1,2-Rearrangements of β-Nitrogen Substituted Porphyrinatorhodium(III) Ethyls Siu Kwan Yeung and Kin Shing Chan*
Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China

Supporting Information

Contents:

(1) Experimental instrumentationS2
(2) General procedures
(a) Preparation of 2-Bromoethylamine S2
(b) Preparation of Porphyrinatorhodium(III) Alkyls [Rh(por)R]. S3
(c) 1,2-Rearrangement Reaction of Porphyrinatorhodium(III) β - S8aminoalkyl Complexes [$\mathbf{R h}$ (por) R]
(d) Reactions of Porphyrinatorhodium(III) Alkyls with Styrene at S9
$80^{\circ} \mathrm{C}$
(3) Thermal reaction S9
(a) Thermal reaction of $\mathbf{(5 , 1 0 , 1 5 , 2 0 - T e t r a t o y l p o r p h y r i n a t o)} \mathbf{- 2}-(N-$ S9 phthalimido)ethyl Rhodium(III)(b) Thermal reaction of (5,10,15,20-Tetratoylporphyrinato)-1-(N -S9phthalimido)ethyl Rhodium(III)
(c) Thermal reaction of (5,10,15,20-Tetratoylporphyrinato)-2-(N - S10pyrrolidin-2-onyl)ethyl Rhodium(III)
(d) Thermal reaction of (5,10,15,20-Tetratoylporphyrinato)-2-(N, N - S10dibenzylamino)ethyl Rhodium(III)
(e) Thermal reaction of (5,10,15,20-Tetratoylporphyrinato)-2-
aminoethyl rhodium(III)
(f) Thermal reaction of $(\mathbf{5}, \mathbf{1 0}, \mathbf{1 5 , 2 0} \mathbf{- m e s o}$-Tetrakis($3,5-\mathrm{di}-\boldsymbol{t}$ -butylphenyl)porphyrinato)-2-(N-phthalimido)ethyl Rhodium(III)
(g) Thermal reaction of $(\mathbf{5}, \mathbf{1 0}, \mathbf{1 5}, 20-$ meso-Tetrakis($3,5-\mathrm{di}-\boldsymbol{t}$ -butylphenyl)porphyrinato)-2-aminoethyl Rhodium(III)
(h) Thermal reaction of $(5,10,15,20-m e s o-T e t r a k i s(3,5-d i-t-$ butylphenyl)porphyrinato)-2-(N, N-dimethylamino)ethyl Rhodium(III)
(4) X-ray data and Structures S12
(5) References S16
(1) Experimental instrumentation:

All materials were obtained from commercial suppliers and used without further purification unless otherwise specified. Benzene was distilled from sodium. Dichloromethane and hexanes for reaction were distilled from calcium hydride. Hexanes for chromatography were distilled from anhydrous calcium chloride. $\mathrm{N}, \mathrm{N}-$ Dimethylformamide (DMF) was distilled from magnesium sulfate under reduced pressure. ${ }^{1}$

Thin layer chromatography was performed on Merck pre-coated silica gel $60 \mathrm{~F}_{254}$ plates. Silica gel (Merck, 70-230 and 230-400 mesh) and neutral aluminium oxide (Merck, activity I, 170-230 mesh) were used for column chromatography.
${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Brüker DPX 300 ($300 \mathrm{MHz)} \mathrm{spectrometer}$. Spectra were referenced internally to the residual proton resonance in $\mathrm{CDCl}_{3}(\delta 7.26$ $\mathrm{ppm})$, tetramethylsilane (TMS, $\delta 0.00 \mathrm{ppm})$, tetrakistrimethylsilysilane ((TMS) ${ }_{4} \mathrm{Si}, \delta$
0.00 ppm) or with $\mathrm{C}_{6} \mathrm{D}_{6}(\delta 7.15 \mathrm{ppm})$ as the internal standard. Chemical shifts (δ) were reported as part per million (ppm) in δ scale downfield from TMS or (TMS) 4 Si . ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Brüker DPX $300(75 \mathrm{MHz})$ spectrometer and referenced to $\mathrm{CDCl}_{3}(\delta 77.00 \mathrm{ppm}$). Coupling constants (J) were reported in Hertz (Hz). High resolution mass spectra (HRMS) were performed on a Thermofinnign MAT 95 XL (FABMS).

