
SUPPORTING INFORMATION 

As the ATP aptamer has two ATP binding sites, we assume the following two 

equilibriums in the solution: 
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Where A stands for the ATP aptamer/[Ru(phen)2(dppz)]2+ complex. B stands for 

ATP. AB1 and AB2 stand for the binding of one or two ATP molecules to the 

aptamer/[Ru(phen)2(dppz)]2+ respectively. a is the initial concentration of the ATP 

aptamer, which is also considered as the initial concentration of the 

aptamer/[Ru(phen)2(dppz)]2+ complex in the presence of extra amount  of 

[Ru(phen)2(dppz)]2+. c is the added total concentration of ATP.  x and y are the 

concentrations of AB1 and AB2 at equilibrium respectively. 

Since A, AB1, AB2 are all luminescent, F0, F1 and F2 are defined as the 

luminescence intensity per mole of A, AB1 and AB2 respectively. F is the measured 

luminescence intensity of the solution when different concentrations of ATP are 

added. Obviously, 
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from equation (1) , (2 ) and (5), equation (6) can be obtained:  
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 from (5) , (6 ) and (2), a cubic equation of one variable is deduced: 
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In equation (7), n is a dependent variable, c is an independent variable, and a, K1, K2 

are constants (K1, K2 unknown). Therefore, n can be expressed as a function of c by 

solving the cubic equation (7).  

From (4), (5) and (6), we get:  
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Therefore, the luminescence change (z) in the titration experiment can be 

expressed as a function of n, thus a function of the added ATP concentration, c. 

 

   In the following, Cardan’s method is used to solve equation (7) 
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equation (7) becomes 
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There are three possibilities for the solution of equation (10), depending on the 

value of the parameter W.  
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Case 1. W>0: equation (10) has one real root and a pair of imaginary roots 
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Case 2. W=0, equation (10) has three real roots and two of them are the same: 
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Case 3. W<0, equation (10) has three different real roots: 
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Once n is determined from one of the above roots, z in equation (8) is expressed as 

a function of c, with the unknown constants of K1, K2, f1 and f2. The experiment data 

in Figure 3A are then used to fit equation (8) to solve the unknown constants using 

nonlinear least squares fitting by the software Origin6.0. 

Since n is the concentration ratio of ABB2 to AB1B (n=y/x from equation (5)), we first 

ignored the imaginary roots for n (in case 1). Then we checked all the 7 real roots of 
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equation (10) by replacing the derived n to equation (8) and carried out the fitting one 

by one.  It is found that except for the two roots, the fitting of the experiment data to 

equation (8) with the other four roots was all failed. This indicates that only two 

solutions of n are possible for the experiment system. The fitting results with the two 

roots are shown in Table 1.  

Then we analyzed whether the two sets of the results in Table 1 are the true 

results for our experiment. In the first set, f1 and f2 are 0.00071 and 0.41. This 

indicates that the aptamer/ [Ru(phen)2(dppz)]2+  with one ATP bound almost has no 

luminescence (99.9% of decrease in molar luminescence) and the intercalation of  

[Ru(phen)2(dppz)]2+ to the aptamer is almost destroyed. Then the binding of the 

second ATP greatly enhances the intercalation of [Ru(phen)2(dppz)]2+ and results in 

the substantial luminescence recovery of the aptamer/ [Ru(phen)2(dppz)]2+ (the ratio 

of the molar luminescence intensities of the complex with two ATP bound to that with 

one ATP bound is 577 (0.41/0.00071) ). This is quite unreasonable. Moreover, the 

previous reports6,14 all suggested that the two association constants for ATP binding 

with the aptamer are close, while there is a big difference between K1 and K2 in the 

first set of the results. On the other hand, the second set of results of K1, K2, f1, f2 are 

all reasonable and comparable to the other reports6,14. Therefore, we discarded the 

first set of the results, and determined K1, K2, f1, f2 to be 1.0×107M, 5.0×106M, 0.85 

and 0.32 respectively. 

Table 1: The fitting results of the possible real roots 

Roots K1 K2 f1 f2 R2 χ2

W>0 α1 1.2×105M 1.0×109M 0.071% 41% 0.998 0.00051 
W<0 α1 1.0×107M 5.0×106M 85% 32% 0.999 0.00034 
 

(R is the correlation coefficient; χ2 is the residual error) 


