Supporting Information for:

Thermal and Catalyzed [3,3]-Phosphorimidate Rearrangements

Bin Chen and Anna K. Mapp*

General. Unless otherwise noted, starting materials were obtained from commercial suppliers and used without further purification. Benzene, $\mathrm{Et}_{2} \mathrm{O}$, and toluene were dried by passage through activated alumina columns and degassed by stirring under a dry argon atmosphere. ${ }^{1}$ Purification by flash chromatography was carried out with E. Merck Silica Gel 60 (230-400 mesh) according to the procedure of Still, Kahn, and Mitra. ${ }^{2}$ All reactions involving air- or moisture-sensitive compounds were performed under an argon atmosphere. Benzyl azide, ${ }^{3}$ allyl azide, ${ }^{4}$ 4-methoxybenzyl azide, ${ }^{5}$ tosyl azide and Cbz azide ${ }^{6}$ were prepared according to literature procedures. 1-(Tert-butyl-dimethyl-silanyloxy)-but-3-en-2-ol, ${ }^{7}$ 1-benzyloxy-but-3-en-2-ol, ${ }^{7}$ 2-(1-hydroxy-propyl)-acrylic acid methyl ester ${ }^{8}$ and (E)-3-octen-2-ol ${ }^{9}$ were prepared following literature procedures. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in CDCl_{3} at 400 MHz and 125 MHz , respectively. IR spectra were measured as thin films on NaCl plates. Melting points are uncorrected. Compounds found in the article text but not described in the Supporting Information (3c, $\mathbf{3 d}, \mathbf{3 e}, \mathbf{7}, \mathbf{1 1}, \mathbf{1 2}, \mathbf{1 6 - 1 9}, \mathbf{2 1}, 24)$ were prepared using previously reported methods, and spectral data for these compounds were consistent with the literature reported values. ${ }^{7}$ Computations were performed with Spartan 4.0^{10} with the B3LYP/631G* level of theory.

[^0]General procedure for the thermal rearrangement: To a solution of $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ cooled in an ice $/ \mathrm{H}_{2} \mathrm{O}$ bath was added the allylic alcohol ($10 \mathrm{mmol}, 1.25 \mathrm{eq}$) and $\mathrm{Et}_{3} \mathrm{~N}$ (10 mmol, 1.25 eq), followed by a solution of 2-chloro-5,5-dimethyl-1,3,2dioxaphosphorinane, diphenylchlorophosphite or diethylchlorophosphite ($10 \mathrm{mmol}, 1.25$ eq) in $10 \mathrm{ml} \mathrm{Et}_{2} \mathrm{O}$. The solution was then allowed to stir for 20 min and the precipitated $\mathrm{Et}_{3} \mathrm{~N} \cdot \mathrm{HCl}$ was removed by filtration. The $\mathrm{Et}_{2} \mathrm{O}$ was removed under vacuum and the residue was dissolved in 10 mL xylenes. The resulting solution was added dropwise to a solution of benzyl azide or Cbz azide ($8 \mathrm{mmol}, 1.0 \mathrm{eq}$) in 5 mL xylenes cooled in an ice $/ \mathrm{H}_{2} \mathrm{O}$ bath. The reaction mixture was slowly warmed to rt over 1 h , heated at $80^{\circ} \mathrm{C}$ for 2 h , then diluted with an additional 10 mL xylenes, heated at reflux for $1-4 \mathrm{~h}$ and monitored by ${ }^{31} \mathrm{P}$ NMR. Upon cooling, the crude reaction mixture was subjected to flash chromatography (1:9 hexanes/EtOAc) for isolation of the phosphoramidate product (1:2 hexanes/EtOAc for compound 27-28).

