Supporting Information

Syntheses, Structures, Spectroscopic Properties, and π-Dimeric Interactions of [n.n]Quinquethiophenophanes

Toyofumi Sakai, Teizi Satou, Takeshi Kaikawa, Kazuo Takimiya, Tetsuo Otsubo,* and Yoshio Aso

Table of Contents

1. Synthesis of α, ω-bis(5'-bromo-3'-octyl-2,2'-bithien-5-yl)alkanes (6a,b). S3
2. Synthesis of α, ω-bis(3'-octyl-5'-trimethylsilylethynyl-2,2'-bithien-5-yl)alkanes (7a,b). S3
3. Synthesis of α, ω-bis(5'-ethynyl-3'-octyl-2,2'-bithien-5-yl)alkanes (8a,b). S4
4. Eglinton coupling of $\mathbf{8 a , b}$ to cyclic dimers $(\mathbf{9 a , b})$. S5
5. Synthesis of [2.2]- and [3.3]quinquethiophenophanes (4a,b). S6
6. Synthesis of monobromo derivatives of α, ω-bis(3^{\prime}-octyl-2,2'-bithien-5-yl)alkanes (10c-e). S6
7. Synthesis of mono(trimethylsilylethynyl) derivatives of α, ω-bis(3'-octyl-2,2'-bithien-5-yl)alkanes (11c-e).
8. Synthesis of mono(ethynyl) derivatives of α, ω-bis(3'-octyl-2,2'-bithien-5-yl)alkanes (12c-e).
9. Synthesis of acyclic dimers ($\mathbf{1 3} \mathbf{c}-\mathbf{e})$. S9
10. Synthesis of bis(bithienylalkyl)quinquethiophenes (14c-e).
11. Synthesis of diformyl derivatives ($\mathbf{1 5 c - e}$). S11
12. Synthesis of bis(dibromoethenyl) derivatives (16c-e). S12
13. Synthesis of diethynyl derivatives ($\mathbf{1 7 \mathbf { c } - \mathbf { e } \text {). S13 }}$
14. Synthesis of cyclic monomers (18c-e). S14
15. Synthesis of [4.4]-, [5.5]-, and [6.6]quinquethiophenophanes (4c-e). S15
16. Synthesis of $5,5^{\prime \prime \prime}$-dimethyl- $3^{\prime}, 4^{\prime \prime \prime}$-dioctyl- $2,2^{\prime} \cdot 5^{\prime}, 2^{\prime \prime}: 5^{\prime \prime}, 2 ">\cdot 5^{\prime \prime}, 2^{\prime \prime \prime}$-quinquethiophene (3). S16
17. Figure S1. ESR Spectra of $\mathbf{4 a}$ (left) and $\mathbf{4 b}$ (right) in dichloromethane under controlled oxidation with FeCl_{3}.
18. Figure S2. Electronic absorption spectra of $\mathbf{4 d}$ in dichloromethane under controlled oxidation with FeCl_{3}.
19. Figure S3. Electronic absorption spectra of $\mathbf{4 e}$ in dichloromethane under controlled oxidation with FeCl_{3}.
20. Figure S4. ESR Spectra of $\mathbf{4 c}$ in dichloromethane under controlled oxidation with FeCl_{3}.
α, ω-Bis(5'-bromo-3'-octyl-2,2'-bithien-5-yl)alkanes (6a,b). A typical synthetic procedure is as follows. N-Bromosuccinimide ($300 \mathrm{mg}, 1.68 \mathrm{mmol}$) was added to a solution of 1,2-bis(3'-octyl-2,2'-bithien-5-yl)ethane $\mathbf{5 a}^{17}(480 \mathrm{mg}, 0.82 \mathrm{mmol})$ in DMF $(40 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, and then the mixture was stirred at rt for 11 h . After cooling to $0{ }^{\circ} \mathrm{C}$, water $(30 \mathrm{~mL})$ was added. The mixture was filtered through a celite pad, and extracted with hexane (30 mL x 3). The extracts were combined, washed with brine, and dried $\left(\mathrm{MgSO}_{4}\right)$. After evaporation of the solvent, the residue was purified by column chromatography on silica gel with hexane to give yellow fine crystals of $\mathbf{6 a}$ (540 $\mathrm{mg}, 89 \%): \mathrm{mp} 39-40{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.87(\mathrm{t}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}), 1.26-1.42(\mathrm{~m}$, $20 \mathrm{H}), 1.56$ (quin, $J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 2.64(\mathrm{t}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 3.18(\mathrm{~s}, 4 \mathrm{H}), 6.74(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H})$, $6.85(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.2,22.8$, 29.2, 29.4 (2 carbons), $29.5,30.7,32.0,32.2,110.1,125.3,126.2,132.4,132.6,133.1,140.1,144.2 ;$ MS (EI) m / z $738,740,742\left(\mathrm{M}^{+}\right)$; Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{44} \mathrm{Br}_{2} \mathrm{~S}_{4}$: C, $55.13 ; \mathrm{H}, 5.99 \%$. Found: C, $55.28 ; \mathrm{H}, 5.89 \%$.

6b: 93% yield from 1,3-bis(3 '-octyl-2,2'-bithien-5-yl)propane $\mathbf{5 b}^{17}$; yellow oil; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.87(\mathrm{t}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.26-1.42(\mathrm{~m}, 20 \mathrm{H}), 1.57$ (quin, $\left.J=7.8 \mathrm{~Hz}, 4 \mathrm{H}\right), 2.10$ (quin, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.65(\mathrm{t}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 2.89(\mathrm{t}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 6.74(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J$ $=3.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.2,22.7,29.1,29.3$, 29.5 (2 carbons), 30.7, 32.0, 33.2, 110.0, 124.9, 126.2, 132.6, 132.8, 139.9, 145.3; MS (EI) $m / z 752,754,756\left(\mathrm{M}^{+}\right)$; Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{46} \mathrm{Br}_{2} \mathrm{~S}_{4}$: C, $55.69 ; \mathrm{H}, 6.14 \%$. Found: C, $55.65 ; \mathrm{H}, 6.12 \%$.
α, ω-Bis(3'-octyl-5'-trimethylsilylethynyl-2,2'-bithien-5-yl)alkanes (7a,b). A typical synthetic procedure is as follows. A mixture of $\mathbf{6 a}(509 \mathrm{mg}, 0.68 \mathrm{mmol})$, (trimethylsilyl)acetylene (430 mg , $4.1 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(65 \mathrm{mg})$, and copper(I) iodide $(10 \mathrm{mg})$ in triethylamine $(10 \mathrm{~mL})$ was heated to $70{ }^{\circ} \mathrm{C}$ for 12 h , and then poured into 1 N hydrochloric acid (15 mL) with ice-cooling. After the insoluble materials were removed by filtration through a celite pad, the filtrate was extracted with dichloromethane ($20 \mathrm{~mL} \times 3$). The extracts were combined, successively washed with aq. sat. sodium bicarbonate $(100 \mathrm{~mL})$ and brine $(100 \mathrm{~mL})$, and dried $\left(\mathrm{MgSO}_{4}\right)$. After evaporation of the
solvent, column chromatography of the residue (silica gel, 5:1 hexane-dichloromethane) gave a yellow oil of $7 \mathbf{7 a}(515 \mathrm{mg}, 97 \%):{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.24(\mathrm{~s}, 18 \mathrm{H}), 0.87(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $6 \mathrm{H}), 1.26-1.42(\mathrm{~m}, 20 \mathrm{H}), 1.56$ (quin, $J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 2.65(\mathrm{t}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 3.19(\mathrm{~s}, 4 \mathrm{H}), 6.75(\mathrm{~d}$, $J=3.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-0.13,14.1$, 22.6, 29.0, 29.2, 29.4 (2 carbons), 30.4, 31.8, 32.1, $97.6,99.3,120.4,125.2,126.0,132.8,133.4$, 135.5, 138.8, 144.1; MS (EI) $m / z 774$ (M ${ }^{+}$); Anal. Calcd for $\mathrm{C}_{44} \mathrm{H}_{62} \mathrm{~S}_{4} \mathrm{Si}_{2}: \mathrm{C}, 68.15 ; \mathrm{H}, 8.06 \%$. Found: C, 68.40; H, 8.25\%.

