Supporting Information

Syntheses, Structures, Spectroscopic Properties, and π -Dimeric Interactions of [n.n]Quinquethiophenophanes

Toyofumi Sakai, Teizi Satou, Takeshi Kaikawa, Kazuo Takimiya, Tetsuo Otsubo,* and Yoshio Aso

Table of Contents

1.	Synthesis of α, ω -bis(5'-bromo-3'-octyl-2,2'-bithien-5-yl)alkanes (6a,b).			
2.	Synthesis of α, ω -bis(3'-octyl-5'-trimethylsilylethynyl-2,2'-bithien-5-yl)alkanes (7a,b).			
3.	Synthesis of α, ω -bis(5'-ethynyl-3'-octyl-2,2'-bithien-5-yl)alkanes (8a,b).			
4.	Eglinton coupling of 8a,b to cyclic dimers (9a,b).			
5.	Synthesis of [2.2]- and [3.3]quinquethiophenophanes (4a,b).			
6.	Synthesis of monobromo derivatives of α, ω -bis(3'-octyl-2,2'-bithien-5-yl)alkanes (10c–e). S			
7.	Synthesis of mono(trimethylsilylethynyl) derivatives of			
	α , ω -bis(3'-octyl-2,2'-bithien-5-yl)alkanes (11c-e).	S7		
8.	. Synthesis of mono(ethynyl) derivatives of α, ω -bis(3'-octyl-2,2'-bithien-5-yl)alkanes			
	(12c–e).	S 8		
9.	Synthesis of acyclic dimers (13c–e).	S 9		
10.	Synthesis of bis(bithienylalkyl)quinquethiophenes (14c–e).	S11		
11.	Synthesis of diformyl derivatives (15c–e).	S11		
12.	Synthesis of bis(dibromoethenyl) derivatives (16c–e).	S12		

13.	3. Synthesis of diethynyl derivatives (17c–e).			
14.	14. Synthesis of cyclic monomers (18c–e).			
15.	15. Synthesis of [4.4]-, [5.5]-, and [6.6]quinquethiophenophanes (4c-e).			
16.	Synthesis o	f 5,5 ^{***} -dimethyl-3',4 ^{***} -dioctyl-2,2':5',2 ^{**} :5 ^{**} ,2 ^{***} -quinquethiophene		
	(3).		S16	
17.	Figure S1.	ESR Spectra of 4a (left) and 4b (right) in dichloromethane under controlled		
	oxidation wi	th FeCl ₃ .	S18	
18.	Figure S2.	Electronic absorption spectra of 4d in dichloromethane under controlled		
	oxidation wi	th FeCl ₃ .	S18	
19.	Figure S3.	Electronic absorption spectra of 4e in dichloromethane under controlled		
	oxidation with FeCl ₃ .			
20.	Figure S4.	ESR Spectra of $4c$ in dichloromethane under controlled oxidation with		
	FeCl ₃ .		S19	

α,ω-Bis(5'-bromo-3'-octyl-2,2'-bithien-5-yl)alkanes (6a,b). A typical synthetic procedure is as follows. *N*-Bromosuccinimide (300 mg, 1.68 mmol) was added to a solution of 1,2-bis(3'-octyl-2,2'-bithien-5-yl)ethane $5a^{17}$ (480 mg, 0.82 mmol) in DMF (40 mL) at 0 °C, and then the mixture was stirred at rt for 11 h. After cooling to 0 °C, water (30 mL) was added. The mixture was filtered through a celite pad, and extracted with hexane (30 mL x 3). The extracts were combined, washed with brine, and dried (MgSO₄). After evaporation of the solvent, the residue was purified by column chromatography on silica gel with hexane to give yellow fine crystals of **6a** (540 mg, 89%): mp 39–40 °C; ¹H NMR (400 MHz, CDCl₃) δ 0.87 (t, *J* = 6.7 Hz, 6H), 1.26–1.42 (m, 20H), 1.56 (quin, *J* = 7.8 Hz, 4H), 2.64 (t, *J* = 7.8 Hz, 4H), 3.18 (s, 4H), 6.74 (d, *J* = 3.6 Hz, 2H), 6.85 (d, *J* = 3.6 Hz, 2H), 6.86 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 14.2, 22.8, 29.2, 29.4 (2 carbons), 29.5, 30.7, 32.0, 32.2, 110.1, 125.3, 126.2, 132.4, 132.6, 133.1, 140.1, 144.2; MS (EI) *m/z* 738, 740, 742 (M⁺); Anal. Calcd for C₃₄H₄₄Br₂S₄: C, 55.13; H, 5.99%. Found: C, 55.28; H, 5.89%.

6b: 93% yield from 1,3-bis(3'-octyl-2,2'-bithien-5-yl)propane **5b**¹⁷; yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 0.87 (t, *J* = 6.8 Hz, 6H), 1.26–1.42 (m, 20H), 1.57 (quin, *J* = 7.8 Hz, 4H), 2.10 (quin, *J* = 7.6 Hz, 2H), 2.65 (t, *J* = 7.8 Hz, 4H), 2.89 (t, *J* = 7.6 Hz, 4H), 6.74 (d, *J* = 3.4 Hz, 2H), 6.86 (d, *J* = 3.4 Hz, 2H), 6.86 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 14.2, 22.7, 29.1, 29.3, 29.5 (2 carbons), 30.7, 32.0, 33.2, 110.0, 124.9, 126.2, 132.6, 132.8, 139.9, 145.3; MS (EI) *m/z* 752, 754, 756 (M⁺); Anal. Calcd for C₃₅H₄₆Br₂S₄: C, 55.69; H, 6.14%. Found: C, 55.65; H, 6.12%.

 α, ω -Bis(3'-octyl-5'-trimethylsilylethynyl-2,2'-bithien-5-yl)alkanes (7a,b). A typical synthetic procedure is as follows. A mixture of **6a** (509 mg, 0.68 mmol), (trimethylsilyl)acetylene (430 mg, 4.1 mmol), Pd(PPh₃)₄ (65 mg), and copper(I) iodide (10 mg) in triethylamine (10 mL) was heated to 70 °C for 12 h, and then poured into 1 *N* hydrochloric acid (15 mL) with ice-cooling. After the insoluble materials were removed by filtration through a celite pad, the filtrate was extracted with dichloromethane (20 mL x 3). The extracts were combined, successively washed with aq. sat. sodium bicarbonate (100 mL) and brine (100 mL), and dried (MgSO₄). After evaporation of the

solvent, column chromatography of the residue (silica gel, 5:1 hexane–dichloromethane) gave a yellow oil of **7a** (515 mg, 97%): ¹H NMR (400 MHz, CDCl₃) δ 0.24 (s, 18H), 0.87 (t, *J* = 7.0 Hz, 6H), 1.26–1.42 (m, 20H), 1.56 (quin, *J* = 7.8 Hz, 4H), 2.65 (t, *J* = 7.8 Hz, 4H), 3.19 (s, 4H), 6.75 (d, *J* = 3.5 Hz, 2H), 6.92 (d, *J* = 3.5 Hz, 2H), 7.04 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ –0.13, 14.1, 22.6, 29.0, 29.2, 29.4 (2 carbons), 30.4, 31.8, 32.1, 97.6, 99.3, 120.4, 125.2, 126.0, 132.8, 133.4, 135.5, 138.8, 144.1; MS (EI) *m*/*z* 774 (M⁺); Anal. Calcd for C₄₄H₆₂S₄Si₂: C, 68.15; H, 8.06%. Found: C, 68.40; H, 8.25%.