(2) General procedures:

(a) Preparation of 2-bromoethylamine ${ }^{2}$ [(2-Bromoethyl)- N, N-dibenzylamine as an example]
(2-Hydroxyethyl)-N,N-dibenzylamine ${ }^{3}$ ($178 \mathrm{mg}, 2.00 \mathrm{mmol}$) was dissolved in cyclohexane (15 mL). N, N-dimethylformamide $(0.10 \mathrm{~mL}, 1.2 \mathrm{mmol})$ and thionyl bromide ($0.19 \mathrm{~mL}, 2.4 \mathrm{mmol}$) were added successively under a nitrogen atmosphere. The yellow reaction mixture, separated into two layers, was then stirred for 3 h at room temperature. The reaction suspension was diluted with dichloromethane until it became homogeneous, then the pale yellow solution was neutralized with saturated NaHCO_{3} solution. The organic layer was washed with water ($3 \times 5 \mathrm{~mL}$), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo to afford the desired (2-bromoethyl)-N,N-dibenzylamine as a yellow liquid ($0.24 \mathrm{~g}, 1.58 \mathrm{mmol}, 78 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.86(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 3.31(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 3.64(\mathrm{~s}$, $4 \mathrm{H}), 7.21-7.39(\mathrm{~m}, 10 \mathrm{H})$.

N-(2-Bromoethyl)-pyrrolidin-2-one. ${ }^{2}$ A yellow liquid ($0.24 \mathrm{~g}, 1.26 \mathrm{mmol}, 49 \%$). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.03(\mathrm{q}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 2.43(\mathrm{t}, 2 \mathrm{H}, J=7.9 \mathrm{~Hz}), 3.48-$ $3.57(\mathrm{~m}, 4 \mathrm{H}), 3.69(\mathrm{t}, 2 \mathrm{H}, J=6.3 \mathrm{~Hz})$.
(b) Preparation of Porphyrinatorhodium(III) Alkyls [Rh(por)R]: General procedure. ${ }^{4}$
(5,10,15,20-Tetratoylporphyrinato)2-(N-phthalimido)ethyl rhodium(III) (1a) by reductive alkylation of $\mathrm{Rh}(\operatorname{ttp}) \mathrm{Cl}$ was described as a typical example for the preparation of porphyrinatorhodium(III) alkyl complex.

A suspension of $\mathrm{Rh}(\mathrm{ttp}) \mathrm{Cl}^{5}(150 \mathrm{mg}, 0.186 \mathrm{mmol})$ in $\mathrm{EtOH}(50 \mathrm{~mL})$ and a solution of $\mathrm{NaBH}_{4}(28.2 \mathrm{mg} 0.743 \mathrm{mmol})$ in aq $\mathrm{NaOH}(0.1 \mathrm{M}, 3 \mathrm{~mL})$ were purged with N_{2} for 15 min separately. The solution of NaBH_{4} was added slowly to the suspension of $\mathrm{Rh}(\mathrm{ttp}) \mathrm{Cl}$ via a cannular. The solution mixture was heated at $50^{\circ} \mathrm{C}$ under N_{2} for 1 h to give a brown suspension. The solution was then cooled to $30{ }^{\circ} \mathrm{C}$ under N_{2} and N -(2-Bromoethyl)phthalimide ($360 \mathrm{mg}, 1.2 \mathrm{mmol}$) was added. A reddish orange suspension was formed. After stirred at room temperature for another 15 min under N_{2}, the reaction mixture was worked up by extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}$. The combined organic extract was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and rotatory evaporated. The reddish orange residue was purified by column chromatography over silica gel (250400 mesh) using a solvent mixture of hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}(4: 1)$ as the eluent. The major orange fraction was collected and gave reddish orange solid $(101 \mathrm{mg}, 1.07 \mathrm{mmol}$, 71%) as the product after rotary evaporation. The product was further purified by recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH} . \mathrm{R}_{f}=0.59$ (hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 1$); ${ }^{1} \mathrm{H} \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta-5.05\left(\mathrm{dt}, 2 \mathrm{H},{ }^{2} J_{\mathrm{Rh}-\mathrm{H}}=3.0 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=9.0 \mathrm{~Hz}\right),-2.39(\mathrm{t}, 2 \mathrm{H}, J=$ $9.0 \mathrm{~Hz}), 2.69(\mathrm{~s}, 12 \mathrm{H}), 7.08(\mathrm{~d}, 2 \mathrm{H}, J=9.0 \mathrm{~Hz}), 7.19(\mathrm{dd}, 2 \mathrm{H}, J=3.0,6.0 \mathrm{~Hz}), 7.51$ $(\mathrm{t}, 8 \mathrm{H}, J=6.0 \mathrm{~Hz}), 8.04(\mathrm{dd}, 8 \mathrm{H}, J=3.0,9.0 \mathrm{~Hz}), 8.78(\mathrm{~s}, 8 \mathrm{H}) ; \operatorname{HRMS}(\mathrm{FABMS}):$