7b: 97% yield from 6b; yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.24(\mathrm{~s}, 18 \mathrm{H}), 0.87(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 6 \mathrm{H}), 1.26-1.42(\mathrm{~m}, 20 \mathrm{H}), 1.56($ quin, $J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 2.09$ (quin, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.66(\mathrm{t}, J=$ $7.8 \mathrm{~Hz}, 4 \mathrm{H}), 2.90(\mathrm{t}, J=7.4 \mathrm{~Hz}, 4 \mathrm{H}), 6.75(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~s}, 2 \mathrm{H})$; ${ }^{13}{ }^{3} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.0,14.1,22.7,29.1,29.3,29.5,30.5,31.9,33.1,97.8,99.3,120.4$, 125.0, 126.1, 133.0, 133.2, 135.6, 138.8, 145.3; MS (EI) $m / z 788\left(\mathrm{M}^{+}\right)$; Anal. Calcd for $\mathrm{C}_{45} \mathrm{H}_{64} \mathrm{~S}_{4} \mathrm{Si}_{2}$: C, $68.47 ; \mathrm{H}, 8.17 \%$. Found: C, $68.54 ; \mathrm{H}, 8.25 \%$.
α, ω-Bis(5'-ethynyl-3'-octyl-2,2'-bithien-5-yl)alkanes (8a,b). A typical synthetic procedure is as follows. A mixture of $7 \mathbf{~}(264 \mathrm{mg}, 0.32 \mathrm{mmol})$ and $\mathrm{KOH}(95 \mathrm{mg})$ in benzene $(4 \mathrm{~mL})$ and methanol (12 mL) was stirred at rt for 5 h . After the solvent was evaporated, the residue was extracted with dichloromethane (30 mL x 3). The extracts were combined, and washed successively with aq. sat. sodium bicarbonate (100 mL), brine (100 mL), and water (100 mL). After dryness $\left(\mathrm{MgSO}_{4}\right)$ and evaporation of the solvent, the residue was purified by column chromatography (silica gel, 5:2 hexane-dichloromethane) followed by recrystallization from hexane to give yellow fine crystals of $\mathbf{8 a}(186 \mathrm{mg}, 93 \%)$: mp $57-58{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.87$ (t, $J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.26-1.42(\mathrm{~m}, 20 \mathrm{H}), 1.56(q u i n, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 2.66(\mathrm{t}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 3.18(\mathrm{~s}$, $4 \mathrm{H}), 3.34(\mathrm{~s}, 2 \mathrm{H}), 6.74(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.1,22.6,29.0,29.2,29.3,29.4,30.4,31.8,32.0,77.1,81.6,119.2,125.2,126.1$,
133.0, 133.2, 135.8, 138.8, 144.1; MS (EI) $m / z 630\left(\mathrm{M}^{+}\right)$; Anal. Calcd for $\mathrm{C}_{38} \mathrm{H}_{46} \mathrm{~S}_{4}: \mathrm{C}, 72.33$; H , 7.35\%. Found: 72.35; H, 7.37\%.

8b: quantitative yield from 7b; pale yellow oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.87(\mathrm{t}, J=6.8 \mathrm{~Hz}$, $6 \mathrm{H}), 1.26-1.42(\mathrm{~m}, 20 \mathrm{H}), 1.59$ (quin, $J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 2.10$ (quin, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.67(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $4 \mathrm{H}), 2.90(\mathrm{t}, J=7.4 \mathrm{~Hz}, 4 \mathrm{H}), 3.35(\mathrm{~s}, 2 \mathrm{H}), 6.75(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~s}$, 2 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 14.1, 22.6, 29.0, 29.2 (2 carbons), 29.3, 29.4, 30.4, 31.8, 33.0, 77.1, 81.6, 119.1, 124.9, 126.2, 132.9, 133.2, 135.9, 138.7, 145.3; MS (EI) m/z 644 (M ${ }^{+}$); Anal. Calcd for $\mathrm{C}_{39} \mathrm{H}_{48} \mathrm{~S}_{4}: \mathrm{C}, 72.62 ; \mathrm{H}, 7.50 \%$. Found: 72.47; H, 7.52\%.

Eglinton coupling of 8a,b to cyclic dimers (9a,b). A typical synthetic procedure is as follows. A solution of $\mathbf{8 a}(156 \mathrm{mg}, 0.25 \mathrm{mmol})$ in pyridine (50 mL) was slowly added into a mixture of pyridine (150 mL), copper(II) acetate anhydride (1.2 g) at $45^{\circ} \mathrm{C}$ over a period of 20 h , and then the mixture was stirred at the same temperature for 3 h , cooled to rt , and then poured into 5 N hydrochloric acid (100 mL) and chloroform (100 mL) with ice-cooling. The chloroform layer was separated, and the aqueous layer was extracted with chloroform (40 mL x 3). The combined extract was washed successively with $1 N$ hydrochloric acid (150 mL x 4), aq. sat. sodium bicarbonate (150 $\mathrm{mL})$, brine (150 mL), and water (150 mL). After dryness $\left(\mathrm{MgSO}_{4}\right)$ and evaporation of the solvent, the residue was purified by column chromatography (alumina, dichloromethane) followed by preparative GPLC (JAIGEL-1H/2H, chloroform) to give a yellow semisolid of $\mathbf{9 a}(34 \mathrm{mg}, 22 \%)$: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.87(\mathrm{t}, J=7.0 \mathrm{~Hz}, 12 \mathrm{H}), 1.25-1.42(\mathrm{~m}, 40 \mathrm{H}), 1.59(\mathrm{~m}, 8 \mathrm{H}), 2.63(\mathrm{t}, J=$ $7.8 \mathrm{~Hz}, 8 \mathrm{H}), 3.17(\mathrm{~s}, 8 \mathrm{H}), 6.73(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 4 \mathrm{H}), 6.92(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.11(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 14.1,22.6,29.0,29.2,29.3,29.4,30.3,31.8,31.9,77.5,78.7,119.4,125.8$, 126.2, 133.7, 134.8, 136.6, 138.9, 143.8; MS (MALDI-TOF) $\mathrm{m} / \mathrm{z} 1256\left(\mathrm{M}^{+}\right)$; Anal. Calcd for $\mathrm{C}_{76} \mathrm{H}_{88} \mathrm{~S}_{8}$: C, 72.56; H, 7.05\%. Found: 72.45; H, 7.15\%.

9b: $\mathbf{9 \%}$ yield from $\mathbf{8 b}$; yellow fine crystals from hexane; mp $154-156{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $0.87(\mathrm{t}, J=6.9 \mathrm{~Hz}, 12 \mathrm{H}), 1.26-1.42(\mathrm{~m}, 40 \mathrm{H}), 1.54-1.60(\mathrm{~m}, 8 \mathrm{H}), 2.09$ (quin, $J=7.3 \mathrm{~Hz}, 4 \mathrm{H}), 2.64$
$(\mathrm{t}, J=7.9 \mathrm{~Hz}, 8 \mathrm{H}), 2.89(\mathrm{t}, J=7.3 \mathrm{~Hz}, 8 \mathrm{H}), 6.74(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 4 \mathrm{H}), 6.89(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.11$ (s, 4H); MS (MALDI-TOF) $m / z 1285\left(\mathrm{M}^{+}\right)$; Anal. Calcd for $\mathrm{C}_{78} \mathrm{H}_{92} \mathrm{~S}_{8}$: C, $72.84 ; \mathrm{H}, 7.21 \%$. Found: 73.08; H, 7.03\%.
[2.2]- and [3.3]Quinquethiophenophanes (4a,b). A typical synthetic procedure is as follows. A mixture of $9 \mathbf{9 a}(53 \mathrm{mg}, 0.042 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{~S} \cdot 9 \mathrm{H}_{2} \mathrm{O}(86 \mathrm{mg}, 0.36 \mathrm{mmol})$, and $\mathrm{KOH}(4 \mathrm{mg})$ in dioxane $(16 \mathrm{~mL})$ was refluxed for 22 h . After water (50 mL) was added, the mixture was extracted with chloroform ($10 \mathrm{~mL} \times 4$). The extracts were combined and successively washed with sat. aq. ammonium chloride $(50 \mathrm{~mL})$, brine $(50 \mathrm{~mL})$, and water $(50 \mathrm{~mL})$. After dryness $\left(\mathrm{MgSO}_{4}\right)$ and evaporation of the solvent, the residue was purified by column chromatography (silica gel, carbon disulfide) followed by recrystallization from chloroform-methanol to give yellow fine crystals of $\mathbf{4 a}$ (23 mg, 41\%): mp 175-177 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.87$ (t, $J=7.0 \mathrm{~Hz}, 12 \mathrm{H}$), $1.24-1.40$ $(\mathrm{m}, 40 \mathrm{H}), 1.60(\mathrm{quin}, J=7.8 \mathrm{~Hz}, 8 \mathrm{H}), 2.64(\mathrm{t}, J=7.8 \mathrm{~Hz}, 8 \mathrm{H}), 3.13(\mathrm{~s}, 8 \mathrm{H}), 6.76(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 4 \mathrm{H})$, $6.88(\mathrm{~s}, 4 \mathrm{H}), 6.92(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 4 \mathrm{H}), 6.94(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 14.1, 22.6, 29.1, 29.2, 29.4, 29.5, 29.7, 30.5, 31.9, 32.1, 124.2, 125.6, 125.9 (2 carbons), 130.2, 134.5, 135.1, 135.8, 139.7, 143.1; MS (FAB) $m / z 1324\left(\mathrm{M}^{+}\right)$; Anal. Calcd for $\mathrm{C}_{76} \mathrm{H}_{92} \mathrm{~S}_{10}$: C, 68.83; H, 6.99\%. Found: C, 68.92; H, 7.16\%.