7b: 97% yield from **6b**; yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 0.24 (s, 18H), 0.87 (t, *J* = 7.0 Hz, 6H), 1.26–1.42 (m, 20H), 1.56 (quin, *J* = 7.8 Hz, 4H), 2.09 (quin, *J* = 7.4 Hz, 2H), 2.66 (t, *J* = 7.8 Hz, 4H), 2.90 (t, *J* = 7.4 Hz, 4H), 6.75 (d, *J* = 3.5 Hz, 2H), 6.93 (d, *J* = 3.5 Hz, 2H), 7.04 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 0.0, 14.1, 22.7, 29.1, 29.3, 29.5, 30.5, 31.9, 33.1, 97.8, 99.3, 120.4, 125.0, 126.1, 133.0, 133.2, 135.6, 138.8, 145.3; MS (EI) *m*/*z* 788 (M⁺); Anal. Calcd for C₄₅H₆₄S₄S₄S₁₂: C, 68.47; H, 8.17%. Found: C, 68.54; H, 8.25%.

α,ω-Bis(5'-ethynyl-3'-octyl-2,2'-bithien-5-yl)alkanes (8a,b). A typical synthetic procedure is as follows. A mixture of **7a** (264 mg, 0.32 mmol) and KOH (95 mg) in benzene (4 mL) and methanol (12 mL) was stirred at rt for 5 h. After the solvent was evaporated, the residue was extracted with dichloromethane (30 mL x 3). The extracts were combined, and washed successively with aq. sat. sodium bicarbonate (100 mL), brine (100 mL), and water (100 mL). After dryness (MgSO₄) and evaporation of the solvent, the residue was purified by column chromatography (silica gel, 5:2 hexane–dichloromethane) followed by recrystallization from hexane to give yellow fine crystals of **8a** (186 mg, 93%): mp 57–58 °C; ¹H NMR (400 MHz, CDCl₃) δ 0.87 (t, *J* = 7.0 Hz, 6H), 1.26–1.42 (m, 20H), 1.56 (quin, *J* = 7.8 Hz, 4H), 2.66 (t, *J* = 7.8 Hz, 4H), 3.18 (s, 4H), 3.34 (s, 2H), 6.74 (d, *J* = 3.7 Hz, 2H), 6.92 (d, *J* = 3.7 Hz, 2H), 7.07 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 14.1, 22.6, 29.0, 29.2, 29.3, 29.4, 30.4, 31.8, 32.0, 77.1, 81.6, 119.2, 125.2, 126.1, 133.0, 133.2, 135.8, 138.8, 144.1; MS (EI) *m/z* 630 (M⁺); Anal. Calcd for C₃₈H₄₆S₄: C, 72.33; H,
7.35%. Found: 72.35; H, 7.37%.

8b: quantitative yield from **7b**; pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 0.87 (t, *J* = 6.8 Hz, 6H), 1.26–1.42 (m, 20H), 1.59 (quin, *J* = 7.8 Hz, 4H), 2.10 (quin, *J* = 7.4 Hz, 2H), 2.67 (t, *J* = 7.8 Hz, 4H), 2.90 (t, *J* = 7.4 Hz, 4H), 3.35 (s, 2H), 6.75 (d, *J* = 3.6 Hz, 2H), 6.94 (d, *J* = 3.6 Hz, 2H), 7.08 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 14.1, 22.6, 29.0, 29.2 (2 carbons), 29.3, 29.4, 30.4, 31.8, 33.0, 77.1, 81.6, 119.1, 124.9, 126.2, 132.9, 133.2, 135.9, 138.7, 145.3; MS (EI) *m/z* 644 (M⁺); Anal. Calcd for C₃₉H₄₈S₄: C, 72.62; H, 7.50%. Found: 72.47; H, 7.52%.

Eglinton coupling of 8a,b to cyclic dimers (9a,b). A typical synthetic procedure is as follows. A solution of 8a (156 mg, 0.25 mmol) in pyridine (50 mL) was slowly added into a mixture of pyridine (150 mL), copper(II) acetate anhydride (1.2 g) at 45 °C over a period of 20 h, and then the mixture was stirred at the same temperature for 3 h, cooled to rt, and then poured into 5 *N* hydrochloric acid (100 mL) and chloroform (100 mL) with ice-cooling. The chloroform layer was separated, and the aqueous layer was extracted with chloroform (40 mL x 3). The combined extract was washed successively with 1 *N* hydrochloric acid (150 mL x 4), aq. sat. sodium bicarbonate (150 mL), brine (150 mL), and water (150 mL). After dryness (MgSO₄) and evaporation of the solvent, the residue was purified by column chromatography (alumina, dichloromethane) followed by preparative GPLC (JAIGEL-1H/2H, chloroform) to give a yellow semisolid of **9a** (34 mg, 22%): ¹H NMR (400 MHz, CDCl₃) δ 0.87 (t, *J* = 7.0 Hz, 12H), 1.25–1.42 (m, 40H), 1.59 (m, 8H), 2.63 (t, *J* = 7.8 Hz, 8H), 3.17 (s, 8H), 6.73 (d, *J* = 3.6 Hz, 4H), 6.92 (d, *J* = 3.6 Hz, 4H), 7.11 (s, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 14.1, 22.6, 29.0, 29.2, 29.3, 29.4, 30.3, 31.8, 31.9, 77.5, 78.7, 119.4, 125.8, 126.2, 133.7, 134.8, 136.6, 138.9, 143.8; MS (MALDI-TOF) *m*/z 1256 (M⁺); Anal. Calcd for C₇₆H₈₈S₈: C, 72.56; H, 7.05%. Found: 72.45; H, 7.15%.

9b: 9% yield from **8b**; yellow fine crystals from hexane; mp 154–156 °C; ¹H NMR (CDCl₃) δ 0.87 (t, *J* = 6.9 Hz, 12H), 1.26–1.42 (m, 40H), 1.54–1.60 (m, 8H), 2.09 (quin, *J* = 7.3 Hz, 4H), 2.64

(t, J = 7.9 Hz, 8H), 2.89 (t, J = 7.3 Hz, 8H), 6.74 (d, J = 3.6 Hz, 4H), 6.89 (d, J = 3.6 Hz, 4H), 7.11 (s, 4H); MS (MALDI-TOF) m/z 1285 (M⁺); Anal. Calcd for C₇₈H₉₂S₈: C, 72.84; H, 7.21%. Found: 73.08; H, 7.03%.

[2.2]- and [3.3]Quinquethiophenophanes (4a,b). A typical synthetic procedure is as follows. A mixture of **9a** (53 mg, 0.042 mmol), Na₂S•9H₂O (86 mg, 0.36 mmol), and KOH (4 mg) in dioxane (16 mL) was refluxed for 22 h. After water (50 mL) was added, the mixture was extracted with chloroform (10 mL x 4). The extracts were combined and successively washed with sat. aq. ammonium chloride (50 mL), brine (50 mL), and water (50 mL). After dryness (MgSO₄) and evaporation of the solvent, the residue was purified by column chromatography (silica gel, carbon disulfide) followed by recrystallization from chloroform—methanol to give yellow fine crystals of **4a** (23 mg, 41%): mp 175–177 °C; ¹H NMR (400 MHz, CDCl₃) δ 0.87 (t, *J* = 7.0 Hz, 12H), 1.24–1.40 (m, 40H), 1.60 (quin, *J* = 7.8 Hz, 8H), 2.64 (t, *J* = 7.8 Hz, 8H), 3.13 (s, 8H), 6.76 (d, *J* = 3.5 Hz, 4H), 6.88 (s, 4H), 6.92 (d, *J* = 3.5 Hz, 4H), 6.94 (s, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 14.1, 22.6, 29.1, 29.2, 29.4, 29.5, 29.7, 30.5, 31.9, 32.1, 124.2, 125.6, 125.9 (2 carbons), 130.2, 134.5, 135.1, 135.8, 139.7, 143.1; MS (FAB) *m*/*z* 1324 (M⁺); Anal. Calcd for C₇₆H₉₂S₁₀: C, 68.83; H, 6.99%. Found: C, 68.92; H, 7.16%.