Benzyl -(5,5-dimethyl-2-oxo-2 \square^{5} - $[1,3,2]$ dioxaphosphinan-2-yl) - (1-ethyl-allyl)-amine ($\mathbf{3 f}$): Prepared following the general procedure in 85% yield $(2.20 \mathrm{~g})$ from trans-2-penten-1-ol and 81% yield (2.10 g) from cis-2-penten-1-ol as a colorless oil. ${ }^{1} \mathrm{H}$ NMR: $\square 0.72$ (t, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.81(\mathrm{~s}, 3 \mathrm{H}), 1.18$ (s, 3H), 1.43-1.58 (m, 2H), 3.69-3.80 $(\mathrm{m}, 3 \mathrm{H}), 4.19-4.22(\mathrm{~m}, 2 \mathrm{H}), 4.36(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.99-5.05(\mathrm{~m}, 2 \mathrm{H}), 5.67-5.76(\mathrm{~m}$, $1 \mathrm{H}), 7.19-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.35(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\square 11.27,21.00,22.76,25.85$, 32.03, 47.95, 61.74, 76.40, 116.56, 127.20, 128.33, 138.22, 139.76; IR (film): 3065, 3029, 2967, 2934, 2884, 1456, $1244 \mathrm{~cm}^{-1}$; Anal calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{NO}_{3} \mathrm{P}: \mathrm{C}, 63.14 ; \mathrm{H}, 8.10$; N, 4.33. Found: C, 63.45; H, 8.19; N, 4.24.

15

Benzyl-(1,1-dimethyl-allyl)-(5,5-dimethyl-2-oxo-2 \square^{5} - $[1,3,2]$ dioxaphosphinan-

2-yl)-amine (15): Prepared following the general procedure from 3-methyl-2-buten-1-ol in 70% yield $(1.81 \mathrm{~g})$) as a white solid. $\mathrm{mp} 84-85{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR: $0.80(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~s}$, $3 \mathrm{H}), 1.41(\mathrm{~s}, 6 \mathrm{H}), 3.69(\mathrm{dd}, J=10.6,20.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.32(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 4 \mathrm{H}), 4.93-5.04$ (m, 2H), 5.92 (dd, $J=10.7,17.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.17$ (m, 1H), 7.22-7.27 (m, 2H), 7.32 (m, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\square 21.33,23.15,27.87,32.22,49.43,60.72,76.31,112.34,126.54,126.93$, 128.27, 141.48, 145.31; IR (film): 2971, 2884, 1470, 1454, 1366, $1256 \mathrm{~cm}^{-1}$; Anal calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{NO}_{3} \mathrm{P}: \mathrm{C}, 63.14 ; \mathrm{H}, 8.10 ; \mathrm{N}, 4.33$. Found: C, 62.77; H, 8.07; N, 4.38.

13

Benzyl-(2-chloro-allyl)-(5,5-dimethyl-2-oxo-2[]- [1,3,2] dioxaphosphinan-2-

yl)-amine (13): Prepared following the general procedure from 2-chloro-2-propen-1-ol in 75% yield $(1.98 \mathrm{~g})$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR: $\square 0.84(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~d}, \mathrm{~J}=$ $11.8 \mathrm{~Hz}, 2 \mathrm{H}$), 3.82 (dd, $J=9.9,22.0 \mathrm{~Hz}, 2 \mathrm{H}$), $4.22(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.38(\mathrm{~d}, J=9.9$ $\mathrm{Hz}, 2 \mathrm{H}), 5.31(\mathrm{~s}, 1 \mathrm{H}), 5.34(\mathrm{~s}, 1 \mathrm{H}), 7.22-7.30(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\square 20.89,22.65,32.03$, $48.78,50.59,76.65,114.58,127.89,128.52,128.75,136.58,137.75$; IR (film): 2968, 2887, 1634, 1496, 1456, 1368, $1247 \mathrm{~cm}^{-1}$; Anal calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{ClNO}_{3} \mathrm{P}: \mathrm{C}, 54.63$; H , 6.42; N, 4.25. Found: C, 54.36; H, 6.41; N, 4.27.

