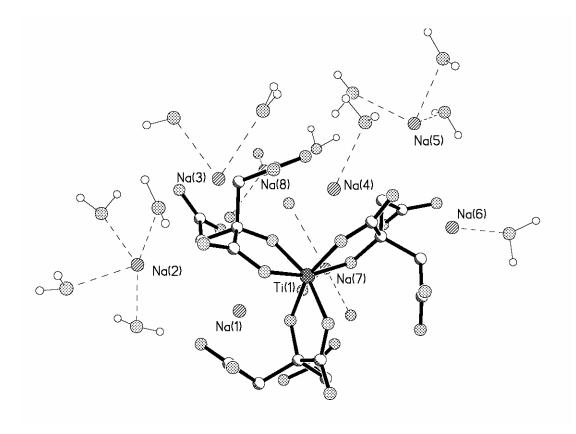
Supporting Information

Titanium(IV) Citrate Speciation and Structure Under Environmentally and Biologically Relevant Conditions


Joseph M. Collins, Ritika Uppal, Christopher D. Incarvito, Ann M. Valentine*

Yale University Department of Chemistry, PO Box 208107, New Haven, CT, 06520

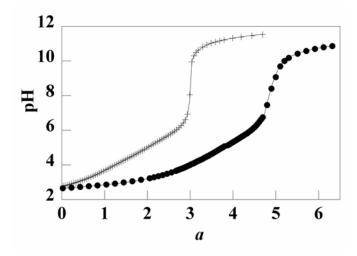

Figure S1. X-ray crystal structure of $Na_8[Ti(C_6H_4O_7)_3] \cdot 17H_2O$ with counterions and lattice waters included.

Figure S2. Potentiometric titration data with overlaid fit from the program BEST (see article for reference) for citrate alone (+) (σ_{fit} =0.003759) and for 3.8:1 citrate:Ti(IV) (•) (σ_{fit} =0.023319). The value on the x-axis, *a*, represents the net moles of base added per mole of ligand.

Table S1. Comparison of goodness-of-fit (σ_{fit}) values for representative least-square fits using the program BEST.

Figure S1. X-ray crystal structure of $Na_8[Ti(C_6H_4O_7)_3]$ ·17H₂O with counterions and lattice waters included.

Figure S2. Potentiometric titration data with overlaid fit from the program BEST (see article for reference) for citrate alone (+) (σ_{fit} =0.003758) and for 3.8:1 citrate:Ti(IV) (•) (σ_{fit} =0.023319). The value on the x-axis, *a*, represents the net moles of base added per mole of ligand.

Table S1. Comparison of goodness-of-fit (σ_{fit}) values for representative least-square fits
using the program BEST.

Description ^a	Fitted species (in β_{LMH} notation ^b)	$\sigma_{\rm fit}$
titration of ligand alone ^c	$\beta_{101}, \beta_{102}, \beta_{103}$	0.003758
reported speciation ^d	$\beta_{110}, \beta_{313}, \beta_{311}, \beta_{31-1}, \beta_{31-3}, \beta_{21-4}$	0.023319
unevenly-charged 3:1 complexes	$\beta_{110}, \beta_{312}, \beta_{310}, \beta_{31-2}, \beta_{31-3}, \beta_{21-4}$	0.028478
all reasonable 3:1 complexes	$\beta_{313}, \beta_{312}, \beta_{311}, \beta_{310}, \beta_{31-1}, \beta_{31-2}, \beta_{31-3}$	0.029345
six 2:1 species	$\beta_{212}, \beta_{211}, \beta_{210}, \beta_{21-1}, \beta_{21-2}, \beta_{21-4}$	0.050255
starting with 20 reasonable	$\beta_{110}, \beta_{11-3}, \beta_{313}, \beta_{310}, \beta_{31-3}, \beta_{21-4}$	0.079971
species (none hydrolytic) ^e		
hyodrolytic (TiOH _n ⁴⁻ⁿ) species	$\beta_{01-1}, \beta_{01-2}, \beta_{01-3}, \beta_{01-4}, \beta_{01-5}, \beta_{01-6}$	>0.15 ^f
only		

^a All of the data in this table were generated from the L:M 3.8:1 titration. The following were held as constants for all fits: $cit_{total} = 0.0500 \text{ mmol}$; $Ti^{4+}_{total} = 0.0128 \text{ mmol}$; titrateable $H^+_{total} = 0.200 \text{ mmol}$; xsH = 0.1412 mmol; $\log \beta_{101} = 5.6753$; $\log \beta_{102} = 9.9861$; $\log \beta_{103} = 12.8700$; $\log \beta_{00-1} = -13.79$.

^b L = Hcit³⁻; M = Ti⁴⁺; H = H⁺.

^{c,d} See overlay of these fits with the respective experimental data in Figure S2. ^e 6 1:1 species, 7 2:1 species, 7 3:1 species; all but six were ultimately rejected as being insignificant by the fitting algorithm. The inherent problem with this approach is the initial estimates made for the log β values; some bias, if introduced here, can lead to "random" minimizations, where reasonable fits are obtained for unreasonable models. ^f Depending on the starting values, optimization eliminated all but 2 or 3 of these and they only fit the beginning and end of the experimental pH range.