4b: 17% yield from **9b**; yellow fine crystals from chloroform–methanol; mp 158–160 °C; ¹H NMR (400 MHz, CDCl₃) δ 0.87 (t, *J* = 6.8 Hz, 12H), 1.24–1.40 (m, 40H), 1.60 (quin, *J* = 7.8 Hz, 8H), 2.15 (quin, *J* = 6.5 Hz, 4H), 2.64 (t, *J* = 7.8 Hz, 8H), 2.93 (t, *J* = 6.5 Hz, 8H), 6.62 (d, *J* = 3.5 Hz, 4H), 6.79 (d, *J* = 3.5 Hz, 4H), 6.89 (s, 4H), 6.93 (s, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 14.1, 22.7, 29.3, 29.4, 29.6, 29.8, 30.5, 31.9, 32.8, 123.9, 125.0, 125.4, 126.0, 130.4, 134.2, 134.6, 135.9, 139.6, 145.4; MS (MALDI-TOF) *m/z* 1352.5 (M⁺); Anal. Calcd for C₇₈H₉₆S₁₀: C, 69.18; H, 7.15%. Found: C, 69.10; H, 7.10%.

Monobromo derivatives of α, ω -bis(3'-octyl-2,2'-bithien-5-yl)alkanes (10c-e). The monobromination of 5c-e to 10c-e was carried out using one equivalent of NBS in a similar manner

as above-described for the dibromination of **5a,b** to **6a,b**.

10c: 61% yield from **5c**; yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 0.85–0.89 (m, 6H), 1.26–1.42 (m, 20H), 1.53–1.61 (m, 4H), 1.86–1.90 (m, 4H), 2.65 (t, *J* = 8.0 Hz, 2H), 2.72 (t, *J* = 8.0 Hz, 2H), 2.82–2.88 (m, 4H), 6.71 (d, *J* = 3.4 Hz, 1H), 6.72(d, *J* = 3.4 Hz, 1H), 6.84 (d, *J* = 3.6 Hz, 1H), 6.86 (s, 1H), 6.89 (d, *J* = 3.6 Hz, 1H), 6.90 (d, *J* = 5.3 Hz, 1H), 7.12 (d, *J* = 5.3 Hz, 1H); ¹³C NMR (68 MHz, CDCl₃) δ 14.1, 22.6, 29.0, 29.1, 29.2 (2 carbons), 29.3, 29.5, 29.7, 30.5, 30.7, 30.8, 31.8, 109.8, 123.1, 124.4, 124.5, 125.5, 126.0, 129.7, 130.9, 132.3, 132.5, 133.8, 138.9, 139.6, 145.1, 145.8; MS (MALDI-TOF) *m*/*z* 687.0 (M⁺); Anal. Calcd for C₃₆H₄₉BrS₄: C, 62.67; H, 7.16%. Found: C, 62.67; H, 7.21%.

10d: 60% yield from **5d**; yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 0.88 (t, *J* = 7.0 Hz, 6H), 1.26–1.42 (m, 20H), 1.48 (quin, *J* = 7.5 Hz, 2H), 1.55–1.65 (m, 4H), 1.74 (quin, *J* = 7.0 Hz, 2H), 1.75 (quin, *J* = 7.0 Hz, 2H), 2.64 (t, *J* = 8.0 Hz, 2H), 2.72 (t, *J* = 8.0 Hz, 2H), 2.81 (t, *J* = 7.5 Hz, 2H), 2.82 (t, *J* = 7.5 Hz, 2H), 6.71 (d, *J* = 3.4 Hz, 1H), 6.72 (d, *J* = 3.4 Hz, 1H), 6.84 (d, *J* = 3.6 Hz, 1H), 6.86 (s, 1H), 6.89 (d, *J* = 3.6 Hz, 1H), 6.90 (d, *J* = 5.3 Hz, 1H), 7.12 (d, *J* = 5.3 Hz, 1H); MS (MALDI-TOF) *m*/*z* 701.3 (M⁺); Anal. Calcd for C₃₇H₅₁BrS₄: C, 63.13; H, 7.30%. Found: C, 63.08; H, 7.31%.

10e: 56% yield from **5e**; yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 0.87 (t, J = 7.0 Hz, 6H), 1.26–1.42 (m, 20H), 1.40–1.48 (m, 4H), 1.54–1.63 (m, 4H), 1.62–1.75 (m, 4H), 2.65 (t, J = 8.0 Hz, 2H), 2.72 (t, J = 8.0 Hz, 2H), 2.76–2.84 (m, 4H), 6.71 (d, J = 3.4 Hz, 1H), 6.72 (d, J = 3.4 Hz, 1H), 6.84 (d, J = 3.6 Hz, 1H), 6.86 (s, 1H), 6.89 (d, J = 3.6 Hz, 1H), 6.90 (d, J = 5.3 Hz, 1H), 7.12 (d, J =5.3 Hz, 1H); MS (MALDI-TOF) m/z 713.7 (M⁺); Anal. Calcd for C₃₈H₅₃BrS₄: C, 63.57; H, 7.44%. Found: C, 63.51; H, 7.44%.

Mono(trimethylsilylethynyl) derivatives of α, ω -bis(3'-octyl-2,2'-bithien-5-yl)alkanes (11c-e). The trimethylsilylethynylation of 10c-e to 11c-e was carried out in a similar manner as above-described for the conversion of **6a,b** to **7a,b**.

11c: 99% yield from **10c**; yellow oil: ¹H NMR (400 MHz, CDCl₃) δ 0.24 (s, 9H), 0.85–0.89 (m, 6H), 1.26–1.42 (m, 20H), 1.53–1.61 (m, 4H), 1.86–1.90 (m, 4H), 2.65 (t, *J* = 8.0 Hz, 2H), 2.72 (t, *J* = 8.0 Hz, 2H), 2.82–2.88 (m, 4H), 6.71 (d, *J* = 3.6 Hz, 2H), 6.89 (d, *J* = 3.6 Hz, 1H), 6.89 (d, *J* = 5.1 Hz, 1H), 6.91(d, *J* = 3.6 Hz, 1H), 7.03 (s, 1H), 7.10 (d, *J* = 5.1 Hz, 1H); MS (MALDI-TOF) *m*/*z* 704.9 (M⁺); Anal. Calcd for C₄₁H₅₈S₄Si: C, 69.63; H, 8.27%. Found: C, 69.61; H, 8.10%.