14

Benzyl -(5,5-dimethyl-2-oxo-2 \square^{5} - [1,3,2] dioxaphosphinan-2-yl) - (2-methyl-

allyl)-amine (14): Prepared following the general procedure from 2-methyl-2-propen-1ol in 60% yield (1.48 g) as a white solid. mp $76-78{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR: $\square 0.82(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~s}$, $3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 3.44(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{dd}, J=9.9,22.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.14(\mathrm{~d}, J=$ $10.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.37(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.74(\mathrm{~s}, 1 \mathrm{H}), 4.88(\mathrm{~s}, 1 \mathrm{H}), 7.22-7.28(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\square 19.94,20.92,22.72,32.03,48.11,50.49,76.53,114.01,127.53,128.57,137.38$, 140.78; IR (film): 3067, 3031, 2968, 2887, 1456, 1368, $1244 \mathrm{~cm}^{-1}$; Anal calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NO}_{3} \mathrm{P}: \mathrm{C}, 62.12 ; \mathrm{H}, 7.82$; N, 4.53. Found: C, 62.45; H, 7.83; N, 4.53.

20

Benzyl -(5,5-dimethyl-2-oxo-2 \square^{\top} - [1,3,2] dioxaphosphinan-2-yl)-pent-2-enyl-

 amine (20): Prepared following the general procedure from 1-penten-3-ol in 50% yield $(1.29 \mathrm{~g})$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR: $\square 0.81(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H})$, $1.97-1.98$ (m, 2H), 3.42 (dd, $J=6.4,11.6 \mathrm{~Hz}, 2 \mathrm{H}$), 3.76 (dd, $J=9.9,21.6 \mathrm{~Hz}, 2 \mathrm{H}$), 4.19 $(\mathrm{d}, J=10.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.34(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.27-5.33(\mathrm{~m}, 1 \mathrm{H}), 5.41-5.47(\mathrm{~m}, 1 \mathrm{H})$, 7.18-7.26 (m, 5H); ${ }^{13} \mathrm{C}$ NMR: $\square 13.67,20.92,22.63,25.36,31.99,46.80,48.23,76.44$, 124.57, 127.37, 128.41, 128.52, 136.82, 137.85; IR (film): 3030, 2964, 2933, 2886, 1456, 1368, $1243 \mathrm{~cm}^{-1}$; Anal calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{NO}_{3} \mathrm{P}: \mathrm{C}, 63.14 ; \mathrm{H}, 8.10$; N, 4.33. Found: C, 62.79; H, 8.12; N, 4.37.

22

Benzyl-(1-butyl-but-2-enyl)-(5,5-dimethyl-2-oxo-2 $\square^{\top}-[1,3,2]$ dioxaphosphinan-

2-yl)-amine (22): Prepared following the general procedure from (E)-3-octen-2-ol in 75% yield $(2.19 \mathrm{~g})$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR: $\square 0.71(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.79(\mathrm{~s}, 3 \mathrm{H})$, $1.06-1.07(\mathrm{~m}, 4 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 1.33-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.54(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.69-3.78$ $(\mathrm{m}, 3 \mathrm{H}), 4.18(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.34(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.32-5.45(\mathrm{~m}, 2 \mathrm{H}), 7.14-$ $7.17(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.33(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $]$ 14.08, 17.92, 21.00, $22.48,22.78,28.76,32.05,32.93,47.58,59.24,76.35,127.10,127.61,128.25,128.35$, 131.58, 140.02; IR (film): 2960, 1454, 1367, $1245 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\left[\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{NO}_{3} \mathrm{P}+\mathrm{H}\right]^{+}: 366.2198$, Found: 366.2208.

23

Benzyl -(5,5-dimethyl-2-oxo-2 \square^{5} - $[1,3,2]$ dioxaphosphinan-2-yl) - (1-methyl-

 but-2-enyl)-amine (23): Prepared following the general procedure) from 3-penten-2-ol in 80% yield $(2.07 \mathrm{~g})$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR: $\square 0.80(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$, $1.16(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 3 \mathrm{H}), 3.70-3.79(\mathrm{~m}, 2 \mathrm{H}), 4.09-4.16(\mathrm{~m}, 2 \mathrm{H}), 4.21-4.28$ $(\mathrm{m}, 1 \mathrm{H}), 4.34(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.33-5.48(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.25(\mathrm{~m}$, 2H), 7.30-7.32 (m, 2H); ${ }^{13} \mathrm{C}$ NMR: \square 17.74, 19.31, 20.98, 22.71, 32.02, 46.96, 53.79, $76.34,126.71,126.91,127.95,128.30,132.66,140.51$; IR (film): 2968, 1455, 1368, 1241 cm^{-1}; Anal calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{NO}_{3} \mathrm{P}: \mathrm{C}, 63.14 ; \mathrm{H}, 8.10 ; \mathrm{N}, 4.33$. Found: C, $62.91 ; \mathrm{H}, 8.26$; N, 4.32.