Calcd for $\left(\mathrm{C}_{58} \mathrm{H}_{44} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{Rh}\right)^{+}$: m/z 945.2545. Found: m/z 945.2495. Anal. Calcd for $\mathrm{C}_{59} \mathrm{H}_{45} \mathrm{Cl}_{3} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{Rh} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 72.27 ; \mathrm{H}, 4.60 ; \mathrm{N}, 7.27$. Found C, 72.12; H, 4.52; N, 7.05.
(5,10,15,20-Tetratoylporphyrinato)-2-(N-pyrrolidin-2-onyl)ethyl Rhodium(III) (2a). Reddish orange solids (50\%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}\right) \delta-5.10$ (dt, $2 \mathrm{H},{ }^{2} J_{\mathrm{Rh}-\mathrm{H}}$ $\left.=3.2 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=9.2 \mathrm{~Hz}\right),-2.70(\mathrm{t}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}),-0.27(\mathrm{q}, 2 \mathrm{H}, J=7.7 \mathrm{~Hz}), 0.57(\mathrm{t}$, $2 \mathrm{H}, J=8.1 \mathrm{~Hz}), 1.07(\mathrm{p}, 2 \mathrm{H}, J=4.0 \mathrm{~Hz}), 2.15(\mathrm{~s}, 12 \mathrm{H}), 7.03(\mathrm{~d}, 4 \mathrm{H}, J=7.4 \mathrm{~Hz})$, 7.09 (d, $4 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.95$ (t, $8 \mathrm{H}, J=9.2 \mathrm{~Hz}$), 8.76 (s, 8 H); HRMS (FABMS): Calcd for $\left(\mathrm{C}_{54} \mathrm{H}_{46} \mathrm{~N}_{5} \mathrm{ORh}\right)^{+}: \mathrm{m} / \mathrm{z}$ 883.2752. Found: m/z 883.2692. Anal. Calcd for $\mathrm{C}_{54} \mathrm{H}_{46} \mathrm{~N}_{5} \mathrm{ORh} \cdot \mathrm{CH}_{3} \mathrm{OH}: \mathrm{C}, 70.73 ; \mathrm{H}, 5.61 ; \mathrm{N}, 7.50$. Found C, 70.97; H, 5.29; N, 7.45.
(5,10,15,20-Tetratoylporphyrinato)-2-(N,N-dibenzylamino)ethyl Rhodium(III) (3a). Red solid (39\%) ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}\right) \delta-4.74\left(\mathrm{dt}, 2 \mathrm{H},{ }^{2} J_{\mathrm{Rh}-\mathrm{H}}=3.0 \mathrm{~Hz}\right.$, $\left.{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.0 \mathrm{~Hz}\right),-3.43(\mathrm{t}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}),-1.31(\mathrm{~s}, 4 \mathrm{H}), 2.17(\mathrm{~s}, 12 \mathrm{H}), 5.71(\mathrm{~d}, 4 \mathrm{H}$, $J=6.8 \mathrm{~Hz}), 6.53-6.62(\mathrm{~m}, 6 \mathrm{H}), 7.03(\mathrm{~d}, 8 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.66(\mathrm{~d}, 4 \mathrm{H}, J=7.6 \mathrm{~Hz})$, 7.90 (d, $4 \mathrm{H}, J=7.7 \mathrm{~Hz}$), 8.66 (s, 8 H); HRMS (FABMS): Calcd for $\left(\mathrm{C}_{64} \mathrm{H}_{54} \mathrm{~N}_{5} \mathrm{Rh}\right)^{+}$: m / z 996.3507. Found: m / z 996.3417. Anal. Calcd for $\mathrm{C}_{64} \mathrm{H}_{54} \mathrm{~N}_{5} \mathrm{Rh} \cdot \mathrm{CH}_{3} \mathrm{OH}: \mathrm{C}, 75.94$; H, 5.69; N, 6.81. Found C, 76.11; H, 5.46; N, 6.74.
(5,10,15,20-Tetratoylporphyrinato)-1-(N-phthalimido)ethyl Rhodium(III) (1b). Complex 1b was purified by column chromatography over silica gel (250-400 mesh) using a solvent mixture of hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4: 1)$ as the eluent after $\mathbf{1 a}(10 \mathrm{mg}, 0.015$ mmol) was heated in anhydrous benzene for 1 month. The major orange fraction was collected and gave reddish orange solid ($4 \mathrm{mg}, 0.004 \mathrm{mmol} 42 \%$) as product after rotary evaporation. The product was further purified by recrystallization from
$\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH} . \mathrm{R}_{f}=0.58$ (hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 1$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}\right) \delta-$ $3.56(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}),-1.51\left(\mathrm{dt}, 1 \mathrm{H},{ }^{2} J_{\mathrm{Rh}-\mathrm{H}}=2.7 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.6 \mathrm{~Hz}\right), 2.43(\mathrm{~s}, 12$ H), 6.66-6.95 (m, 2 H), 6.85-6.95 (m, 2 H), 7.29 (d, $8 \mathrm{H}, J=7.9 \mathrm{~Hz}), 8.01$ (d, $4 \mathrm{H}, J=$ $7.6 \mathrm{~Hz}), 8.18(\mathrm{~d}, 4 \mathrm{H}, J=7.5 \mathrm{~Hz}), 8.98(\mathrm{~s}, 8 \mathrm{H})$; HRMS (FABMS): Calcd for $\left(\mathrm{C}_{58} \mathrm{H}_{44} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{Rh}\right)^{+}: m / z$ 945.2545. Found: $\mathrm{m} / \mathrm{z} 945.2571$.
(5,10,15,20-meso-Tetrakis(3,5-di-t-butylphenyl)porphyrinato)-2-(N phthalimido)ethyl Rhodium(III) (5a). Red solid (65\%) ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}\right)$ $\delta-4.91\left(\mathrm{dt}, 2 \mathrm{H},{ }^{2} J_{\mathrm{Rh}-\mathrm{H}}=3.0 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.5 \mathrm{~Hz}\right),-2.26(\mathrm{t}, 2 \mathrm{H}, J=9.0 \mathrm{~Hz}), 1.51(\mathrm{~s}$, $36 \mathrm{H}), 1.56(\mathrm{~s}, 36 \mathrm{H}), 7.04-7.07(\mathrm{~m}, 4 \mathrm{H}), 7.19-7.22(\mathrm{~m}, 4 \mathrm{H}), 7.75(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=3.0$ $\mathrm{Hz}), 8.05-8.07(\mathrm{~m}, 8 \mathrm{H}), 8.81(\mathrm{t}, 8 \mathrm{H})$; HRMS (FABMS): Calcd for $\left(\mathrm{C}_{86} \mathrm{H}_{100} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{Rh}\right)^{+}$: m/z 1337.6927. Found: m/z 1337.6915. Anal. Calcd for $\mathrm{C}_{86} \mathrm{H}_{100} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{Rh} \cdot \mathrm{CH}_{3} \mathrm{OH}: \mathrm{C}$, $76.23 ;$ H, 7.65 ; N, 5.11. Found C, 76.53; H, 7.46; N, 5.09.