11d: 95% yield from **10d**; yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 0.24 (s, 9H), 0.88 (t, *J* = 7.0 Hz, 6H), 1.26–1.42 (m, 20H), 1.49 (quin, *J* = 7.5 Hz, 2H), 1.55–1.65 (m, 4H), 1.74 (quin, *J* = 7.0 Hz, 4H), 2.66 (t, *J* = 8.0 Hz, 2H), 2.72 (t, *J* = 8.0 Hz, 2H), 2.82 (t, *J* = 7.5 Hz, 4H), 6.71 (d, *J* = 3.6 Hz, 2H), 6.89 (d, *J* = 3.6 Hz, 1H), 6.89 (d, *J* = 5.1 Hz, 1H), 6.91 (d, *J* = 3.6 Hz, 1H), 7.03 (s, 1H), 7.12 (d, *J* = 5.1 Hz, 1H); MS (MALDI-TOF) *m/z* 718.5 (M⁺); Anal. Calcd for C₄₂H₆₀S₄Si: C, 69.94; H 8.38%. Found: C, 69.92; H, 8.33%.

11e: 88% yield from **10e**; yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 0.24 (s, 9H), 0.88 (t, *J* = 7.0 Hz, 6H), 1.26–1.42 (m, 20H), 1.40–1.48 (m, 4H), 1.55–1.66 (m, 4H), 1.66–1.75 (m, 4H), 2.67 (t, *J* = 8.0 Hz, 2H), 2.73 (t, *J* = 8.0 Hz, 2H), 2.81 (t, *J* = 7.0 Hz, 4H), 6.71 (d, *J* = 3.6 Hz, 2H), 6.90 (d, *J* = 3.6 Hz, 1H), 6.91 (d, *J* = 5.1 Hz, 1H), 6.91 (d, *J* = 3.6 Hz, 1H), 7.05 (s, 1H), 7.12 (d, *J* = 5.1 Hz, 1H); ¹³C NMR (68 MHz, CDCl₃) δ –0.1, 14.1, 22.7, 28.8, 29.1 (2 carbons), 29.2 (2 carbons), 29.4, 29.5, 30.0, 30.4, 30.7, 31.4, 31.9, 97.8, 99.2, 120.2, 123.2, 124.3, 124.5, 125.6, 126.0, 129.8, 131.1, 132.8, 133.2, 133.7, 135.5, 138.6, 139.0, 145.8, 146.5; MS (MALDI-TOF) *m/z* 732.7 (M⁺); Anal. Calcd for C₄₃H₆₂S₄Si: C, 70.24; H, 8.50%. Found: C, 70.26; H, 8.53%.

Mono(ethynyl) derivatives of α, ω -bis(3'-octyl-2,2'-bithien-5-yl)alkanes (12c-e). The detrimethylsilylation of 11c-e to 12c-e was carried out in a similar manner as above-described for the conversion of 7a,b to 8a,b.

12c: quantitative yield from **11c**; yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 0.85–0.89 (m, 6H), 1.26–1.42 (m, 20H), 1.53–1.61(m, 4H), 1.86–1.90 (m, 4H), 2.65 (t, *J* = 8.0 Hz, 2H), 2.72 (t, *J* = 8.0 Hz, 2H), 2.82–2.88 (m, 4H), 3.33 (s, 1H), 6.71 (d, *J* = 3.6 Hz, 2H), 6.89 (d, *J* = 3.6 Hz, 1H), 6.89 (d,

S8

J = 5.1 Hz, 1H), 6.91 (d, J = 3.6 Hz, 1H), 7.07 (s, 1H), 7.11 (d, J = 5.1 Hz, 1H); ¹³C NMR (68 MHz, CDCl₃) δ 14.1, 22.6, 26.5, 29.1, 29.2, 29.3 (2 carbons), 29.4 (2 carbons), 29.5, 29.8 (2 carbons), 30.4, 30.7, 30.9 (2 carbons), 31.9, 77.2, 123.2, 124.5, 124.9, 125.6, 127.0, 129.8, 130.9, 132.8, 133.8, 135.1, 139.1, 139.7, 140.3, 140.4, 145.2, 147.2; MS (MALDI-TOF) *m*/*z* 633.2 (M⁺); Anal. Calcd for C₃₈H₅₀S₄: C, 71.87; H, 7.94%. Found: C, 71.57; H, 7.84%

12d: quantitative yield from **11d**; yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 0.87 (t, J = 7.0 Hz, 6H), 1.26–1.42 (m, 20H), 1.49 (quin, J = 7.5 Hz, 2H), 1.55–1.65 (m, 4H), 1.74 (quin, J = 7.0 Hz, 4H), 2.67 (t, J = 8.0 Hz, 2H), 2.72 (t, J = 8.0 Hz, 2H), 2.82 (t, J = 7.5 Hz, 4H), 3.35 (s, 1H), 6.71 (d, J = 3.6 Hz, 2H), 6.89 (d, J = 3.6 Hz, 1H), 6.89 (d, J = 5.1 Hz, 1H), 6.91 (d, J = 3.6 Hz, 1H), 7.08 (s, 1H), 7.12 (d, J = 5.1 Hz, 1H); ¹³C NMR (68 MHz, CDCl₃) δ 14.1, 22.6, 26.5, 28.5, 29.1, 29.2, 29.3, 29.4, 29.5, 29.8, 30.0, 30.4, 30.7, 31.3, 31.9, 77.3, 77.6, 123.2, 124.4, 124.9, 125.6, 126.9, 129.8, 131.0, 132.7, 133.7, 133.8, 135.1, 139.1, 139.6, 140.3, 145.6, 147.6; MS (MALDI-TOF) *m*/*z* 646.9 (M⁺); Anal. Calcd for C₃₉H₅₂S₄: C, 72.16; H, 8.07%. Found: C, 72.05; H, 8.25%.

12e: 97% yield from **11e**; yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 0.87 (t, J = 7.0 Hz, 6H), 1.26–1.42 (m, 20H), 1.40–1.48 (m, 4H), 1.54–1.63(m, 4H), 1.62–1.75 (m, 4H), 2.67(t, J = 8.0 Hz, 2H), 2.72 (t, J = 8.0 Hz, 2H), 2.81 (t, J = 7.5 Hz, 4H), 3.35 (s, 1H), 6.71 (d, J = 3.6 Hz, 2H), 6.89 (d, J = 3.6 Hz, 1H), 6.89 (d, J = 5.1 Hz, 1H), 6.91 (d, J = 3.6 Hz, 1H), 7.08 (s, 1H), 7.12 (d, J = 5.1 Hz, 1H); ¹³C NMR (68 MHz, CDCl₃) δ 14.1, 22.6, 26.5, 29.1, 29.2, 29.3 (2 carbons), 29.4, 29.5, 29.7, 29.8, 30.4, 30.7, 30.9, 31.8, 77.1, 123.2, 124.5, 124.9, 125.6, 126.9, 129.8, 130.9, 132.7, 133.8, 135.1, 139.1, 139.6, 140.3 (2 carbons), 145.1, 147.2; MS (MALDI-TOF) *m*/*z* 661.1 (M⁺); Anal. Calcd for C₄₀H₅₄S₄: C, 72.45; H, 8.21%. Found: C, 72.67; H, 8.15%.

Acyclic dimers (13c–e). The Eglinton couplings of monoacetylenes 12c–e to the acyclic dimers 13c–e were carried out in a similar manner as above-described for the conversion of 8a,b to 9a,b.