4b: 17% yield from $\mathbf{9 b}$; yellow fine crystals from chloroform-methanol; mp $158-160{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.87(\mathrm{t}, J=6.8 \mathrm{~Hz}, 12 \mathrm{H}), 1.24-1.40(\mathrm{~m}, 40 \mathrm{H}), 1.60$ (quin, $J=7.8 \mathrm{~Hz}$, $8 \mathrm{H}), 2.15$ (quin, $J=6.5 \mathrm{~Hz}, 4 \mathrm{H}), 2.64(\mathrm{t}, J=7.8 \mathrm{~Hz}, 8 \mathrm{H}), 2.93(\mathrm{t}, J=6.5 \mathrm{~Hz}, 8 \mathrm{H}), 6.62(\mathrm{~d}, J=3.5$ $\mathrm{Hz}, 4 \mathrm{H}), 6.79(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 4 \mathrm{H}), 6.89(\mathrm{~s}, 4 \mathrm{H}), 6.93(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.1$, $22.7,29.3,29.4,29.6,29.8,30.5,31.9,32.8,123.9,125.0,125.4,126.0,130.4,134.2,134.6,135.9$, 139.6, 145.4; MS (MALDI-TOF) $m / z 1352.5\left(\mathrm{M}^{+}\right)$; Anal. Calcd for $\mathrm{C}_{78} \mathrm{H}_{96} \mathrm{~S}_{10}: \mathrm{C}, 69.18 ; \mathrm{H}, 7.15 \%$. Found: C, 69.10; H, 7.10\%.

Monobromo derivatives of α, ω-bis($\mathbf{3}^{\prime}$-octyl-2,2'-bithien-5-yl)alkanes (10c-e). The monobromination of $\mathbf{5 c - e}$ to $\mathbf{1 0 c} \mathbf{- e}$ was carried out using one equivalent of NBS in a similar manner
as above-described for the dibromination of $\mathbf{5 a}, \mathbf{b}$ to $\mathbf{6 a , b}$.

10c: 61% yield from $\mathbf{5 c}$; yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.85-0.89(\mathrm{~m}, 6 \mathrm{H}), 1.26-1.42$ (m, 20H), 1.53-1.61 (m, 4H), 1.86-1.90 (m, 4H), $2.65(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.72(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $2.82-2.88(\mathrm{~m}, 4 \mathrm{H}), 6.71(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.86$ $(\mathrm{s}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (68 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.1,22.6,29.0,29.1,29.2$ (2 carbons), 29.3, 29.5, 29.7, 30.5, 30.7, 30.8, 31.8, $109.8,123.1,124.4,124.5,125.5,126.0,129.7,130.9,132.3,132.5,133.8,138.9,139.6,145.1$, 145.8; MS (MALDI-TOF) $m / z 687.0\left(\mathrm{M}^{+}\right)$; Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{49} \mathrm{BrS}_{4}$: C, 62.67 ; $\mathrm{H}, 7.16 \%$. Found: C, 62.67; H, 7.21\%.

10d: 60% yield from 5d; yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.88(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}$), $1.26-1.42(\mathrm{~m}, 20 \mathrm{H}), 1.48$ (quin, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.55-1.65(\mathrm{~m}, 4 \mathrm{H}), 1.74$ (quin, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 1.75 (quin, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.64(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.72(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.81(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $2.82(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.71(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.86(\mathrm{~s}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}) ; \mathrm{MS}$ (MALDI-TOF) $m / z 701.3\left(\mathrm{M}^{+}\right)$; Anal. Calcd for $\mathrm{C}_{37} \mathrm{H}_{51} \mathrm{BrS}_{4}: \mathrm{C}, 63.13$; H, 7.30\%. Found: C, 63.08; H, 7.31\%.

10e: 56% yield from 5e; yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.87(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}$), $1.26-1.42(\mathrm{~m}, 20 \mathrm{H}), 1.40-1.48(\mathrm{~m}, 4 \mathrm{H}), 1.54-1.63(\mathrm{~m}, 4 \mathrm{H}), 1.62-1.75(\mathrm{~m}, 4 \mathrm{H}), 2.65(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 2.72(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.76-2.84(\mathrm{~m}, 4 \mathrm{H}), 6.71(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.84(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=$ $5.3 \mathrm{~Hz}, 1 \mathrm{H}$); MS (MALDI-TOF) $m / z 713.7\left(\mathrm{M}^{+}\right)$; Anal. Calcd for $\mathrm{C}_{38} \mathrm{H}_{53} \mathrm{BrS}_{4}: \mathrm{C}, 63.57$; H, 7.44%. Found: C, 63.51; H, 7.44\%.

Mono(trimethylsilylethynyl) derivatives of α, ω-bis(3'-octyl-2,2'-bithien-5-yl)alkanes (11c-e).

 The trimethylsilylethynylation of $\mathbf{1 0 c} \mathbf{c}$ e to 11c-e was carried out in a similar manner as above-described for the conversion of $\mathbf{6 a}, \mathbf{b}$ to $\mathbf{7 a}, \mathbf{b}$.11c: 99% yield from 10c; yellow oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.24$ (s, 9 H), $0.85-0.89$ (m, $6 \mathrm{H}), 1.26-1.42(\mathrm{~m}, 20 \mathrm{H}), 1.53-1.61(\mathrm{~m}, 4 \mathrm{H}), 1.86-1.90(\mathrm{~m}, 4 \mathrm{H}), 2.65(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.72(\mathrm{t}, J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.82-2.88(\mathrm{~m}, 4 \mathrm{H}), 6.71(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=5.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}) ;$ MS (MALDI-TOF) m / z $704.9\left(\mathrm{M}^{+}\right)$; Anal. Calcd for $\mathrm{C}_{41} \mathrm{H}_{58} \mathrm{~S}_{4} \mathrm{Si}$: C, $69.63 ; \mathrm{H}, 8.27 \%$. Found: C, $69.61 ; \mathrm{H}, 8.10 \%$.

11d: 95% yield from 10d; yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.24(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 6 \mathrm{H}), 1.26-1.42(\mathrm{~m}, 20 \mathrm{H}), 1.49$ (quin, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.55-1.65$ (m, 4H), 1.74 (quin, $J=7.0 \mathrm{~Hz}$, $4 \mathrm{H}), 2.66(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.72(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.82(\mathrm{t}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 6.71(\mathrm{~d}, J=3.6 \mathrm{~Hz}$, 2H), $6.89(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{~d}$, $J=5.1 \mathrm{~Hz}, 1 \mathrm{H}) ;$ MS (MALDI-TOF) $m / z 718.5\left(\mathrm{M}^{+}\right)$; Anal. Calcd for $\mathrm{C}_{42} \mathrm{H}_{60} \mathrm{~S}_{4} \mathrm{Si}: \mathrm{C}, 69.94 ; \mathrm{H} 8.38 \%$. Found: C, 69.92; H, 8.33\%.