(5,10,15,20-meso-Tetrakis(3,5-di-t-butylphenyl)porphyrinato)2-(N, N -

dimethylamino)ethyl Rhodium(III) (7a). Reddish orange solid (68\%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta-4.87\left(\mathrm{dt}, 2 \mathrm{H},{ }^{2} J_{\mathrm{Rh}-\mathrm{H}}=3.0 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=9.0 \mathrm{~Hz}\right),-3.73(\mathrm{t}, 2 \mathrm{H}, J=$ $9.0 \mathrm{~Hz}), 0.32(\mathrm{~s}, 6 \mathrm{H}), 1.51(\mathrm{~s}, 72 \mathrm{H}), 7.76(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=3.0 \mathrm{~Hz}), 7.95(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=3.0$ $\mathrm{Hz}), 8.07(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=3.0 \mathrm{~Hz}), 8.76(\mathrm{~s}, 8 \mathrm{H})$; Anal. Calcd for $\mathrm{C}_{80} \mathrm{H}_{102} \mathrm{~N}_{5} \mathrm{Rh}^{2} \cdot \mathrm{CH}_{3} \mathrm{OH}: \mathrm{C}$, 76.68; H, 8.42; N, 5.52. Found C, 76.69; H, 8.31; N, 5.42.
(5,10,15,20-Tetratoylporphyrinato)-2-aminoethyl Rhodium(III) (4). Complex 4 was described as a typical example for the preparation of porphyrinatorhodium(III) alkyl complex.