13c: 98% yield from **12c**; orange oil; ¹H NMR (400 MHz, CDCl₃) δ 0.85–0.89 (m, 12H), 1.26–1.42 (m, 40H), 1.53–1.61 (m, 8H), 1.86–1.90 (m, 8H), 2.69 (t, *J* = 8.0 Hz, 4H), 2.72 (t, *J* = 8.0 Hz, 4H), 2.82–2.88 (m, 8H), 6.73 (d, J = 3.6 Hz, 2H), 6.74 (d, J = 3.6 Hz, 2H), 6.90 (d, J = 3.6 Hz, 2H), 6.91 (d, J = 5.1 Hz, 2H), 6.95 (d, J = 3.6 Hz, 2H), 7.12 (d, J = 5.1 Hz, 2H), 7.14 (s, 2H); ¹³C NMR (68 MHz, CDCl₃) δ 14.1, 22.7, 29.1, 29.2, 29.4 (2 carbons), 29.5, 29.8, 30.4, 30.7, 30.9, 31.9, 78.6, 118.9, 123.2, 124.5, 124.7, 125.6, 126.4, 129.8, 131.0, 132.6, 133.8, 134.9, 137.2, 138.9, 139.1, 145.2, 146.4; MS (MALDI-TOF) m/z 1265.2 (M⁺); Anal. Calcd for C₇₆H₉₈S₈: C, 71.98; H, 7.79%. Found: C, 71.71; H, 7.83%.

13d: 97% from **12d**; orange oil; ¹H NMR (400 MHz, CDCl₃) δ 0.87 (t, J = 7.0 Hz, 12H), 1.26–1.42 (m, 40H), 1.49 (quin, J = 7.5 Hz, 4H), 1.55–1.65 (m, 8H), 1.74 (quin, J = 7.0 Hz, 8H), 2.67 (t, J = 8.0 Hz, 4H), 2.72 (t, J = 8.0 Hz, 4H), 2.82 (t, J = 7.5 Hz, 8H), 6.70 (d, J = 3.6 Hz, 2H), 6.71 (d, J = 3.6 Hz, 2H), 6.89 (d, J = 3.6 Hz, 2H), 6.89 (d, J = 5.1 Hz, 2H), 6.93 (d, J = 3.6 Hz, 2H), 7.10 (d, J = 5.1 Hz, 2H), 7.12 (s, 2H); ¹³C NMR (68 MHz, CDCl₃) δ 14.1, 22.6, 28.5, 29.1, 29.2, 29.4, 29.5, 29.9, 30.3, 30.7, 31.2, 31.8, 77.5, 78.7, 118.8, 123.1, 124.3, 124.6, 125.5, 126.3, 129.7, 131.0, 132.5, 133.7, 134.9, 137.1, 138.8, 138.9, 145.4, 146.6; MS (MALDI-TOF) *m*/*z* 1292.4 (M⁺); Anal. Calcd for C₇₈H₁₀₂S₈: C, 72.28; H, 7.93%. Found: C, 72.22; H, 7.91%.

13e: 84% yield from **12e**; orange oil; ¹H NMR (400 MHz, CDCl₃) δ 0.87 (t, *J* = 7.0 Hz, 12H), 1.26–1.42 (m, 40H), 1.38–1.44 (m, 8H), 1.54–1.62 (m, 8H), 1.63–1.73 (m, 8H), 2.66 (t, *J* = 8.0 Hz, 4H), 2.71 (t, *J* = 8.0 Hz, 4H), 2.77 (t, *J* = 7.5 Hz, 8H), 6.67 (d, *J* = 3.6 Hz, 4H), 6.86 (d, *J* = 3.6 Hz, 2H), 6.87 (d, *J* = 5.1 Hz, 2H), 6.91 (d, *J* = 3.6 Hz, 2H), 7.06 (d, *J* = 5.1 Hz, 2H), 7.09 (s, 2H); ¹³C NMR (68 MHz, CDCl₃) δ 14.1, 22.7, 28.8, 29.1, 29.2, 29.4 (2 carbons), 29.5, 30.0, 30.4, 30.7, 31.4, 31.9, 77.5, 78.6, 118.8, 122.6, 124.3, 124.6, 125.6, 126.3, 129.8, 131.1, 132.5, 133.7, 135.0, 137.2, 138.9, 139.0, 145.7, 146.9; MS (MALDI-TOF) *m*/*z* 1322.5 (M⁺); Anal. Calcd for C₈₀H₁₀₆S₈: C, 72.56; H, 8.07%. Found: C, 72.60; H, 8.01%.

Bis(bithienylalkyl)quinquethiophenes (14c–e). The thiacyclization of the diacetylenes **13c–e** with sodium sulfide to the quinquethiophenes **14c–e** was carried out in a similar manner as above-described for the conversion of **9a,b** to **4a,b**.

14c: 60% yield from **13c**; orange semisolid; ¹H NMR (400 MHz, CDCl₃) δ 0.85–0.89 (m, 12H), 1.26–1.42 (m, 40H), 1.53–1.61 (m, 8H), 1.86–1.90 (m, 8H), 2.71 (t, *J* = 8.0 Hz, 4H), 2.73 (t, *J* = 8.0 Hz, 4H), 2.82–2.88 (m, 8H), 6.72 (d, *J* = 3.6 Hz, 2H), 6.73 (d, *J* = 3.6 Hz, 2H), 6.90 (d, *J* = 5.3 Hz, 2H), 6.90 (d, *J* = 3.6 Hz, 2H), 6.93 (d, *J* = 3.6 Hz, 2H), 6.98 (s, 2H), 7.03 (s, 2H) 7.12 (d, *J* = 5.3 Hz, 2H); MS (MALDI-TOF) *m*/*z* 1302.9 (M⁺); Anal. Calcd for C₇₆H₁₀₀S₉: C, 70.10; H, 7.74%. Found: C, 70.05; H, 7.56%.

14d: 57% yield from **13d**; orange semisolid; ¹H NMR (400 MHz, CDCl₃) δ 0.87 (t, *J* = 7.0 Hz, 6H), 0.88 (t, *J* = 7.0 Hz, 6H), 1.26–1.42 (m, 40H), 1.48 (quin, *J* = 7.5 Hz, 4H), 1.58–1.68 (m, 8H), 1.74 (quin, *J* = 7.0 Hz, 8H), 2.70 (t, *J* = 8.0 Hz, 4H), 2.72 (t, *J* = 8.0 Hz, 4H), 2.81 (t, *J* = 7.5 Hz, 8H), 6.69 (m, 4H), 6.87 (d, *J* = 5.3 Hz, 2H), 6.88 (d, *J* = 3.6 Hz, 2H), 6.91 (d, *J* = 3.6 Hz, 2H), 6.96 (s, 2H), 7.00 (s, 2H), 7.10 (d, *J* = 5.3 Hz, 2H); ¹³C NMR (68 MHz, CDCl₃) δ 14.1, 22.7, 28.6, 29.1, 29.2, 29.3, 29.4, 29.5, 30.0, 30.5, 30.7, 31.3, 31.9, 123.2, 124.0, 124.4, 124.5, 125.6 (2 carbons), 126.4, 129.8, 130.3, 131.1, 133.4, 133.7, 134.3, 135.9, 139.1, 139.8, 145.6, 145.9; MS (MALDI-TOF) *m/z* 1328.4 (M⁺); Anal. Calcd for C₇₈H₁₀₄S₉: C, 70.43; H, 7.88%. Found: C, 70.36; H, 7.79%.