27

2-\{[Benzyloxycarbonyl -(5,5-dimethyl-2-oxo-2 \square^{\top} - [1,3,2] dioxaphosphinan-2-

 yl) -amino]-methyl\}-but-2-enoic acid methyl ester (27): Prepared following the general procedure except the rearrangement reaction was carried out at $40{ }^{\circ} \mathrm{C}$ for 4 h from 2-(1-hydroxy-ethyl)-acrylic acid methyl ester in 65% yield (2.14 g) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR: $\square 0.73(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{dd}$, $J=9.7,17.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.28(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.48(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H})$, $6.90(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.33(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: \square 14.40, 20.74, 22.77, 32.36, $42.78,51.73,69.01,79.62,128.87,128.95,129.16,129.21,135.03,142.31,155.78$, 167.47; IR (film): 2966, 1714, 1459, 1438, 1396, $1278 \mathrm{~cm}^{-1}$; Anal calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NO}_{7} \mathrm{P}$: C, 55.47; H, 6.37; N, 3.40. Found: C, 55.49; H, 6.46; N, 3.34.

28

2-\{[Benzyloxycarbonyl -(5,5-dimethyl-2-oxo-2 $\square^{5}-[1,3,2]$ dioxaphosphinan-2-

 yl) -amino]-methyl\}-pent-2-enoic acid methyl ester (28): Prepared following the general procedure except the rearrangement reaction was carried out at $40{ }^{\circ} \mathrm{C}$ for 4 h from 2-(1-hydroxy-propyl)-acrylic acid methyl ester in 60% yield (2.04 g) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR: $\square 0.72(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{t}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 2.16-2.20(\mathrm{~m}, 2 \mathrm{H})$, $3.60(\mathrm{~s}, 3 \mathrm{H}), 3.93(\mathrm{dd}, J=10.3,17.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.30(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.48(\mathrm{~d}, J=9.8$ $\mathrm{Hz}, 2 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H}), 6.80(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.33(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: \square 13.35,20.74, 21.86, 22.78, 32.36, 43.02, 51.77, 68.95, 79.60, 127.81, 128.88, 128.92, 129.09, $135.08,148.81,155.79,167.63$; IR (film): 2967, 2361, 1714, 1459, 1395, $1283 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\left[\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{NO}_{7} \mathrm{P}+\mathrm{Na}\right]^{+}: 448.1501$, Found: 448.1501.

General procedure for the Pd (II) catalyzed rearrangement:

To a solution of $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})$ cooled in an ice $/ \mathrm{H}_{2} \mathrm{O}$ bath was added the allylic alcohol ($2.5 \mathrm{mmol}, 1.0 \mathrm{eq}$) and $\mathrm{Et}_{3} \mathrm{~N}(2.5 \mathrm{mmol}, 1.0 \mathrm{eq})$, followed by a solution of 2-chloro-5,5-dimethyl-1,3,2-dioxaphosphorinane ($2.5 \mathrm{mmol}, 1.0 \mathrm{eq}$) in $5 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$. The solution was then allowed to stir for 20 min and the precipitated $\mathrm{Et}_{3} \mathrm{~N} \cdot \mathrm{HCl}$ was removed by filtration. The $\mathrm{Et}_{2} \mathrm{O}$ was removed under vacuum and the residue was dissolved in $5 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$. The resulting solution was added dropwise to a solution of tosyl azide or cbz azide (3.7 mmol , 1.5 eq) in $2 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ cooled in an ice- $\mathrm{H}_{2} \mathrm{O}$ bath. The reaction mixture was slowly warmed to rt over 1 h and then $10 \mathrm{~mol} \% \mathrm{PdCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}$ was added to the reaction mixture. After stirring at rt for $30 \mathrm{~min}-1 \mathrm{~h}$, the reaction mixture was then concentrated in vacuo, and the crude product was subjected to flash chromatography (2:3 hexanes $/ \mathrm{EtOAc}$) for isolation of the phosphoramidate product.