Red suspension of $\mathrm{Rh}(\mathrm{ttp}) \mathrm{Cl}(\mathrm{PhCN})(103 \mathrm{mg}, 0.113 \mathrm{mmol})$ in $\mathrm{THF}(50 \mathrm{~mL})$ was heated at $50{ }^{\circ} \mathrm{C}$ for 1 h under N_{2}. After cooled to room temperature, $\mathrm{NaBH}_{4}(32 \mathrm{mg}$, 0.84 mmol) in $0.1 \mathrm{M} \mathrm{NaOH}(2 \mathrm{~mL})$ and the suspension were purged with N_{2} separately for about 15 min . The NaBH_{4} solution was then added dropwisely to the suspension for about 30 min . The suspension turned to brown in color. The brown suspension was heated to $50-60{ }^{\circ} \mathrm{C}$ for 1 h . Aziridine (0.5 ml) was then added through a syringe after the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$. The reaction mixture turned to red in color immediately. The crude product was extracted from $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$. The organic extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and rotary evaporated to driness. An reddish-orange solid ($64 \mathrm{mg}, 67 \%$) was obtained after rotary evaporation. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}\right) \delta-5.76-5.87(\mathrm{~m}, 2 \mathrm{H}),-3.98-4.10(\mathrm{~m}, 2 \mathrm{H}), 1.51(\mathrm{~s}, 36 \mathrm{H})$, 2.17(s, 12 H$), 6.88-6.91(\mathrm{~m}, 4 \mathrm{H}), 7.04-7.06(\mathrm{~m}, 4 \mathrm{H}), 7.03-7.75(\mathrm{~m}, 8 \mathrm{H}), 8.32(\mathrm{t}, 8 \mathrm{H})$; Anal. Calcd for $\mathrm{C}_{50} \mathrm{H}_{42} \mathrm{~N}_{5} \mathrm{Rh} \cdot(1 / 2) \mathrm{CH}_{3} \mathrm{OH}$: C, 72.92; H, 5.33; N, 8.42. Found C, 73.09; H, 5.18; N, 8.13.

(5,10,15,20-meso-Tetrakis(3,5-di-t-butylphenyl)porphyrinato)-2-aminoethyl

Rhodium(III) (6a). Reddish orange solid (65\%). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}\right) \delta-5.08$ $\left(\mathrm{dt}, 2 \mathrm{H},{ }^{2} J_{\mathrm{Rh}-\mathrm{H}}=3.0 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=8.0 \mathrm{~Hz}\right),-3.16(\mathrm{t}, 2 \mathrm{H}, J=9.0 \mathrm{~Hz}), 1.19(\mathrm{~s}, 36 \mathrm{H})$, $1.23(\mathrm{~s}, 36 \mathrm{H}), 7.70(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=1.5 \mathrm{~Hz}), 8.11(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=3.0 \mathrm{~Hz}), 8.15(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=1.5$ $\mathrm{Hz}), 8.84(\mathrm{~s}, 8 \mathrm{H})$; HRMS (FABMS): Calcd for $\left(\mathrm{C}_{78} \mathrm{H}_{98} \mathrm{~N}_{5} \mathrm{Rh}\right)^{+}: \mathrm{m} / \mathrm{z}$ 1207.6872. Found: m/z 1207.6875. Anal. Calcd for $\mathrm{C}_{78} \mathrm{H}_{98} \mathrm{~N}_{5} \mathrm{Rh} \cdot \mathrm{CH}_{3} \mathrm{OH}: \mathrm{C}, 76.23 ; \mathrm{H}, 7.65$; N , 5.11. Found C, 76.53 ; H, 7.46 ; N, 5.09.