14e: 69% yield from **13e**; orange semisolid; ¹H NMR (400 MHz, CDCl₃) δ 0.91–0.96 (m, 12H), 1.26–1.42 (m, 40H), 1.42–1.49 (m, 8H),1.63–1.72 (m, 8H), 1.72–1.78 (m, 8H), 2.76 (t, *J* = 8.0 Hz, 4H), 2.78 (t, *J* = 8.0 Hz, 4H), 2.85 (t, *J* = 7.5 Hz, 8H), 6.75 (m, 4H), 6.94 (d, *J* = 5.3 Hz, 2H), 6.95 (d, *J* = 3.6 Hz, 2H), 6.97 (d, *J* = 3.6 Hz, 2H), 7.02 (s, 2H), 7.04 (s, 2H) 7.14 (d, *J* = 5.3 Hz, 2H); MS (MALDI-TOF) *m*/*z* 1353.4 (M⁺); Anal. Calcd for C₈₀H₁₀₈S₉: C, 70.74; H, 8.01%. Found: C, 70.77; H 8.01%.

Diformyl derivatives (15c–e). A typical synthetic procedure is as follows. Phosphorus oxychloride (1.0 mL) was added to a mixture of **14c** (447 mg, 0.34 mmol) and DMF (50 mg, 0.69mmol), and 1,2-dichloroethane (10 mL). The mixture was refluxed for 13 h and cooled to rt. After 1 N aq NaOH solution (50 mL) was added, the mixture was stirred at room temperature for 3 h, and extracted with chloroform (30 mL x 3). The extracts were combined, successively washed with

1 *N* hydrochloric acid (30 mL) and water (30 mL), and dried over MgSO₄. After evaporation of the solvent, the residue was purified by column chromatography on silica gel with chloroform to give an orange semisolid of **15c** (283 mg, 61%): ¹H NMR (400 MHz, CDCl₃) δ 0.85–0.89 (m, 12H), 1.26–1.42 (m, 40H), 1.53–1.61 (m, 8H), 1.86–1.90 (m, 8H), 2.71 (t, *J* = 8.0 Hz, 4H), 2.77 (t, *J* = 8.0 Hz, 4H), 2.82–2.88 (m, 8H), 6.74 (d, *J* = 3.6 Hz, 2H), 6.79 (d, *J* = 3.6 Hz, 2H), 6.93 (d, *J* = 3.6 Hz, 2H), 6.98 (s, 2H), 7.02 (s, 2H), 7.11 (d, *J* = 3.6 Hz, 2H), 7.56 (s, 2H), 9.80 (s, 2H); MS (MALDI-TOF) *m*/*z* 1354.4 (M⁺); Anal. Calcd for C₇₈H₁₀₀O₂S₉: C, 68.98; H, 7.42%. Found: C, 68.91; H, 7.36%.

15d: 68% yield from **14d**; orange semisolid; ¹H NMR (400 MHz, CDCl₃) δ 0.88 (t, J = 7.0 Hz, 12H), 1.26–1.42 (m, 40H), 1.49 (quin, J = 7.5 Hz, 4H), 1.55–1.65 (m, 8H), 1.75 (quin, J = 7.0 Hz, 8H), 2.70 (t, J = 8.0 Hz, 4H), 2.75 (t, J = 8.0 Hz, 4H), 2.82 (t, J = 7.5 Hz, 4H), 2.84 (t, J = 7.5 Hz, 4H), 6.72 (d, J = 3.6 Hz, 2H), 6.76 (d, J = 3.6 Hz, 2H), 6.92 (d, J = 3.6 Hz, 2H), 6.97 (s, 2H), 7.01 (s, 2H), 7.09 (d, J = 3.6 Hz, 2H), 7.55 (s, 2H), 9.78 (s, 2H); MS (MALDI-TOF) m/z 1383.4 (M⁺); Anal. Calcd for C₈₀H₁₀₄O₂S₉: C, 69.31; H, 7.56%. Found: C, 69.25; H, 7.57%.

15e: 55% yield from **14e**; orange semisolid; ¹H NMR (400 MHz, CDCl₃) δ 0.88 (t, J = 7.0 Hz, 12H), 1.26–1.42 (m, 40H), 1.42–1.49 (m, 8H), 1.60–1.68 (m, 8H), 1.68–1.78 (m, 8H), 2.70 (t, J = 8.0 Hz, 4H), 2.76 (t, J = 8.0 Hz, 4H), 2.80 (t, J = 7.5 Hz, 4H), 2.82 (t, J = 7.5 Hz, 4H), 6.71 (d, J = 3.6 Hz, 2H), 6.75 (d, J = 3.6 Hz, 2H), 6.91 (d, J = 3.6 Hz, 2H), 6.96 (s, 2H), 7.00 (s, 2H), 7.08 (d, J = 3.6 Hz, 2H), 7.54 (s, 2H), 9.78 (s, 2H); MS (MALDI-TOF) *m/z* 1412.4 (M⁺); Anal. Calcd for C₈₂H₁₀₈O₂S₉: C, 69.64; H, 7.70%. Found: C, 69.56; H, 7.64%.

Bis(dibromoethenyl) derivatives (16c–e). A typical synthetic procedure is as follows. A solution of **15c** (205mg, 0.15mmol) in 1.2-dichloroethane (15 mL) was added to a mixture of tetrabromomethane (200 mg, 0.60 mmol) and triphenylphosphine (317 mg, 1.21 mmol) in 1,2-dichloroethane (3 mL) at 0 °C. The mixture was stirred at rt for 2 h, and then filtered through a celite pad. After evaporation of the solvent, the residue was purified by column chromatography on

silica gel with chloroform–hexane (v/v = 1:1) to give an orange semisolid of **16c** (244 mg, 97% yield): ¹H NMR (400 MHz, CDCl₃) δ 0.85–0.89 (m, 12H), 1.26–1.42 (m, 40H), 1.53–1.61 (m, 8H), 1.86–1.90 (m, 8H), 2.70 (t, *J* = 8.0 Hz, 8H), 2.82–2.88 (m, 8H), 6.73 (d, *J* = 3.6 Hz, 4H), 6.92 (d, *J* = 3.6 Hz, 2H), 6.97 (d, *J* = 3.6 Hz, 2H), 6.97 (s, 2H), 7.01 (s, 2H), 7.02 (s, 2H), 7.52 (s, 2H); MS (MALDI-TOF) *m*/*z* 1664.8 (M⁺); Anal. Calcd for C₈₀H₁₀₀Br₄S₉: C, 57.54; H, 6.04%. Found: C, 57.68; H, 5.99%.

16d: 90% yield from **15d**; orange semisolid; ¹H NMR (400 MHz, CDCl₃) δ 0.88 (t, J = 7.0 Hz, 12H), 1.26–1.42 (m, 40H), 1.47 (quin, J = 7.5 Hz, 4H), 1.57 (quin, J = 7.0 Hz, 4H), 1.63 (quin, J = 7.0 Hz, 4H), 1.72 (quin, J = 7.0 Hz, 8H), 2.67 (t, J = 8.0 Hz, 4H), 2.69 (t, J = 8.0 Hz, 4H), 2.79 (t, J = 7.5 Hz, 8H), 6.68 (d, J = 3.6 Hz, 2H), 6.69 (d, J = 3.6 Hz, 2H), 6.90 (d, J = 3.6 Hz, 2H), 6.94 (d, J = 3.6 Hz, 2H), 6.95 (s, 2H), 6.97 (s, 2H), 6.98 (s, 2H), 7.48 (s, 2H); MS (MALDI-TOF) m/z 1696.0 (M⁺); Anal. Calcd for C₈₂H₁₀₄Br₄S₉: C, 58.01; H, 6.17%. Found: C, 58.02; H, 6.23%.

