1000
5	3	NH	41
5	3	NH	0.83
6	3	O	0.91
5	1	O	3.0
5	2	O	>1000
5	4	O	>1000
5	$4(R)$	O	8.4
5	3	O	240
5	3	$\mathrm{~S}=\mathrm{C}$	1.8
			1.2

${ }^{\mathrm{a}}$ The results were presented as tas the average of two experiment.
Assays were performed by the reported method, see in ref 2 and 4.