25

N - (5,5-dimethyl-2-oxo-2 \square^{5}-[1,3,2] dioxaphosphinan-2-yl)-4-methyl- N-(1-

 propyl-allyl) -benzenesulfonamide (25): Prepared following the general procedure in 95% yield (953 mg) from trans-2-hexen-1-ol and 90% yield (903 mg) from cis-2-hexen-1-ol as a colorless oil. ${ }^{1} \mathrm{H}$ NMR: $\square 0.75(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 3 \mathrm{H}), 1.08-1.18(\mathrm{~m}$, $2 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.64-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.93(\mathrm{~m}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 3.89-4.08(\mathrm{~m}, 3 \mathrm{H})$, 4.53-4.61 (m, 3H), 4.84 (d, $J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.95-6.04(\mathrm{~m}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, $7.76(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\square 13.75,19.94,21.05,21.79,22.87,32.67(\mathrm{~d}, J=10.6$ $\mathrm{Hz}), 36.13,64.49,79.41(2 \mathrm{~d}, J=6.8,6.9 \mathrm{~Hz}), 117.91,128.22,129.76,136.94,144.62$; IR(film): 2964, 2875, 1599, 1466, 1345, 1274, $1165 \mathrm{~cm}^{-1}$; Anal calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{NO}_{5} \mathrm{PS}: \mathrm{C}$, 53.85; H, 7.03; N, 3.49. Found: C, 53.90; H, 7.19; N, 3.49.

29
N - (5,5-dimethyl-2-oxo- $2 \square^{5}-[1,3,2]$ dioxaphosphinan-2-yl)-N-(1-ethyl-allyl)-4-methyl-benzenesulfonamide (29): Prepared following the general procedure in 90% yield (871 mg) from trans-2-penten-1-ol as a white solid. $\mathrm{mp} 122-124{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR: $0.75(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.82-1.86(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 3.81-$ $3.92(\mathrm{~m}, 1 \mathrm{H}), 3.99-4.08(\mathrm{~m}, 2 \mathrm{H}), 4.52-4.63(\mathrm{~m}, 3 \mathrm{H}), 4.84(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.93-6.02$ $(\mathrm{m}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR: \square 11.30, 21.03, 21.77, 22.82, 27.07, $32.65(\mathrm{~d}, J=10.7 \mathrm{~Hz}), 66.16,79.39(2 \mathrm{~d}, J=7.7,7.7 \mathrm{~Hz}), 117.94$, 128.19, 129.76, 136.82, 144.62; IR (film): 2971, 2878, 1598, 1464, 1345, 1273, $1162 \mathrm{~cm}^{-}$ ${ }^{1}$; Anal calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{NO}_{5} \mathrm{PS}: \mathrm{C}, 52.70 ; \mathrm{H}, 6.76$; N, 3.62. Found: C, 52.37; H, 6.70; N, 3.57.

30
N - Allyl- N - (5,5-dimethyl-2-oxo-2 \square^{5}-[1,3,2] dioxaphosphinan-2-yl)-4-methyl-
benzenesulfonamide (30): Prepared following the general procedure in 95% yield (854 mg) from allyl alcohol as a white solid. mp $85-86{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR: $\square 0.99(\mathrm{~s}, 3 \mathrm{H}), 1.34$ (s, $3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 4.00(\mathrm{dd}, J=6.0,12.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.08(\mathrm{dd}, J=9.9,16.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.55$ (dd, $J=5.1,9.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.11(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.78-5.86$ $(\mathrm{m}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR: $\square 20.92,21.73$,
$22.52,32.55(\mathrm{~d}, J=9.9 \mathrm{~Hz}), 51.23,79.25(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 118.60,127.87,129.90,133.46$, 136.42, 144.73; IR (film): 2971, 1598, 1474, 1352, 1279, $1167 \mathrm{~cm}^{-1}$; Anal calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}_{5} \mathrm{PS}: \mathrm{C}, 50.13 ; \mathrm{H}, 6.17$; N, 3.90. Found: C, 50.02; H, 6.12; N, 3.91.