16e: 45% yield from **15e**; orange semisolid; ¹H NMR (400 MHz, CDCl₃) δ 0.88 (t, J = 7.0 Hz, 12H), 1.26–1.42 (m, 40H), 1.42–1.49 (m, 8H), 1.54–1.68 (m, 8H), 1.68–1.74 (m, 8H), 2.68 (t, J = 8.0 Hz, 4H), 2.70 (t, J = 8.0 Hz, 4H), 2.79 (t, J = 7.5 Hz, 8H), 6.68–6.71 (m, 4H), 6.90 (d, J = 3.6 Hz, 2H), 6.94 (d, J = 3.6 Hz, 2H), 6.95 (s, 2H), 6.98 (s, 2H), 7.00 (s, 2H), 7.49 (s, 2H); MS (MALDI-TOF) m/z 1724.3 (M⁺); Anal. Calcd for C₈₄H₁₀₈Br₄S₉: C, 58.45; H, 6.31%. Found: C, 58.64; H, 6.37%.

Diethynyl derivatives (17c–e). A typical synthetic procedure is as follows. LDA (1.0 mL 0.5 mmol, 0.5 *M* hexane) was added to a solution of **16c** (132 mg, 0.08 mmol) in THF (20 mL) at $-60 \,^{\circ}$ C. After water (10 mL) was added to the reaction mixture, it was extracted with chloroform (30 mL x 3). The extracts were combined, washed with water (30 mL x 2), and dried (MgSO₄). After evaporation of the solvent, the residue was purified by column chromatography on silica gel with chloroform–hexane (v/v = 1:2) to give an orange semisolid of **17c** (78 mg, 73% yield); ¹H NMR (400 MHz, CDCl₃) δ 0.85–0.89 (m, 12H), 1.26–1.42 (m, 40H), 1.53–1.61 (m, 8H), 1.86–1.90

(m, 8H), 2.70 (t, J = 8.0 Hz, 8H), 2.82–2.88 (m, 8H), 3.35 (s, 2H), 6.73 (d, J = 3.6 Hz, 4H), 6.92 (d, J = 3.6 Hz, 4H), 6.98 (s, 2H), 7.02 (s, 2H), 7.08 (s, 2H); MS (MALDI-TOF) m/z 1349.3 (M⁺); Anal. Calcd for C₈₀H₁₀₀S₉: C, 71.16; H, 7.46%. Found: C, 71.07; H, 7.39%.

17d: 83% yield from **16d**; orange semisolid; ¹H NMR (400 MHz, CDCl₃) δ 0.88 (t, *J* = 7.0 Hz, 12H), 1.26–1.42 (m, 40H), 1.49 (quin, *J* = 7.5 Hz, 4H), 1.59 (quin, *J* = 7.0 Hz, 4H), 1.62 (quin, *J* = 7.0 Hz, 4H), 1.75 (quin, *J* = 7.0 Hz, 8H), 2.67 (t, *J* = 8.0 Hz, 4H), 2.71 (t, *J* = 8.0 Hz, 4H), 2.83 (t, *J* = 7.5 Hz, 8H), 3.35 (s, 2H), 6.70–6.74 (m, 4H), 6.92 (d, *J* = 3.6 Hz, 4H), 6.98 (s, 2H), 7.02 (s, 2H), 7.08 (s, 2H); MS (MALDI-TOF) *m*/*z* 1379.4 (M⁺); Anal. Calcd for C₈₂H₁₀₄S₉: C, 71.46; H, 7.61%. Found: C, 71.41; H, 7.68%.

17e: 81% yield from **16e**; orange semisolid; ¹H NMR (400 MHz, CDCl₃) δ 0.87 (t, *J* = 7.0 Hz, 6H), 0.88 (t, *J* = 7.0 Hz, 6H), 1.26–1.42 (m, 40H), 1.42–1.46 (m, 8H), 1.54–1.68 (m, 8H), 1.68–1.74 (m, 8H), 2.67 (t, *J* = 8.0 Hz, 4H), 2.70 (t, *J* = 8.0 Hz, 4H), 2.80 (t, *J* = 7.5 Hz, 8H), 3.34 (s, 2H), 6.70–6.74 (m, 4H), 6.92 (d, *J* = 3.6 Hz, 4H), 6.97 (s, 2H), 7.02 (s, 2H), 7.08 (s, 2H); MS (FAB) *m/z* 1405 (M⁺); Anal. Calcd for C₈₄H₁₀₈S₉: C, 71.74; H, 7.74%. Found: C, 71.63; H, 7.64%.

Cyclic monomers (18c–e). The intramolecular Eglinton coupling of 17c–d to 18c–d was carried out in a similar manner as above-described for the conversion of 8a,b to 9a,b.

18c: 76% yield from **17c**; orange oil; ¹H NMR (400 MHz, CDCl₃) δ 0.85–0.89 (m, 12H), 1.26–1.42 (m, 40H), 1.53–1.61 (m, 8H), 1.86–1.90 (m, 8H), 2.70 (t, *J* = 8.0 Hz, 8H), 2.82–2.88 (m, 8H), 6.67 (d, *J* = 3.6 Hz, 2H), 6.69 (d, *J* = 3.6 Hz, 2H), 6.89 (d, *J* = 3.6 Hz, 2H), 6.90 (d, *J* = 3.6 Hz, 2H), 6.97 (s, 2H), 7.04 (s, 2H), 7.10 (s, 2H); MS (MALDI-TOF) *m*/*z* 1347.5 (M⁺); Anal. Calcd for C₈₀H₉₈S₉: C, 71.27; H, 7.33%. Found: C, 71.38; H, 7.27%.

18d: 86% yield from **17d**; orange oil; ¹H NMR (400 MHz, CDCl₃) δ 0.86–0.91 (m, 12H), 1.26–1.42 (m, 44H), 1.49–1.65 (m, 8H), 1.60–1.76 (m, 8H), 2.58–2.70 (m, 8H), 2.78–2.91 (m, 8H), 6.58 (d, *J* = 3.6 Hz, 2H), 6.63 (d, *J* = 3.6 Hz, 2H), 6.82 (d, *J* = 3.6 Hz, 2H), 6.89 (d, *J* = 3.6 Hz, 2H), 6.95 (s, 2H), 7.07 (s, 2H), 7.08 (s, 2H); MS (MALDI-TOF) *m*/*z* 1373.5 (M⁺); Anal. Calcd for C₈₂H₁₀₂S₉: C, 71.56; H, 7.47%. Found: C, 71.38; H, 7.44%.

18e: 78% yield from **17e**; orange oil; ¹H NMR (400 MHz, CDCl₃) δ 0.87 (t, *J* = 7.0 Hz, 12H), 1.26–1.42 (m, 48H), 1.54–1.70 (m, 16H), 2.65 (t, *J* = 8.0 Hz, 4H), 2.68 (t, *J* = 8.0 Hz, 4H), 2.79 (t, *J* = 7.5 Hz, 8H), 6.66 (d, *J* = 3.6 Hz, 2H), 6.67 (d, *J* = 3.6 Hz, 2H), 6.88 (d, *J* = 3.6 Hz, 2H), 6.89 (d, *J* = 3.6 Hz, 2H), 6.96 (s, 2H), 7.02 (s, 2H), 7.11 (s, 2H); MS (FAB) *m*/*z* 1403 (M⁺); Anal. Calcd for C₈₄H₁₀₆S₉: C, 71.84; H, 7.61%. Found: C, 71.68; H, 7.68%.