11e: 88% yield from 10e; yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.24(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 6 \mathrm{H}), 1.26-1.42(\mathrm{~m}, 20 \mathrm{H}), 1.40-1.48(\mathrm{~m}, 4 \mathrm{H}), 1.55-1.66(\mathrm{~m}, 4 \mathrm{H}), 1.66-1.75(\mathrm{~m}, 4 \mathrm{H}), 2.67(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.73(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.81(\mathrm{t}, J=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 6.71(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=$ $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=5.1 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($68 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-0.1,14.1,22.7,28.8,29.1$ (2 carbons), 29.2 (2 carbons), 29.4, $29.5,30.0,30.4,30.7,31.4,31.9,97.8,99.2,120.2,123.2,124.3,124.5,125.6,126.0,129.8,131.1$, 132.8, 133.2, 133.7, 135.5, 138.6, 139.0, 145.8, 146.5; MS (MALDI-TOF) $m / z 732.7$ (M ${ }^{+}$); Anal. Calcd for $\mathrm{C}_{43} \mathrm{H}_{62} \mathrm{~S}_{4} \mathrm{Si}: \mathrm{C}, 70.24 ; \mathrm{H}, 8.50 \%$. Found: C, $70.26 ; \mathrm{H}, 8.53 \%$.

Mono(ethynyl) derivatives of α, ω-bis(3'-octyl-2,2'-bithien-5-yl)alkanes (12c-e). The detrimethylsilylation of $\mathbf{1 1} \mathbf{c} \mathbf{-}$ to $\mathbf{1 2} \mathbf{c}-\mathbf{e}$ was carried out in a similar manner as above-described for the conversion of 7a,b to $\mathbf{8 a}, \mathbf{b}$.

12c: quantitative yield from 11c; yellow oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.85-0.89(\mathrm{~m}, 6 \mathrm{H})$, $1.26-1.42(\mathrm{~m}, 20 \mathrm{H}), 1.53-1.61(\mathrm{~m}, 4 \mathrm{H}), 1.86-1.90(\mathrm{~m}, 4 \mathrm{H}), 2.65(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.72(\mathrm{t}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 2.82-2.88(\mathrm{~m}, 4 \mathrm{H}), 3.33(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}$,
$J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (68 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 14.1,22.6,26.5,29.1,29.2,29.3$ (2 carbons), 29.4 (2 carbons), 29.5, 29.8 (2 carbons), 30.4, 30.7, 30.9 (2 carbons), $31.9,77.2,123.2,124.5,124.9,125.6,127.0,129.8,130.9,132.8,133.8$, 135.1, 139.1, 139.7, 140.3, 140.4, 145.2, 147.2; MS (MALDI-TOF) $m / z 633.2\left(\mathrm{M}^{+}\right)$; Anal. Calcd for $\mathrm{C}_{38} \mathrm{H}_{50} \mathrm{~S}_{4}: \mathrm{C}, 71.87 ; \mathrm{H}, 7.94 \%$. Found: C, 71.57; H, 7.84\%

12d: quantitative yield from 11d; yellow oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.87(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $6 \mathrm{H}), 1.26-1.42(\mathrm{~m}, 20 \mathrm{H}), 1.49$ (quin, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.55-1.65(\mathrm{~m}, 4 \mathrm{H}), 1.74$ (quin, $J=7.0 \mathrm{~Hz}$, $4 \mathrm{H}), 2.67(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.72(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.82(\mathrm{t}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 3.35(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{~d}$, $J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~s}$, $1 \mathrm{H}), 7.12(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($68 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.1,22.6,26.5,28.5,29.1,29.2,29.3$, $29.4,29.5,29.8,30.0,30.4,30.7,31.3,31.9,77.3,77.6,123.2,124.4,124.9,125.6,126.9,129.8$, 131.0, 132.7, 133.7, 133.8, 135.1, 139.1, 139.6, 140.3, 145.6, 147.6; MS (MALDI-TOF) m/z 646.9 $\left(\mathrm{M}^{+}\right)$; Anal. Calcd for $\mathrm{C}_{39} \mathrm{H}_{52} \mathrm{~S}_{4}$: C, 72.16; H, 8.07\%. Found: C, $72.05 ; \mathrm{H}, 8.25 \%$.

12e: 97% yield from 11e; yellow oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.87(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H})$, $1.26-1.42(\mathrm{~m}, 20 \mathrm{H}), 1.40-1.48(\mathrm{~m}, 4 \mathrm{H}), 1.54-1.63(\mathrm{~m}, 4 \mathrm{H}), 1.62-1.75(\mathrm{~m}, 4 \mathrm{H}), 2.67(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 2.72(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.81(\mathrm{t}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 3.35(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}$, $J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=5.1 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($68 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.1,22.6,26.5,29.1,29.2,29.3$ (2 carbons), 29.4, 29.5, 29.7, $29.8,30.4,30.7,30.9,31.8,77.1,123.2,124.5,124.9,125.6,126.9,129.8,130.9,132.7,133.8$, 135.1, 139.1, 139.6, 140.3 (2 carbons), 145.1, 147.2; MS (MALDI-TOF) m/z 661.1 (${ }^{+}$); Anal. Calcd for $\mathrm{C}_{40} \mathrm{H}_{54} \mathrm{~S}_{4}: \mathrm{C}, 72.45 ; \mathrm{H}, 8.21 \%$. Found: C, $72.67 ; \mathrm{H}, 8.15 \%$.

Acyclic dimers (13c-e). The Eglinton couplings of monoacetylenes 12c-e to the acyclic dimers $\mathbf{1 3 c} \mathbf{c}$ e were carried out in a similar manner as above-described for the conversion of $\mathbf{8 a}, \mathbf{b}$ to $\mathbf{9 a}, \mathbf{b}$.

13c: 98% yield from 12c; orange oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.85-0.89(\mathrm{~m}, 12 \mathrm{H})$, $1.26-1.42(\mathrm{~m}, 40 \mathrm{H}), 1.53-1.61(\mathrm{~m}, 8 \mathrm{H}), 1.86-1.90(\mathrm{~m}, 8 \mathrm{H}), 2.69(\mathrm{t}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.72(\mathrm{t}, J=8.0$
$\mathrm{Hz}, 4 \mathrm{H}), 2.82-2.88(\mathrm{~m}, 8 \mathrm{H}), 6.73(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.74(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=3.6 \mathrm{~Hz}$, $2 \mathrm{H}), 6.91(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($68 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.1,22.7,29.1,29.2,29.4$ (2 carbons), 29.5, 29.8, 30.4, 30.7, 30.9, 31.9, $78.6,118.9,123.2,124.5,124.7,125.6,126.4,129.8,131.0,132.6,133.8,134.9,137.2,138.9,139.1$, 145.2, 146.4; MS (MALDI-TOF) $m / z 1265.2\left(\mathrm{M}^{+}\right)$; Anal. Calcd for $\mathrm{C}_{76} \mathrm{H}_{98} \mathrm{~S}_{8}$: C, 71.98; H, 7.79%. Found: C, 71.71; H, 7.83\%.

13d: 97% from 12d; orange oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.87(\mathrm{t}, J=7.0 \mathrm{~Hz}, 12 \mathrm{H})$, $1.26-1.42(\mathrm{~m}, 40 \mathrm{H}), 1.49$ (quin, $J=7.5 \mathrm{~Hz}, 4 \mathrm{H}$), $1.55-1.65(\mathrm{~m}, 8 \mathrm{H}), 1.74$ (quin, $J=7.0 \mathrm{~Hz}, 8 \mathrm{H}$), $2.67(\mathrm{t}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.72(\mathrm{t}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.82(\mathrm{t}, J=7.5 \mathrm{~Hz}, 8 \mathrm{H}), 6.70(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H})$, $6.71(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.10(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(68 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.1,22.6,28.5,29.1,29.2$, $29.4,29.5,29.9,30.3,30.7,31.2,31.8,77.5,78.7,118.8,123.1,124.3,124.6,125.5,126.3,129.7$, 131.0, 132.5, 133.7, 134.9, 137.1, 138.8, 138.9, 145.4, 146.6; MS (MALDI-TOF) $m / z 1292.4\left(\mathrm{M}^{+}\right)$; Anal. Calcd for $\mathrm{C}_{78} \mathrm{H}_{102} \mathrm{~S}_{8}$: C, $72.28 ; \mathrm{H}, 7.93 \%$. Found: C, $72.22 ; \mathrm{H}, 7.91 \%$.