EtOH (50 mL) and a solution of $\mathrm{NaBH}_{4}(34 \mathrm{mg} 1.06 \mathrm{mmol})$ in aq $\mathrm{NaOH}(0.1 \mathrm{M}, 3$ mL) were purged with N_{2} for 15 min separately. The solution of NaBH_{4} was added slowly to the suspension of $\mathrm{Rh}(\mathrm{ttp}) \mathrm{Cl}$ via a cannular. The solution mixture was heated at $50{ }^{\circ} \mathrm{C}$ under N_{2} for 1 h to give a brown suspension. The solution was then cooled to $30{ }^{\circ} \mathrm{C}$ under N_{2} and 1,2-dichloroethane in 10 mL EtOH was added dropwisely. A reddish orange suspension was formed. After stirred at room temperature for 1 day under N_{2}, the reaction mixture was worked up by extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}$. The combined organic extract was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and rotatory evaporated. The reddish orange residue was purified by column chromatography over silica gel (250-400 mesh) using a solvent mixture of hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2:1) as the eluent. The major orange fraction was collected and gave reddish orange solid ($51 \mathrm{mg}, 0.032 \mathrm{mmol}, 31 \%$) as the product after rotary evaporation. The product was further purified by recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta-10.61(\mathrm{~s}, 2 \mathrm{H}), 2.72(\mathrm{~s}, 12 \mathrm{H}), 7.22$ (d, $4 \mathrm{H}, J=6.0 \mathrm{~Hz}), 7.39(\mathrm{t}, 8 \mathrm{H}, J=6.0 \mathrm{~Hz}), 7.69(\mathrm{~d}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 8.19(\mathrm{~s}, 8 \mathrm{H})$; HRMS (FABMS): Calcd for $\left(\mathrm{C}_{96} \mathrm{H}_{76} \mathrm{~N}_{8} \mathrm{Rh}_{2}\right)^{+}: \mathrm{m} / \mathrm{z}$ 1571.4376. Found: m / z 1571.4399.
(c) 1,2-Rearrangement Reaction of Porphyrinatorhodium(III) $\boldsymbol{\beta}$-Aminoalkyl

Complexes.

[Rh (por) R$]$ (recrystallized from $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.01 \mathrm{mmol}$) was dissolved in anhydrous benzene- $d_{6}(0.40 \mathrm{~mL})$ in an NMR tube. Tetrakis(trimethylsilyl)silane (1
mg) was added as the internal standard for NMR integration. The solution was degassed for three freeze-thaw pump cycles and the NMR tube was flame sealed under high vacuum. The solution was protected from light and heated in an oil bath. The progress of the reaction was monitored by ${ }^{1} \mathrm{H}$ NMR and the composition of the reaction mixture was determined by NMR integration with reference to tetrakis(trimethylsilyl)silane.
(d) Reactions of Porphyrinatorhodium(III) Alkyls with Styrene at $\mathbf{8 0}{ }^{\circ} \mathrm{C}$. General procedure. A solution of $\mathrm{Rh}($ por $) \mathrm{R}$ (0.005 mmol) in freshly distilled $\mathrm{C}_{6} \mathrm{D}_{6}(0.4 \mathrm{~mL})$ was mixed with vacuum-distilled styrene ($7.8 \mathrm{mg}, 0.075 \mathrm{mmol}$) in an NMR tube. The mixture was degassed for three freeze-thaw-pump cycles and the NMR tube was flame sealed under high vacuum. The reaction was protected from light and heated to $80^{\circ} \mathrm{C}$. The progress of the reaction was monitored by ${ }^{1} \mathrm{H}$ NMR.

(3) Thermal reaction

(a) Thermal reaction of (5,10,15,20-Tetratoylporphyrinato)-2-(N-phthalimido)ethyl Rhodium(III) (1a)

The isomeric ratios converged at about 31 days with secondary complex 1b being the favored isomer. The secondary / primary ratio was found to be 7.8.
(b) Thermal reaction of (5,10,15,20-Tetratoylporphyrinato)-1-(N-phthalimido)ethyl Rhodium(III) (1b)

The reversibility of the rearrangement of complex 1a was established by the backward reaction of the secondary complexes $\mathbf{1 b}$.

The isomeric ratios converged at about 27 days with secondary $1-N$-phthalimide ethyl complex 1b being the favored isomer. The secondary / primary ratio is 6.9 which similar obtained as those from the primary complexes.
(c) (5,10,15,20-Tetratoylporphyrinato)-2-(N-pyrrolidin-2-onyl)ethyl Rhodium(III) (2a).