31

N - But-2-enyl- N - (5,5-dimethyl-2-oxo-2 \square^{5}-[1,3,2] dioxaphosphinan-2-yl)-4-

 methyl-benzenesulfonamide (31): Prepared following the general procedure in 82% yield (765 mg) from 3-buten-2-ol as a colorless oil. ${ }^{1} \mathrm{H}$ NMR: $\square 0.92(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H})$, $1.50(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{dd}, J=6.4,12.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.01(\mathrm{dd}, J=10.5$, $16.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.47(\mathrm{dd}, J=5.5,10.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.36-5.54(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.73(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\square 17.81,21.01,21.74,22.64,32.57(\mathrm{~d}, J=10.0$ $\mathrm{Hz}), 50.94,79.19(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 126.21,127.97$, 129.79, 130.50, 136.74, 144.56; IR (film): 2969, 1598, 1473, 1347, 1280, $1167 \mathrm{~cm}^{-1}$; Anal calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NO}_{5} \mathrm{PS}: \mathrm{C}, 51.46$; H, 6.48; N, 3.75. Found: C, 51.46; H, 6.52; N, 3.77.

32

N - Cyclohex-2-enyl- N - (5,5-dimethyl-2-oxo-2 \square^{5}-[1,3,2] dioxaphosphinan-2-

 yl)-4-methyl-benzenesulfonamide (32): Prepared following the general procedure from 2-cyclohexen-1-ol in 55% yield (549 mg) as a white solid. $\mathrm{mp} 130-132{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR: \square $0.92(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.34-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.93-$ $2.00(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 3.99-4.06(\mathrm{~m}, 2 \mathrm{H}), 4.20-4.26(\mathrm{~m}, 1 \mathrm{H})$, 4.48-4.53 (m, 2H), 5.26-5.29 (m, 1H), 5.60-5.63 (m, 1H), $7.26(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) 7.77$(d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\square 21.07,21.77,22.69,22.73,24.06,28.45,32.66(\mathrm{~d}, J=$ $10.7 \mathrm{~Hz}), 58.73,79.30,127.84,129.58,129.95,136.93,144.64$; IR (film): 2967, 2940, 1598, 1463, 1344, 1284, $1167 \mathrm{~cm}^{-1}$; Anal calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NO}_{5} \mathrm{PS}: \mathrm{C}, 54.12 ; \mathrm{H}, 6.56 ; \mathrm{N}$, 3.51. Found: C, 53.89; H, 6.78; N, 3.42.

26
(5,5-Dimethyl-2-oxo-2 \square^{5} - [1,3,2] dioxaphosphinan-2-yl) - (1-propyl-allyl)carbamic acid benzyl ester (26): Prepared following the general procedure in 90% yield (858 mg) from trans-2-hexen-1-ol as a white solid. $\mathrm{mp} 99-101{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR: $\square 0.66$ $(\mathrm{s}, 3 \mathrm{H}), 0.82(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.22-1.26(\mathrm{~m}, 2 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 1.57-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.84-$ $1.94(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{dd}, J=10.3,16.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.17-4.20(\mathrm{~m}, 2 \mathrm{H}), 4.62-4.71(\mathrm{~m}, 1 \mathrm{H})$, $5.02(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.08-5.16(\mathrm{~m}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.99-6.06(\mathrm{~m}, 1 \mathrm{H})$, 7.29-7.31 (m, 5H); ${ }^{13} \mathrm{C}$ NMR: $\square 13.87,19.85,20.82,22.72,32.37(\mathrm{~d}, J=9.9 \mathrm{~Hz}), 35.36$, 61.16, 68.63, 79.49, 116.58, 128.76, 128.79, 128.84, 135.30, 138.56, 155.45; IR (film): 2963, 2874, 1708, 1466, 1374, $1229 \mathrm{~cm}^{-1}$; Anal calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NO}_{5} \mathrm{P}: \mathrm{C}, 59.83 ; \mathrm{H}, 7.40$; N, 3.67. Found: C, 59.51; H, 7.52; N, 3.67.