13e: 84% yield from 12e; orange oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.87(\mathrm{t}, J=7.0 \mathrm{~Hz}, 12 \mathrm{H}$), $1.26-1.42(\mathrm{~m}, 40 \mathrm{H}), 1.38-1.44(\mathrm{~m}, 8 \mathrm{H}), 1.54-1.62(\mathrm{~m}, 8 \mathrm{H}), 1.63-1.73(\mathrm{~m}, 8 \mathrm{H}), 2.66(\mathrm{t}, J=8.0 \mathrm{~Hz}$, 4H), $2.71(\mathrm{t}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.77(\mathrm{t}, J=7.5 \mathrm{~Hz}, 8 \mathrm{H}), 6.67(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 4 \mathrm{H}), 6.86(\mathrm{~d}, J=3.6 \mathrm{~Hz}$, $2 \mathrm{H}), 6.87(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (68 MHz, CDCl_{3}) $\delta 14.1,22.7,28.8,29.1,29.2$, 29.4 (2 carbons), 29.5, 30.0, 30.4, 30.7, 31.4, $31.9,77.5,78.6,118.8,122.6,124.3,124.6,125.6,126.3,129.8,131.1,132.5,133.7,135.0,137.2$, 138.9, 139.0, 145.7, 146.9; MS (MALDI-TOF) $m / z 1322.5\left(\mathrm{M}^{+}\right)$; Anal. Calcd for $\mathrm{C}_{80} \mathrm{H}_{106} \mathrm{~S}_{8}: \mathrm{C}$, 72.56; H, 8.07\%. Found: C, 72.60; H, 8.01\%.

Bis(bithienylalkyl)quinquethiophenes (14c-e). The thiacyclization of the diacetylenes 13c-e with sodium sulfide to the quinquethiophenes $\mathbf{1 4 c} \mathbf{c}$ e was carried out in a similar manner as above-described for the conversion of $\mathbf{9 a}, \mathbf{b}$ to $\mathbf{4 a}, \mathbf{b}$.

14c: 60% yield from 13c; orange semisolid; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.85-0.89(\mathrm{~m}, 12 \mathrm{H})$, $1.26-1.42(\mathrm{~m}, 40 \mathrm{H}), 1.53-1.61(\mathrm{~m}, 8 \mathrm{H}), 1.86-1.90(\mathrm{~m}, 8 \mathrm{H}), 2.71(\mathrm{t}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.73(\mathrm{t}, J=8.0$ $\mathrm{Hz}, 4 \mathrm{H}), 2.82-2.88(\mathrm{~m}, 8 \mathrm{H}), 6.72(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=5.3 \mathrm{~Hz}$, $2 \mathrm{H}), 6.90(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~s}, 2 \mathrm{H}), 7.03(\mathrm{~s}, 2 \mathrm{H}) 7.12(\mathrm{~d}, J=5.3 \mathrm{~Hz}$, 2H); MS (MALDI-TOF) $m / z 1302.9\left(\mathrm{M}^{+}\right)$; Anal. Calcd for $\mathrm{C}_{76} \mathrm{H}_{100} \mathrm{~S}_{9}: \mathrm{C}, 70.10 ; \mathrm{H}, 7.74 \%$. Found: C, 70.05; H, 7.56\%.

14d: 57% yield from 13d; orange semisolid; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.87(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $6 \mathrm{H}), 0.88(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.26-1.42(\mathrm{~m}, 40 \mathrm{H}), 1.48(\mathrm{quin}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 1.58-1.68(\mathrm{~m}, 8 \mathrm{H})$, 1.74 (quin, $J=7.0 \mathrm{~Hz}, 8 \mathrm{H}), 2.70(\mathrm{t}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.72(\mathrm{t}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.81(\mathrm{t}, J=7.5 \mathrm{~Hz}, 8 \mathrm{H})$, $6.69(\mathrm{~m}, 4 \mathrm{H}), 6.87(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~s}$, 2H), $7.00(\mathrm{~s}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(68 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.1,22.7,28.6,29.1,29.2$, 29.3, 29.4, 29.5, 30.0, 30.5, 30.7, 31.3, 31.9, 123.2, 124.0, 124.4, 124.5, 125.6 (2 carbons), 126.4, 129.8, 130.3, 131.1, 133.4, 133.7, 134.3, 135.9, 139.1, 139.8, 145.6, 145.9; MS (MALDI-TOF) m / z $1328.4\left(\mathrm{M}^{+}\right)$; Anal. Calcd for $\mathrm{C}_{78} \mathrm{H}_{104} \mathrm{~S}_{9}: \mathrm{C}, 70.43 ; \mathrm{H}, 7.88 \%$. Found: C, $70.36 ; \mathrm{H}, 7.79 \%$.

14e: 69% yield from 13e; orange semisolid; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.91-0.96(\mathrm{~m}, 12 \mathrm{H})$, $1.26-1.42(\mathrm{~m}, 40 \mathrm{H}), 1.42-1.49(\mathrm{~m}, 8 \mathrm{H}), 1.63-1.72(\mathrm{~m}, 8 \mathrm{H}), 1.72-1.78(\mathrm{~m}, 8 \mathrm{H}), 2.76(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $4 \mathrm{H}), 2.78(\mathrm{t}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.85(\mathrm{t}, J=7.5 \mathrm{~Hz}, 8 \mathrm{H}), 6.75(\mathrm{~m}, 4 \mathrm{H}), 6.94(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}$, $J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~s}, 2 \mathrm{H}), 7.04(\mathrm{~s}, 2 \mathrm{H}) 7.14(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H})$; MS (MALDI-TOF) $m / z 1353.4\left(\mathrm{M}^{+}\right)$; Anal. Calcd for $\mathrm{C}_{80} \mathrm{H}_{108} \mathrm{~S}_{9}$: C, 70.74; H, 8.01\%. Found: C, 70.77; H 8.01\%.

Diformyl derivatives (15c-e). A typical synthetic procedure is as follows. Phosphorus oxychloride (1.0 mL) was added to a mixture of $\mathbf{1 4 c}(447 \mathrm{mg}, 0.34 \mathrm{mmol})$ and DMF (50 mg , $0.69 \mathrm{mmol})$, and 1,2 -dichloroethane (10 mL). The mixture was refluxed for 13 h and cooled to rt . After 1 N aq NaOH solution (50 mL) was added, the mixture was stirred at room temperature for 3 h , and extracted with chloroform (30 mL x 3). The extracts were combined, successively washed with
$1 N$ hydrochloric acid (30 mL) and water (30 mL), and dried over MgSO_{4}. After evaporation of the solvent, the residue was purified by column chromatography on silica gel with chloroform to give an orange semisolid of $\mathbf{1 5 c}(283 \mathrm{mg}, 61 \%):{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.85-0.89(\mathrm{~m}, 12 \mathrm{H})$, $1.26-1.42(\mathrm{~m}, 40 \mathrm{H}), 1.53-1.61(\mathrm{~m}, 8 \mathrm{H}), 1.86-1.90(\mathrm{~m}, 8 \mathrm{H}), 2.71(\mathrm{t}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.77(\mathrm{t}, J=8.0$ $\mathrm{Hz}, 4 \mathrm{H}), 2.82-2.88(\mathrm{~m}, 8 \mathrm{H}), 6.74(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=3.6 \mathrm{~Hz}$, 2H), 6.98 (s, 2H), 7.02 ($\mathrm{s}, 2 \mathrm{H}$), 7.11 (d, $J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~s}, 2 \mathrm{H}), 9.80(\mathrm{~s}, 2 \mathrm{H}) ; \mathrm{MS}$ (MALDI-TOF) $m / z 1354.4\left(\mathrm{M}^{+}\right)$; Anal. Calcd for $\mathrm{C}_{78} \mathrm{H}_{100} \mathrm{O}_{2} \mathrm{~S}_{9}$: C, $68.98 ; \mathrm{H}, 7.42 \%$. Found: C, 68.91; H, 7.36\%.

15d: 68% yield from 14d; orange semisolid; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.88(\mathrm{t}, J=7.0 \mathrm{~Hz}$, 12 H), 1.26-1.42 (m, 40 H), 1.49 (quin, $J=7.5 \mathrm{~Hz}, 4 \mathrm{H}$), $1.55-1.65(\mathrm{~m}, 8 \mathrm{H}), 1.75$ (quin, $J=7.0 \mathrm{~Hz}$, $8 \mathrm{H}), 2.70(\mathrm{t}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.75(\mathrm{t}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.82(\mathrm{t}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 2.84(\mathrm{t}, J=7.5 \mathrm{~Hz}$, 4H), 6.72 (d, $J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~s}, 2 \mathrm{H}), 7.01(\mathrm{~s}$, 2H), 7.09 (d, $J=3.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.55 (s, 2H), 9.78 (s, 2H); MS (MALDI-TOF) $\mathrm{m} / \mathrm{z} 1383.4$ (${ }^{+}$); Anal. Calcd for $\mathrm{C}_{80} \mathrm{H}_{104} \mathrm{O}_{2} \mathrm{~S}_{9}: \mathrm{C}, 69.31 ; \mathrm{H}, 7.56 \%$. Found: C, $69.25 ; \mathrm{H}, 7.57 \%$.

