Reactivity of Methyl Mandelate-Ti(IV)-Enediolate: Oxidative Homocoupling versus Aldol and Direct Mannich Type Syn-diastereoselective Condensation

Angelo Clerici, Nadia Pastori and Ombretta Porta*
Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano - Sezione Chimica, Via Mancinelli 7, 20131 Milano, Italy

Supporting Information

Contents:

Experimental Section

S-2 to S-4

General All reactions were performed under N_{2}. An anhydrous TiCl_{4} solution (1.0 M) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was used for methods i-v. ${ }^{1} \mathrm{NMR}$ spectra were recorded in CDCl_{3} on a $\mathrm{AC}-250 \mathrm{MHz}$ and diastereoselectivity were determined by ${ }^{1} \mathrm{NMR}$ analyses of the crude reaction mixtures.

Method \boldsymbol{i}. Procedure for the oxidative coupling of 2 (Table 1, entry 4). Dropwise addition of the TiCl_{4} solution ($2 \mathrm{mmol}, 2 \mathrm{~mL}$) to a solution of $2(2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, kept at $0^{\circ} \mathrm{C}$ under N_{2}, gave rise a yellow precipitate (indicative of 2-Ti(IV) complexation). After 15 min , triethylamine (TEA, 6 mmol) was slowly added (5 min) through a syringe dipping the needle into the solution. The yellow precipitate dissolved and the blue solution (indicative of Ti (III) formation) was stirred at r.t. for additional 30 min . A saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution was then added to the mixture and the aqueous layer was extracted three times with EtOAc. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. $\mathbf{3}$ was recovered in quantitative yield and the meso/dl ratio, 83:17, was determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture.

Dimethyl 2,3-dihydroxy-2,3-diphenylbutanedioate (3). The diastereomers were separated by flash column chromatography (hexane/EtOAc, 6.5/3.5). meso-isomer (less polar) was recrystallized from ethyl ether to give colorless square crystals of mp $153{ }^{\circ} \mathrm{C}$ (lit. mp 151-3 ${ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.85\left(6 \mathrm{H}, 2 \mathrm{OCH}_{3}, \mathrm{~s}\right), 5.0\left(2 \mathrm{H}, 2 \mathrm{OH}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exch.), 7.0-7.2 ($10 \mathrm{H}, \mathrm{Ph} \mathrm{H}, \mathrm{m}$). dl-isomer (more polar) was recrystallized from $\mathrm{CH}_{3} \mathrm{COCH}_{3} /$ hexane to give white crystals of $\mathrm{mp} 120-1{ }^{\circ} \mathrm{C}$ (lit. ${ }^{1}$ mp 119-21 $\left.{ }^{\circ} \mathrm{C}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.79\left(6 \mathrm{H}, 2 \mathrm{OCH}_{3}, \mathrm{~s}\right), 5.5\left(2 \mathrm{H}, \mathrm{OH}, \mathrm{br}, \mathrm{D}_{2} \mathrm{O}\right.$ exch.), 7.0-7.5 (10 H, Ph H, m). Juday, R. E. J. Org. Chem. 1958, 23, 1010.

Method ii. Procedure for the oxidation of 2 to 1 (Table 1, entry 7). Dropwise addition of TEA (6 $\mathrm{mmol})$ to a solution of $2(2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, kept at $0^{\circ} \mathrm{C}$ under N_{2}, was followed after 10 min. by slow addition (5 min) of a TiCl_{4} solution ($2 \mathrm{mmol}, 2 \mathrm{~mL}$). The resulting blue solution was stirred for additonal 30 min at r.t. Work up as above. ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction residue gave methyl phenylglyoxylate 1 (30\%), 3-meso (14\%) and the starting 2 (56\%).

Method iii. Procedure for Aldol condensation of 2 (Table 2, entry 2). Dropwise addition of the TiCl_{4} solution ($2 \mathrm{mmol}, 2 \mathrm{~mL}$) to a solution of $2(2 \mathrm{mmol})$ and 4-bromobenzaldehyde (2 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, at $0^{\circ} \mathrm{C}$ under N_{2}, afforded a yellow precipitate. After 15 min , TEA (4 mmol) was slowly added (6 min) through a syringe dipping the needle into the solution. The precipitate dissolved and the yellow solution was stirred at r.t. for additional 30 min . Work up as above afforded 4 in quantitative yield. The syn/anti ratio, 83:17, was determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture.