The isomeric ratios converged at about 8 hours with secondary $1-N$-pyrrolidinonyl ethyl complex 2b being the favored isomer at $90^{\circ} \mathrm{C}$. The secondary / primary ratio was found to be 19.2.
(d) (5,10,15,20-Tetratoylporphyrinato)-2-(N,N-dibenzylamino)ethyl rhodium(III) (3a).

The isomeric ratios converged at about 11 hours with secondary complex 3b being the favored isomer at $80^{\circ} \mathrm{C}$. The secondary / primary ratio was found to be 992 .
(e) (5,10,15,20-Tetratoylporphyrinato)-2-aminoethyl Rhodium(III) (4).

The ${ }^{1} \mathrm{H}$ NMR showed the integration of the methylene proton was decreased slowly at $80^{\circ} \mathrm{C}$ without the formation of secondary isomer. All the starting material was consumed after heating for 3 h . A peak at _-10.58 (s) was formed and MS was found to be 1570 which the same as complex 8. Complex $\mathbf{8}$ was found in 11 \% NMR yield.
(f) (5,10,15,20-meso-Tetrakis(3,5-di-t-butylphenyl)porphyrinato)-2-(Nphthalimido)ethyl Rhodium(III) (5a).

The isomeric ratios converged at about 1275 hours with secondary complex $\mathbf{5 b}$ being the favored isomer at $120^{\circ} \mathrm{C}$. The secondary / primary ratio was found to be 6 .
(g) (5,10,15,20-meso-Tetrakis(3,5-di-t-butylphenyl)porphyrinato)-2-aminoethyl Rhodium(III) (6a).

The isomeric ratios converged at about 45 hours with secondary complex $\mathbf{6 b}$ being the favored isomer at $80^{\circ} \mathrm{C}$. The secondary / primary ratio was found to be 4 .
(h) (5,10,15,20-meso-Tetrakis(3,5-di-t-butylphenyl)porphyrinato)-2-(N, N dimethylamino)ethyl Rhodium(III) (7a).

Complex 7 b was observed as the only isomer after heating at $60^{\circ} \mathrm{C}$ for 5 minutes.

(4) X-ray data and structure

Figure 1. The structure of 1a, showing the atomic labelling scheme and 30% probability displacement ellipsoids. Selected bond lengths (\AA) Rh1-C49 2.032(10).

Figure 2. The structure of $\mathbf{2 a}$, showing the atomic labelling scheme and 30% probability displacement ellipsoids. Selected bond lengths (Å) Rh1-C49 2.043(5).

Figure 3. The structure of $3 \mathbf{a}$, showing the atomic labelling scheme and 30% probability displacement ellipsoids. Selected bond lengths (\AA) Rh1-C21 2.064(7).

	$\mathbf{1 a}$	$\mathbf{2 a}$	3a
color, shape	Red prism	Red prism	Red prism
empirical formula	$\mathrm{C}_{59} \mathrm{H}_{45} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{Rh}$	$\mathrm{C}_{54} \mathrm{H}_{46} \mathrm{~N}_{5} \mathrm{ORh}$	$\mathrm{C}_{64} \mathrm{H}_{54} \mathrm{~N}_{5} \mathrm{Rh}$
formula wt	1065.26	883.87	996.03
Temp (K)	$293(2)$	$293(2)$	$293(2)$
wavelength (\AA)	0.71073	0.71073	0.71073
cryst syst	Triclinic	Triclinic	Monoclinic
space group			P2(1)/c
unit cell dimens	$12.9274(15)$	$13.263(3)$	$13.838(3)$
$a(\AA)$	$13.2281(16)$	$13.699(3)$	$27.970(6)$
$b(\AA)$	$15.4074(17)$	$143462(3)$	$15.520(3)$
$c(\AA)$	$97.937(3)$	$94.28(3)$	90
$\alpha($ deg $)$	$91.704(3)$	$100.58(3)$	$96.20(3)$
$\beta($ deg $)$			