15e: 55% yield from 14e; orange semisolid; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.88(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $12 \mathrm{H}), 1.26-1.42(\mathrm{~m}, 40 \mathrm{H}), 1.42-1.49(\mathrm{~m}, 8 \mathrm{H}), 1.60-1.68(\mathrm{~m}, 8 \mathrm{H}), 1.68-1.78(\mathrm{~m}, 8 \mathrm{H}), 2.70(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.76(\mathrm{t}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.80(\mathrm{t}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 2.82(\mathrm{t}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 6.71(\mathrm{~d}, J=$ $3.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.75(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~s}, 2 \mathrm{H}), 7.00(\mathrm{~s}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J$ $=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~s}, 2 \mathrm{H}), 9.78(\mathrm{~s}, 2 \mathrm{H})$; MS (MALDI-TOF) $\mathrm{m} / \mathrm{z} 1412.4\left(\mathrm{M}^{+}\right)$; Anal. Calcd for $\mathrm{C}_{82} \mathrm{H}_{108} \mathrm{O}_{2} \mathrm{~S}_{9}: \mathrm{C}, 69.64 ; \mathrm{H}, 7.70 \%$. Found: C, 69.56; H, 7.64\%.

Bis(dibromoethenyl) derivatives (16c-e). A typical synthetic procedure is as follows. A solution of $\mathbf{1 5 c}(205 \mathrm{mg}, 0.15 \mathrm{mmol})$ in 1.2 -dichloroethane (15 mL) was added to a mixture of tetrabromomethane ($200 \mathrm{mg}, 0.60 \mathrm{mmol}$) and triphenylphosphine ($317 \mathrm{mg}, 1.21 \mathrm{mmol}$) in 1,2 -dichloroethane $(3 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at rt for 2 h , and then filtered through a celite pad. After evaporation of the solvent, the residue was purified by column chromatography on
silica gel with chloroform-hexane ($\mathrm{v} / \mathrm{v}=1: 1$) to give an orange semisolid of $\mathbf{1 6 c}(244 \mathrm{mg}, 97 \%$ yield): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.85-0.89(\mathrm{~m}, 12 \mathrm{H}), 1.26-1.42(\mathrm{~m}, 40 \mathrm{H}), 1.53-1.61(\mathrm{~m}, 8 \mathrm{H})$, $1.86-1.90(\mathrm{~m}, 8 \mathrm{H}), 2.70(\mathrm{t}, J=8.0 \mathrm{~Hz}, 8 \mathrm{H}), 2.82-2.88(\mathrm{~m}, 8 \mathrm{H}), 6.73(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 4 \mathrm{H}), 6.92(\mathrm{~d}, J=$ $3.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~s}, 2 \mathrm{H}), 7.01(\mathrm{~s}, 2 \mathrm{H}), 7.02(\mathrm{~s}, 2 \mathrm{H}), 7.52(\mathrm{~s}, 2 \mathrm{H}) ; \mathrm{MS}$ (MALDI-TOF) $m / z 1664.8\left(\mathrm{M}^{+}\right)$; Anal. Calcd for $\mathrm{C}_{80} \mathrm{H}_{100} \mathrm{Br}_{4} \mathrm{~S}_{9}$: C, 57.54; H, 6.04\%. Found: C, 57.68; H, 5.99\%.

16d: 90% yield from 15d; orange semisolid; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.88(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $12 \mathrm{H}), 1.26-1.42(\mathrm{~m}, 40 \mathrm{H}), 1.47$ (quin, $J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 1.57$ (quin, $J=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 1.63$ (quin, $J=$ $7.0 \mathrm{~Hz}, 4 \mathrm{H}), 1.72$ (quin, $J=7.0 \mathrm{~Hz}, 8 \mathrm{H}), 2.67(\mathrm{t}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.69(\mathrm{t}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.79(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 8 \mathrm{H}), 6.68(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.69(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J$ $=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~s}, 2 \mathrm{H}), 6.97(\mathrm{~s}, 2 \mathrm{H}), 6.98(\mathrm{~s}, 2 \mathrm{H}), 7.48(\mathrm{~s}, 2 \mathrm{H})$; MS (MALDI-TOF) $\mathrm{m} / \mathrm{z} 1696.0$ $\left(\mathrm{M}^{+}\right)$; Anal. Calcd for $\mathrm{C}_{82} \mathrm{H}_{104} \mathrm{Br}_{4} \mathrm{~S}_{9}$: C, $58.01 ; \mathrm{H}, 6.17 \%$. Found: C, $58.02 ; \mathrm{H}, 6.23 \%$.

16e: 45% yield from 15e; orange semisolid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.88(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $12 \mathrm{H}), 1.26-1.42(\mathrm{~m}, 40 \mathrm{H}), 1.42-1.49(\mathrm{~m}, 8 \mathrm{H}), 1.54-1.68(\mathrm{~m}, 8 \mathrm{H}), 1.68-1.74(\mathrm{~m}, 8 \mathrm{H}), 2.68(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.70(\mathrm{t}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.79(\mathrm{t}, J=7.5 \mathrm{~Hz}, 8 \mathrm{H}), 6.68-6.71(\mathrm{~m}, 4 \mathrm{H}), 6.90(\mathrm{~d}, J=3.6 \mathrm{~Hz}$, 2H), $6.94(\mathrm{~d}, ~ J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~s}, 2 \mathrm{H}), 6.98(\mathrm{~s}, 2 \mathrm{H}), 7.00(\mathrm{~s}, 2 \mathrm{H}), 7.49(\mathrm{~s}, 2 \mathrm{H})$; MS (MALDI-TOF) $m / z 1724.3\left(\mathrm{M}^{+}\right)$; Anal. Calcd for $\mathrm{C}_{84} \mathrm{H}_{108} \mathrm{Br}_{4} \mathrm{~S}_{9}$: C, 58.45; H, 6.31\%. Found: C, 58.64; H, 6.37\%.

Diethynyl derivatives (17c-e). A typical synthetic procedure is as follows. LDA (1.0 mL .0 .5 mmol, 0.5 M hexane) was added to a solution of $\mathbf{1 6 c}(132 \mathrm{mg}, 0.08 \mathrm{mmol})$ in THF (20 mL) at $-60^{\circ} \mathrm{C}$. After water (10 mL) was added to the reaction mixture, it was extracted with chloroform (30 mL x 3). The extracts were combined, washed with water ($30 \mathrm{~mL} \times 2$), and dried $\left(\mathrm{MgSO}_{4}\right)$. After evaporation of the solvent, the residue was purified by column chromatography on silica gel with chloroform-hexane $(\mathrm{v} / \mathrm{v}=1: 2)$ to give an orange semisolid of $\mathbf{1 7 c}\left(78 \mathrm{mg}, 73 \%\right.$ yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.85-0.89(\mathrm{~m}, 12 \mathrm{H}), 1.26-1.42(\mathrm{~m}, 40 \mathrm{H}), 1.53-1.61(\mathrm{~m}, 8 \mathrm{H}), 1.86-1.90$
$(\mathrm{m}, 8 \mathrm{H}), 2.70(\mathrm{t}, J=8.0 \mathrm{~Hz}, 8 \mathrm{H}), 2.82-2.88(\mathrm{~m}, 8 \mathrm{H}), 3.35(\mathrm{~s}, 2 \mathrm{H}), 6.73(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 4 \mathrm{H}), 6.92(\mathrm{~d}$, $J=3.6 \mathrm{~Hz}, 4 \mathrm{H}), 6.98(\mathrm{~s}, 2 \mathrm{H}), 7.02(\mathrm{~s}, 2 \mathrm{H}), 7.08(\mathrm{~s}, 2 \mathrm{H}) ;$ MS (MALDI-TOF) m/z $1349.3\left(\mathrm{M}^{+}\right)$; Anal. Calcd for $\mathrm{C}_{80} \mathrm{H}_{100} \mathrm{~S}_{9}: \mathrm{C}, 71.16 ; \mathrm{H}, 7.46 \%$. Found: C, $71.07 ; \mathrm{H}, 7.39 \%$.