Enantiopurity and absolute stereochemistry determination for chirality transfer:

$(R)-(E)$-3-octen-2-ol $\mathbf{8}$ was prepared according to the published procedure. ${ }^{9}$ To determine the ee, a sample of $\mathbf{8}$ was converted to the benzyl ester and a 91% ee was obtained by chiral HPLC (Chiral Whelk column, $3 \% \mathrm{EtOH}$ in hexanes at $1 \mathrm{ml} / \mathrm{min}, S$ isomer, $\mathrm{t}_{\mathrm{R}}=5.60 \mathrm{~min}, R$ isomer, $\left.\mathrm{t}_{\mathrm{R}}=6.34 \mathrm{~min}\right) .(R)-(E)$-3-octen-2-ol $\mathbf{8}$ undergoes clean conversion to phosphoramidate $(S)-(E)-9$ with no erosion of stereochemical purity. A 90% ee of phosphoramidate $(S)-(E)-9$ was obtained by chiral HPLC (Chiral Whelk column, $3 \% \mathrm{EtOH}$ in hexanes at $1 \mathrm{ml} / \mathrm{min}, R$ isomer, $\mathrm{t}_{\mathrm{R}}=42.22 \mathrm{~min}, S$ isomer, $\mathrm{t}_{\mathrm{R}}=43.93$ $\min)$.

A sample of phosphoramidate $(S)-(E)-\mathbf{9}$ was converted to \square-amino ester $\mathbf{1 0}$ following the known procedure. ${ }^{7,11}$ By comparing the measured optical rotation of $\mathbf{1 0}$ and that of the previously reported enantiomer of $\mathbf{1 0},{ }^{12}$ the absolute configuration of $\mathbf{9}$ was determined to be S.

Scheme S1. Determination of absolute configuration of 9

[^1]
Crossover experiment:

Phosphorimidates $\mathbf{2 e}$ and $\mathbf{2 f}$ were formed in separate reaction flasks following the general procedure outlined for thermal rearrangement. After heating at $80{ }^{\circ} \mathrm{C}$ for $2 \mathrm{~h},{ }^{31} \mathrm{P}$ NMR confirmed the absence of the rearranged products. The crude mixtures of $\mathbf{2 e}$ and $\mathbf{2 f}$ were then combined in 1:1 ratio and refluxed for 4 h . Upon cooling, the reaction mixture was subjected to flash chromatography ($1: 9$ hexanes/EtOAc) for isolation of the phosphoramidate products. The four possible products were obtained in 75% combined yield and the product ratio was determined by GC analysis of the crude reaction mixture. All four possible products were individually synthesized and used as standards to confirm the identity of the products formed in the crossover experiment.

Coordinates and energies from DFT B3LYP/631G* calculations

Transition state of the phosphorimidate rearrangement
Energy: -936.2245446

P	0.36133833129	-0.33190580765	-0.25916203073
N	-0.4442277875	-1.6792785948	-0.37434230562
O	1.2278042026	-0.27704234474	1.1338080904
O	-0.49872357621	0.95251500294	-0.35955422234
O	1.5318664453	-0.22014034008	-1.3864884665
C	-2.1859618299	0.94324176713	0.33012943893
H	-1.8897586672	0.93525129667	1.376764538
C	-2.855577609	-0.18743504031	-0.18208220808
H	-3.299386564	-0.11980740293	-1.1723256873
C	-2.4480616441	-1.4196943876	0.29193488171
H	-2.7918293241	-2.3378592421	-0.17505086113
H	-2.1170590378	-1.5255239561	1.3209640557
C	2.5529786289	0.79062716746	-1.2309508085
H	3.251929388	0.63496905844	-2.0566751574
C	2.2357166026	0.74764889699	1.2650719736
H	2.7110951366	0.57871105657	2.2351474812
H	2.0941132926	1.7805009095	-1.3479387078
H	1.7483912911	1.7313125117	1.2833782946
C	3.2475290894	0.6640967987	0.12346440139
H	3.9898162862	1.4653520524	0.23068498307
H	3.7780980553	-0.29401767315	0.17544686827
C	0.12930571818	-2.9945191445	-0.13884246687
H	0.90016113547	-3.2439987168	-0.88195641006
H	-0.66335412262	-3.7479440003	-0.23715920042
H	0.57491633365	-3.1118531166	0.86095622417
C	-2.6970065918	2.3012657569	-0.11767382538
H	-3.6998906738	2.4977263511	0.27321693675
H	-2.7204872697	2.3756130343	-1.2106583966
H	-2.0237352395	3.0921881069	0.22989258679