γ (deg)	92.349(2)	113.76(3)	90
Volume (\AA^{3})	2605.6(5)	2331.5(8)	5972(2)
Z	2	2	4
Calcd density $\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.358	1.259	1.108
abs coeff (mm^{-1})	0.529	0.409	0.325
$F(000)$	1092	916	2072
cryst size (mm)	$\begin{aligned} & 0.566 \times 0.291 \mathrm{x} \\ & 0.215 \end{aligned}$	$\begin{array}{llll} \hline 1.40 & \mathrm{x} & 0.60 & \mathrm{x} \\ 0.40 & & & \end{array}$	$\begin{array}{llll} \hline 0.50 & x & 0.30 & x \\ 0.20 & & & \end{array}$
θ range for data collection (deg)	1.56 to 28.06	1.65 to 25.68	1.51 to 25.25
limiting indices	$-17 \leq h \leq 16$	$-16 \leq h \leq 14$	$0 \leq h \leq 15$
	$-17 \leq k \leq 16$	$0 \leq k \leq 15$	$-32 \leq k \leq 33$
	$-10 \leq l \leq 20$	$-17 \leq l \leq 17$	$-18 \leq l \leq 17$
no. of rflns collected/ unique	$\begin{aligned} & 17896 / 12413 \\ & {[R(\text { int })=0.0627]} \end{aligned}$	$\begin{aligned} & 7725,7725 \\ & {[R(\mathrm{int})=0.0000]} \end{aligned}$	$\begin{aligned} & 14242,8474 \\ & {[R(\mathrm{int})=0.0553]} \end{aligned}$
completeness to $\theta=28.24$	98.2\%	87.3\%	78.2\%
absorp corr	SADABS	ABSCOR	ABSCOR
max. and min. transmn	1.000 and 0.5403	1.038 and 0.938	$\begin{aligned} & 0.9378 \quad \text { and } \\ & 0.8542 \end{aligned}$
refinement method	Full-matrix least squares on F^{2}	Full-matrix least squares on F^{2}	Full-matrix least squares on F^{2}
no. of data/ restraints/ params	12413/0/631	7725/0/550	8474/ 0/631
GOF	0.963	1.110	1.176
final $R \quad$ indices $\left[I>2_{-}(I)\right]$	$\mathrm{R} 1=0.0979$	$\mathrm{R} 1=0.0661$	$\mathrm{R} 1=0.0827$
	$w R 2=0.2547$	$w R 2=0.2192$	$w \mathrm{R} 2=0.2190$
R indices (all data)	$\mathrm{R} 1=0.2207$	$\mathrm{R} 1=0.0671$	$\mathrm{R} 1=0.1063$
	wR2 $=0.3306$	$w \mathrm{R} 2=0.2214$	$w R 2=0.2377$
largest diff peak and hole $\left(\mathrm{e} \AA^{-3}\right)$	1.372 and -0.853	2.060 and -0.852	0.615 and -0.730

Table 1. Crystal data and structure refinement parameters for 1a, 2a, 3a

complex 1a

Figure 4. The conformation of the porphyrin in 1a, 2a and 3a, showing the displacements of the core atoms and of Rh from the 24 -atom least-squares plane of the prophyrin core (in pm; positive values correspond to displacement towards the β aminoethyl ligands). Absolute values of the angles between the pyrrole rings and the least-squares plane of the 24 -atom porphyrin core are shown in bold, and absolute values of the angles between the least-squares plane of the phenyl substituents and the 24-atom least-squares plane are shown in italics.

(5) References:

1. Perrin, D. D.; Armarego, L. F. Purification of Laboratory Chemicals, 3rd Ed. Pergamon Press: U.K., 1988.
2. Schwerdtfeger, J.; Kolczewski, S.; Weber, B.; Frohlich, R.; Hoppe, D. Synthesis 1999, 9, 1573-1592.
3. Nagle, A. S.; Salvatore, R. N.; Chong, B. D.; Jung, K. W. Tetrahedron Lett. 2000, 41, 3011-3014.
4. Ogoshi, H.; Setsune, J.; Omura, T.; Yoshida, Z. J. Am. Chem. Soc. 1975, 97, 6461-6466.
5. Buchler, J. W.; Dreher, C.; Künzel, F. M. In Metal Complexes with Tetrapyrrole Ligands III: Structure and Bonding, vol. 84; Bucher, J. W., Ed.; Springer-Verlag: Berln Heidelberg, 1995.
6. Collman, J. P.; MacLaury, R. J. Am. Chem. Soc. 1974, 96, 3019-3020.