17d: 83% yield from 16d; orange semisolid; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.88(\mathrm{t}, J=7.0 \mathrm{~Hz}$, 12 H), 1.26-1.42 (m, 40H), 1.49 (quin, $J=7.5 \mathrm{~Hz}, 4 \mathrm{H}$), 1.59 (quin, $J=7.0 \mathrm{~Hz}, 4 \mathrm{H}$), 1.62 (quin, $J=$ $7.0 \mathrm{~Hz}, 4 \mathrm{H}$), 1.75 (quin, $J=7.0 \mathrm{~Hz}, 8 \mathrm{H}$), $2.67(\mathrm{t}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.71(\mathrm{t}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.83(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 8 \mathrm{H}), 3.35(\mathrm{~s}, 2 \mathrm{H}), 6.70-6.74(\mathrm{~m}, 4 \mathrm{H}), 6.92(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 4 \mathrm{H}), 6.98(\mathrm{~s}, 2 \mathrm{H}), 7.02(\mathrm{~s}, 2 \mathrm{H})$, 7.08 (s, 2H); MS (MALDI-TOF) $m / z 1379.4\left(\mathrm{M}^{+}\right)$; Anal. Calcd for $\mathrm{C}_{82} \mathrm{H}_{104} \mathrm{~S}_{9}$: C, 71.46; H, 7.61\%. Found: C, 71.41; H, 7.68\%.

17e: 81% yield from 16e; orange semisolid; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.87(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $6 \mathrm{H}), 0.88(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.26-1.42(\mathrm{~m}, 40 \mathrm{H}), 1.42-1.46(\mathrm{~m}, 8 \mathrm{H}), 1.54-1.68(\mathrm{~m}, 8 \mathrm{H}), 1.68-1.74$ $(\mathrm{m}, 8 \mathrm{H}), 2.67(\mathrm{t}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.70(\mathrm{t}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.80(\mathrm{t}, J=7.5 \mathrm{~Hz}, 8 \mathrm{H}), 3.34(\mathrm{~s}, 2 \mathrm{H})$, 6.70-6.74 (m, 4H), $6.92(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 4 \mathrm{H}), 6.97(\mathrm{~s}, 2 \mathrm{H}), 7.02(\mathrm{~s}, 2 \mathrm{H}), 7.08(\mathrm{~s}, 2 \mathrm{H}) ; \mathrm{MS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z}$ $1405\left(\mathrm{M}^{+}\right)$; Anal. Calcd for $\mathrm{C}_{84} \mathrm{H}_{108} \mathrm{~S}_{9}$: C, 71.74; H, 7.74\%. Found: C, $71.63 ; \mathrm{H}, 7.64 \%$.

Cyclic monomers (18c-e). The intramolecular Eglinton coupling of $\mathbf{1 7 c} \mathbf{c} \mathbf{d}$ to $\mathbf{1 8 c} \mathbf{c} \mathbf{d}$ was carried out in a similar manner as above-described for the conversion of $\mathbf{8 a}, \mathbf{b}$ to $\mathbf{9 a}, \mathbf{b}$.

18c: 76% yield from 17c; orange oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.85-0.89(\mathrm{~m}, 12 \mathrm{H})$, $1.26-1.42(\mathrm{~m}, 40 \mathrm{H}), 1.53-1.61(\mathrm{~m}, 8 \mathrm{H}), 1.86-1.90(\mathrm{~m}, 8 \mathrm{H}), 2.70(\mathrm{t}, J=8.0 \mathrm{~Hz}, 8 \mathrm{H}), 2.82-2.88(\mathrm{~m}$, $8 \mathrm{H}), 6.67(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.69(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=3.6 \mathrm{~Hz}$, 2H), 6.97 ($\mathrm{s}, 2 \mathrm{H}$), $7.04(\mathrm{~s}, 2 \mathrm{H}), 7.10(\mathrm{~s}, 2 \mathrm{H})$; MS (MALDI-TOF) $\mathrm{m} / \mathrm{z} 1347.5\left(\mathrm{M}^{+}\right)$; Anal. Calcd for $\mathrm{C}_{80} \mathrm{H}_{98} \mathrm{~S}_{9}: \mathrm{C}, 71.27 ; \mathrm{H}, 7.33 \%$. Found: C, 71.38; H, 7.27\%.

18d: 86% yield from 17d; orange oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.86-0.91(\mathrm{~m}, 12 \mathrm{H})$, $1.26-1.42(\mathrm{~m}, 44 \mathrm{H}), 1.49-1.65(\mathrm{~m}, 8 \mathrm{H}), 1.60-1.76(\mathrm{~m}, 8 \mathrm{H}), 2.58-2.70(\mathrm{~m}, 8 \mathrm{H}), 2.78-2.91(\mathrm{~m}, 8 \mathrm{H})$, $6.58(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.63(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H})$, $6.95(\mathrm{~s}, 2 \mathrm{H}), 7.07(\mathrm{~s}, 2 \mathrm{H}), 7.08(\mathrm{~s}, 2 \mathrm{H})$; MS (MALDI-TOF) $\mathrm{m} / \mathrm{z} 1373.5\left(\mathrm{M}^{+}\right)$; Anal. Calcd for
$\mathrm{C}_{82} \mathrm{H}_{102} \mathrm{~S}_{9}$: C, 71.56; H, 7.47\%. Found: C, 71.38; H, 7.44\%.

18e: 78% yield from 17e; orange oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.87(\mathrm{t}, J=7.0 \mathrm{~Hz}, 12 \mathrm{H})$, $1.26-1.42(\mathrm{~m}, 48 \mathrm{H}), 1.54-1.70(\mathrm{~m}, 16 \mathrm{H}), 2.65(\mathrm{t}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.68(\mathrm{t}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.79(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 8 \mathrm{H}), 6.66(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J$ $=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~s}, 2 \mathrm{H}), 7.02(\mathrm{~s}, 2 \mathrm{H}), 7.11(\mathrm{~s}, 2 \mathrm{H})$; MS (FAB) m/z $1403\left(\mathrm{M}^{+}\right)$; Anal. Calcd for $\mathrm{C}_{84} \mathrm{H}_{106} \mathrm{~S}_{9}: \mathrm{C}, 71.84 ; \mathrm{H}, 7.61 \%$. Found: C, $71.68 ; \mathrm{H}, 7.68 \%$.
[4.4]-, [5.5]-, and [6.6]Quinquethiophenophanes (4c-e). The thiacyclization of the diacetylenes 18c-e with sodium sulfide to the quinquethiophenes $\mathbf{4 c}-\mathbf{e}$ was carried out in a similar manner as above-described for the conversion of $\mathbf{9 a}, \mathbf{b}$ to $\mathbf{4 a}, \mathbf{b}$.

4c: 50% yield from 18c; orange cotton-like crystals from hexane-benzene; mp $156-159{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.88(\mathrm{t}, J=8.0 \mathrm{~Hz}, 12 \mathrm{H}), 1.26-1.42(\mathrm{~m}, 40 \mathrm{H}), 1.57$ (quin, $J=8.0 \mathrm{~Hz}$, $8 \mathrm{H}), 1.86-1.90(\mathrm{~m}, 8 \mathrm{H}), 2.65(\mathrm{t}, J=8.0 \mathrm{~Hz}, 8 \mathrm{H}), 2.82-2.88(\mathrm{~m}, 8 \mathrm{H}), 6.68(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 4 \mathrm{H}), 6.89$ $(\mathrm{d}, J=3.6 \mathrm{~Hz}, 4 \mathrm{H}), 6.89(\mathrm{~s}, 4 \mathrm{H}), 6.92(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(68 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.1,22.7$, $29.3(2$ carbons), $29.4,29.6,29.8,30.4,31.9,124.0,124.9,125.3,126.2,130.3,134.1,134.4,135.8,139.6$, 145.4; MS (MALDI-TOF) $m / z 1378.7\left(\mathrm{M}^{+}\right)$; Anal. Calcd for $\mathrm{C}_{80} \mathrm{H}_{100} \mathrm{~S}_{10}: \mathrm{C}, 69.51 ; \mathrm{H}, 7.29 \%$. Found: C, 69.33; H, 7.50\%.