Starting phosphorimidate

Energy: -936.2625867

P	0.6240881	-0.6751180	-0.2335680
N	0.0897729	-2.1025170	-0.2565512
O	1.5171593	-0.2525479	1.0703909
O	-0.5584195	0.4207545	-0.2902012
O	1.5625944	-0.1837190	-1.4666323
C	-1.8977306	0.1222428	0.2184936
H	-2.1029052	-0.9291585	-0.0001400
C	-2.8429345	1.0124847	-0.5369319
H	-2.6326504	2.0807945	-0.4772550
C	-3.8984248	0.5688963	-1.2176194
H	-4.5800994	1.2474034	-1.7234986
H	-4.1218846	-0.4930006	-1.2948635
C	2.2039706	1.1098759	-1.4118291
H	2.8359472	1.1636211	-2.3019772
C	2.1473866	1.0460924	1.1005664
H	2.7364940	1.0699215	2.0210520
H	1.4354740	1.8899857	-1.4834282
H	1.3704159	1.8190590	1.1639966
C	3.0231452	1.2577773	-0.1322920
H	3.4716481	2.2588061	-0.0969662
H	3.8379747	0.5242277	-0.1315263
C	0.7649560	-3.3790811	-0.1578970
H	1.4043485	-3.5850862	-1.0288624
H	0.0162947	-4.1790387	-0.1117664
H	1.3913694	-3.4679620	0.7422327
C	-1.9379941	0.3679690	1.7263801
H	-1.2193129	-0.2755278	2.2430260
H	-2.9397700	0.1496453	2.1117051
H	-1.7009136	1.4131999	1.9559628

[^0]: ${ }^{1}$ Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Timmers, F. J. Organometallics, 1996, 15, 1518-1520.
 ${ }^{2}$ Still, W. C.; Kahn, M.; Mitra. A. J. Org. Chem. 1978, 43, 2923.
 ${ }^{3}$ Theocharis, A. B.; Alexandrou, N. E.; Terzis, A. J. Heterocyclic Chem. 1990, 27, 1741-1744.
 ${ }^{4}$ Koziara, A.; Zwierzak, A. Synthesis 1992, 1063-1065.
 ${ }^{5}$ Buckle, D. R.; Rockell, C. J. M. J. Chem. Soc. Perkin Trans. 1 1982, 627-630.
 ${ }^{6}$ Ghosh, A. K.; Bischoff, A.; Cappiello, J. Eur. J. Org. Chem. 2003, 821-832.
 ${ }^{7}$ Chen, B.; Mapp, A. K. J. Am. Chem. Soc. 2004, 126, 5364-5365.
 Davoille, R. J.; Rutherford, D. T.; Christie, S. D. R. Tetrahedron Lett. 2000, 41, 1255-1259.
 ${ }^{8}$ Brezinski, L. J.; Rafel, S.; Leahy, J. W. Tetrahedron 1997, 53, 16423-16434.
 ${ }^{9}$ Matsumura, K.; Hashiguchi, S.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1997, 119, 8738-8739.
 ${ }^{10}$ Spartan '04, version 1.0.0; Wavefunction, Inc.; Irvine, CA, 2003.

[^1]: ${ }^{11}$ Marshall, J. A.; Garofalo, A. W. J. Org. Chem. 1993, 58, 3675-3680.
 ${ }^{12}$ Caddick, S.; Afonso, C. A. M.; Candeias, S. X.; Hitchcock, P. B.; Jenkins, K.; Murtagh, L.; Pardoe, D.; Gil Santos, A.; Treweeke, N. R.; Weaving, R. Tetrahedron 2001, 57, 6589-6605.