Methyl 2,3-dihydroxy-2-phenyl-3-(4-bromophenyl)propanoate (4). For spectroscopic data of both isomers and X-ray structure of 4-syn. Clerici, A.; Clerici. L.; Malpezzi, L.; Porta, O. Tetrahedron 1995, 51, 13385-13400.

Method $\boldsymbol{i} \boldsymbol{v}$. Procedure for Aldol condensation of 2 (Table 2, entry 5). Dropwise addition of TEA (4 mmol) to a solution of $\mathbf{2}(2 \mathrm{mmol})$ and 4-bromobenzaldehyde (2 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, kept at $0^{\circ} \mathrm{C}$ under N_{2}, gave rise to a yellow homogeneous solution. The colour of the solution did not change upon $\mathrm{TiCl}_{4}(2 \mathrm{mmol}, 2 \mathrm{~mL})$ dropwise addition (5 min). The reaction mixture was allowed to react for additional 30 min at r.t. Work up and ${ }^{1} \mathrm{H}$ NMR analysis as above.

Method \boldsymbol{v}. Procedure for direct Mannich type condensation (Table 3, entry 4). The TiCl_{4} solution ($4 \mathrm{mmol}, 4 \mathrm{~mL}$) is added dropwise in 6 min to a well stirred solution of $\mathbf{2}(2 \mathrm{mmol}), 4$ bromobenzaldehyde (2 mmol), aniline (3 mmol) and TEA (4 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL}$), kept at r.t.under N_{2}. The yellow solution was allowed to react for 2 h at the same temperature. Work up and
${ }^{1} \mathrm{H}$ NMR analysis as above. The Mannich product 5 could be directly extracted from the aqueous acidic solution (work up as above), whereas the unraected aniline remained in the aqueous layer.

Methyl 2-hydroxy-2-phenyl-3-(4-bromophenyl)-3-phenylaminopropanoate (5-syn). Flash column chromatography (hexane/EtOAc, 7:3) of the crude residue afforded in the order: imine (traces), unreacted 4-bromobenzaldehyde, 5-syn ($510 \mathrm{mg}, 60 \%$) and unreacted $\mathbf{2}$.

Recrystallization of 5-syn from hexane/EtOAc gave pale yellow needles of mp $144-6{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.82\left(3 \mathrm{H}, \mathrm{OCH}_{3}, \mathrm{~s}\right), 4.13\left(1 \mathrm{H}, \mathrm{OH}, \mathrm{br}, \mathrm{D}_{2} \mathrm{O}\right.$ exch. $), 4.85\left(1 \mathrm{H}, \mathrm{NH}, \mathrm{br}, \mathrm{D}_{2} \mathrm{O}\right.$ exch. $), 5.20$ $(1 \mathrm{H}, \mathrm{CH}, \mathrm{s}), 6.60(2 \mathrm{H}, \mathrm{Ph} \mathrm{H}, \mathrm{m}), 6.67(1 \mathrm{H}, \mathrm{Ph} \mathrm{H}, \mathrm{m}), 6.91(2 \mathrm{H}, \mathrm{Ph} \mathrm{H}, \mathrm{m}), 7.05-7.15(4 \mathrm{H}, \mathrm{Ph} \mathrm{H}, \mathrm{m})$, $7.23(3 \mathrm{H}, 1 \mathrm{Ph} \mathrm{H}+2 \mathrm{Ar} \mathrm{H}, \mathrm{m}), 7.52(2 \mathrm{H}, \mathrm{Ar} \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR: 53.9, 62.6, 81.4, 114.4, 118.3, 121.2, $125.8,126.8,128.1,129.1,130.1,130.2,130.6,138.2,145.9,174.6$ IR (KBr) $v_{\max } 3500,3380$, 1720, $1240 \mathrm{~cm}^{-1}$. EIMS (m / z) 427-425 $\left(\mathrm{M}^{+},<1\right), 368-366\left(\mathrm{M}-\mathrm{CO}_{2} \mathrm{CH}_{3},<1\right), 262-260(100), 180$ (20), 77 (80). Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{NO}_{3} \mathrm{Br}: \mathrm{C}, 62.12 ; \mathrm{H}, 4.71$; N, 3.29, Found: C, 62.02; H, 4.67; N, 3.25. Crystallographic data (excluding structure factors) for $\mathbf{5}$-syn has been deposited with Cambridge Crystallographic Data Centre as supplementary publication ${ }^{\circ}$ CCDC 1267/1273. Copies of the data can be obtained, free of charge, on application to the CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax: +44 (0)1 2233336033 or e-mail: deposit@ccdc.cam.ac.uk).