4d: 46% yield from 18d; orange cotton-like crystals from hexane; mp $140{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.88(\mathrm{t}, J=7.0 \mathrm{~Hz}, 12 \mathrm{H}), 1.26-1.46(\mathrm{~m}, 44 \mathrm{H}), 1.59(q u i n, J=7.5 \mathrm{~Hz}, 8 \mathrm{H}), 1.67$ (quin, $J=7.0 \mathrm{~Hz}, 8 \mathrm{H}), 2.61(\mathrm{t}, J=8.0 \mathrm{~Hz}, 8 \mathrm{H}), 2.82(\mathrm{t}, J=7.5 \mathrm{~Hz}, 8 \mathrm{H}), 6.59(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 4 \mathrm{H})$, $6.77(\mathrm{~s}, 4 \mathrm{H}), 6.84(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 4 \mathrm{H}), 6.85(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(68 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.1,22.7,25.6$, 29.2, 29.3, 29.4 (2 carbons), 29.6, 29.8, 30.4, 31.9, 123.9, 125.1, 125.3, 126.0, 130.3, 133.7, 134.2, 135.7, 139.3, 144.9; MS (MALDI-TOF) $m / z 1410.8\left(\mathrm{M}^{+}\right)$; Anal. Calcd for $\mathrm{C}_{82} \mathrm{H}_{104} \mathrm{~S}_{10}: \mathrm{C}, 69.83 ; \mathrm{H}$, 7.43\%. Found: C, 69.65; H, 7.47\%.

4e: 52% yield from 18e; orange cotton-like crystals from hexane; mp $142-145{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.87(\mathrm{t}, J=7.0 \mathrm{~Hz}, 12 \mathrm{H}), 1.26-1.42(\mathrm{~m}, 48 \mathrm{H}), 1.62(\mathrm{quin}, J=7.5 \mathrm{~Hz}, 8 \mathrm{H}), 1.62$ (quin, $J=7.0 \mathrm{~Hz}, 8 \mathrm{H}), 2.67(\mathrm{t}, J=7.0 \mathrm{~Hz}, 8 \mathrm{H}), 2.80(\mathrm{t}, J=7.5 \mathrm{~Hz}, 8 \mathrm{H}), 6.67(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 4 \mathrm{H})$, $6.87(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 4 \mathrm{H}), 6.94(\mathrm{~s}, 4 \mathrm{H}), 6.95(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(68 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.1,22.7,27.8$, 29.3 (2 carbons), 29.4, 29.6, 29.8, 30.4, 30.9, 31.9, 124.1, 124.9, 125.2, 126.2, 130.3, 133.6, 134.4, 135.8, 139.6, 145.9; MS (MALDI-TOF) $m / z 1437.1$ (M^{+}); Anal. Calcd for $\mathrm{C}_{84} \mathrm{H}_{108} \mathrm{~S}_{10}$: C, 70.14; H, 7.57%. Found: C, $70.22 ; \mathrm{H}, 7.60 \%$.

 was prepared in a high yield according to the conventional protocol, with Sonogashira reaction of 5-bromo-5'-methyl-3-octyl-2,2'-bithiophene ${ }^{17}$ to5'-methyl-3-octyl-5-trimethylsilylethynyl-2,2'-bithiophene, desilylation to 5-ethynyl-5'-methyl-3-octyl-2,2'-bithiophene, Eglinton coupling to 1,4-bis(5'-methyl-3-octyl-2,2'-bithien-5-yl)-1,3-butadiyne, and finally thiophene ring formation to 3 .

5'-Methyl-3-octyl-5-trimethylsilylethynyl-2,2'-bithiophene: 97\% yield from 5-bromo-5'-methyl-3-octyl-2,2'-bithiophene; yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.23(\mathrm{~s}, 9 \mathrm{H})$, $0.87(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.24-1.35(\mathrm{~m}, 10 \mathrm{H}), 1.58(\mathrm{quin}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.49(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H})$, $2.65(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.69(\mathrm{dq}, J=3.4 \mathrm{~Hz}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}) ;$
${ }^{13}{ }^{3}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-0.12,14.1,15.2,22.6,29.0,29.2,29.3$ (2 carbons), 30.4, 31.8, 97.6, 99.1, 120.1, 125.6, 126.2, 132.9, 133.0, 135.5, 138.6, 140.5; MS (EI) $m / z 388\left(\mathrm{M}^{+}\right)$; Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{~S}_{2} \mathrm{Si}$: C, $67.98 ; \mathrm{H}, 8.30 \%$. Found: C, $68.00 ; \mathrm{H}, 8.35 \%$.

5-Ethynyl-5'-methyl-3-octyl-2,2'-bithiophene: 97% yield from

 5'-methyl-3-octyl-5-trimethylsilylethynyl-2,2'-bithiophene; pale yellow oil; ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 0.87(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{~m}, 10 \mathrm{H}), 1.58(\mathrm{quin}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.48(\mathrm{~d}, J=1.0 \mathrm{~Hz}$, $3 \mathrm{H}), 2.66(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.33(\mathrm{~s}, 1 \mathrm{H}), 6.68(\mathrm{dq}, J=3.4 \mathrm{~Hz}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=3.4 \mathrm{~Hz}$, 1H), 7.07 ($\mathrm{s}, 1 \mathrm{H}$) ${ }^{13}{ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.0,15.2,22.6,29.0,29.2,29.3,29.4,30.4,31.8$,$77.1,81.5,119.0,125.6,126.3,132.7,133.2,135.8,138.6,140.6$; MS (EI) $m / z 316$ (M ${ }^{+}$); Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~S}_{2}$: C, $72.10 ; \mathrm{H}, 7.64 \%$. Found: C,72.15; $\mathrm{H}, 7.80 \%$.

1,4-Bis(5'-methyl-3-octyl-2,2'-bithien-5-yl)-1,3-butadiyne: 97\% yield from

 5-ethynyl-5'-methyl-3-octyl-2,2'-bithiophene; yellow fine crystals from hexane; mp $84-85{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.88(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.24-1.38(\mathrm{~m}, 20 \mathrm{H}), 1.59$ (quin, $J=7.8 \mathrm{~Hz}, 4 \mathrm{H}$), $2.49(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 6 \mathrm{H}), 2.67(\mathrm{t}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 6.70(\mathrm{dq}, J=3.4 \mathrm{~Hz}, J=1.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=$ $3.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 14.1, 15.3, 22.6, 29.0, 29.2, 29.3, 29.4, 30.4, 31.8, 77.4, 78.5, 118.8, 125.7, 126.6, 132.6, 134.8, 137.1, 138.9, 140.9; MS (EI) m/z 630 (M ${ }^{+}$); Anal. Calcd for $\mathrm{C}_{38} \mathrm{H}_{46} \mathrm{~S}_{4}$: C, $72.33 ; \mathrm{H}, 7.35 \%$. Found: C, $72.04 ; \mathrm{H}, 7.38 \%$.3: 70\% yield from 1,4-bis(5'-methyl-3-octyl-2,2'-bithien-5-yl)-1,3-butadiyne; yellow cotton-like crystals from hexane; mp $86-87{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.88(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}$), $1.24-1.38(\mathrm{~m}, 20 \mathrm{H}), 1.66($ quin, $J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 2.51(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 6 \mathrm{H}), 2.70(\mathrm{t}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H})$, $6.71(\mathrm{dq}, J=3.4 \mathrm{~Hz}, J=1.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~s}, 2 \mathrm{H}), 7.03(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 14.1,15.3,22.6,29.2,29.3,29.4,29.5,30.5,31.8,123.9,125.6,125.8,126.3$, 130.2, 133.5, 134.3, 135.9, 139.7, 140.1; MS (EI) $m / z 664\left(\mathrm{M}^{+}\right)$; Anal. Calcd for $\mathrm{C}_{38} \mathrm{H}_{48} \mathrm{~S}_{5}: \mathrm{C}, 68.62$; H, 7.27\%. Found: C, 68.91; H, 7.16\%.

Figure S1. ESR spectra of $\mathbf{4 a}$ (left, $g=2.0022$) and $\mathbf{4 b}$ (right, $g=2.0022$) in dichloromethane under controlled oxidation with FeCl_{3}.

Figure S2. Electronic absorption spectra of 4d in dichloromethane under controlled oxidation at rt with FeCl_{3}. N, P, and D denote neutral, polaronic, and π-dimeric bands, respectively.

Figure S3. Electronic absorption spectra of $\mathbf{4 e}$ in dichloromethane under controlled oxidation at rt with FeCl_{3}. N, P, and D denote neutral, polaronic, and π-dimeric bands, respectively.

Figure $\mathbf{S 4}$. ESR spectra of $\mathbf{4 c}(\mathrm{g}=2.0023)$ in dichloromethane under controlled oxidation with FeCl_{3}.