[4.4]-, [5.5]-, and [6.6]Quinquethiophenophanes (4c–e). The thiacyclization of the diacetylenes 18c–e with sodium sulfide to the quinquethiophenes 4c–e was carried out in a similar manner as above-described for the conversion of 9a,b to 4a,b.

4c: 50% yield from **18c**; orange cotton-like crystals from hexane–benzene; mp 156–159 °C; ¹H NMR (400 MHz, CDCl₃) δ 0.88 (t, J = 8.0 Hz, 12H), 1.26–1.42 (m, 40H), 1.57 (quin, J = 8.0 Hz, 8H), 1.86–1.90 (m, 8H), 2.65 (t, J = 8.0 Hz, 8H), 2.82–2.88 (m, 8H), 6.68 (d, J = 3.6 Hz, 4H), 6.89 (d, J = 3.6 Hz, 4H), 6.89 (s, 4H), 6.92 (s, 4H); ¹³C NMR (68 MHz, CDCl₃) δ 14.1, 22.7, 29.3 (2 carbons), 29.4, 29.6, 29.8, 30.4, 31.9, 124.0, 124.9, 125.3, 126.2, 130.3, 134.1, 134.4, 135.8, 139.6, 145.4; MS (MALDI-TOF) m/z 1378.7 (M⁺); Anal. Calcd for C₈₀H₁₀₀S₁₀: C, 69.51; H, 7.29%. Found: C, 69.33; H, 7.50%.

4d: 46% yield from **18d**; orange cotton-like crystals from hexane; mp 140 °C; ¹H NMR (400 MHz, CDCl₃) δ 0.88 (t, *J* = 7.0 Hz, 12H), 1.26–1.46 (m, 44H), 1.59 (quin, *J* = 7.5 Hz, 8H), 1.67 (quin, *J* = 7.0 Hz, 8H), 2.61 (t, *J* = 8.0 Hz, 8H), 2.82 (t, *J* = 7.5 Hz, 8H), 6.59 (d, *J* = 3.6 Hz, 4H), 6.77 (s, 4H), 6.84 (d, *J* = 3.6 Hz, 4H), 6.85 (s, 4H); ¹³C NMR (68 MHz, CDCl₃) δ 14.1, 22.7, 25.6, 29.2, 29.3, 29.4 (2 carbons), 29.6, 29.8, 30.4, 31.9, 123.9, 125.1, 125.3, 126.0, 130.3, 133.7, 134.2, 135.7, 139.3, 144.9; MS (MALDI-TOF) *m*/*z* 1410.8 (M⁺); Anal. Calcd for C₈₂H₁₀₄S₁₀: C, 69.83; H, 7.43%. Found: C, 69.65; H, 7.47%.

4e: 52% yield from **18e**; orange cotton-like crystals from hexane; mp 142–145 °C; ¹H NMR (400 MHz, CDCl₃) δ 0.87 (t, *J* = 7.0 Hz, 12H), 1.26–1.42 (m, 48H), 1.62 (quin, *J* = 7.5 Hz, 8H), 1.62 (quin, *J* = 7.0 Hz, 8H), 2.67 (t, *J* = 7.0 Hz, 8H), 2.80 (t, *J* = 7.5 Hz, 8H), 6.67 (d, *J* = 3.6 Hz, 4H), 6.87 (d, *J* = 3.6 Hz, 4H), 6.94 (s, 4H), 6.95 (s, 4H); ¹³C NMR (68 MHz, CDCl₃) δ 14.1, 22.7, 27.8, 29.3 (2 carbons), 29.4, 29.6, 29.8, 30.4, 30.9, 31.9, 124.1, 124.9, 125.2, 126.2, 130.3, 133.6, 134.4, 135.8, 139.6, 145.9; MS (MALDI-TOF) *m*/*z* 1437.1 (M⁺); Anal. Calcd for C₈₄H₁₀₈S₁₀: C, 70.14; H, 7.57%. Found: C, 70.22; H, 7.60%.

5,5^{***}-Dimethyl-3',4^{***}-dioctyl-2,2':5',2^{**}:5^{**},2^{***}-quinquethiophene (3). Compound 3 was prepared in a high yield according to the conventional protocol, with Sonogashira reaction of 5-bromo-5'-methyl-3-octyl-2,2'-bithiophene¹⁷ to 5'-methyl-3-octyl-5-trimethylsilylethynyl-2,2'-bithiophene, desilylation to 5-ethynyl-5'-methyl-3-octyl-2,2'-bithiophene, Eglinton coupling to 1,4-bis(5'-methyl-3-octyl-2,2'-bithien-5-yl)-1,3-butadiyne, and finally thiophene ring formation to **3**.

5'-Methyl-3-octyl-5-trimethylsilylethynyl-2,2'-bithiophene: 97% yield from 5-bromo-5'-methyl-3-octyl-2,2'-bithiophene; yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 0.23 (s, 9H), 0.87 (t, J = 7.0 Hz, 3H), 1.24–1.35 (m, 10H), 1.58 (quin, J = 7.8 Hz, 2H), 2.49 (d, J = 1.0 Hz, 3H), 2.65 (t, J = 7.8 Hz, 2H), 6.69 (dq, J = 3.4 Hz, J = 1.0 Hz, 1H), 6.88 (d, J = 3.4 Hz, 1H), 6.98 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ -0.12, 14.1, 15.2, 22.6, 29.0, 29.2, 29.3 (2 carbons), 30.4, 31.8, 97.6, 99.1, 120.1, 125.6, 126.2, 132.9, 133.0, 135.5, 138.6, 140.5; MS (EI) *m*/*z* 388 (M⁺); Anal. Calcd for C₂₂H₃₂S₂Si: C, 67.98; H, 8.30%. Found: C, 68.00; H, 8.35%.

5-Ethynyl-5'-methyl-3-octyl-2,2'-bithiophene: 97% yield from 5'-methyl-3-octyl-5-trimethylsilylethynyl-2,2'-bithiophene; pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 0.87 (t, J = 7.0 Hz, 3H), 1.25 (m, 10H), 1.58 (quin, J = 7.8 Hz, 2H), 2.48 (d, J = 1.0 Hz, 3H), 2.66 (t, J = 7.8 Hz, 2H), 3.33 (s, 1H), 6.68 (dq, J = 3.4 Hz, J = 1.0 Hz, 1H), 6.90 (d, J = 3.4 Hz, 1H), 7.07 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 14.0, 15.2, 22.6, 29.0, 29.2, 29.3, 29.4, 30.4, 31.8, 77.1, 81.5, 119.0, 125.6, 126.3, 132.7, 133.2, 135.8, 138.6, 140.6; MS (EI) *m/z* 316 (M⁺); Anal. Calcd for C₁₉H₂₄S₂: C, 72.10; H, 7.64%. Found: C,72.15; H, 7.80%.

1,4-Bis(5'-methyl-3-octyl-2,2'-bithien-5-yl)-1,3-butadiyne: 97% yield from 5-ethynyl-5'-methyl-3-octyl-2,2'-bithiophene; yellow fine crystals from hexane; mp 84–85 °C; ¹H NMR (400 MHz, CDCl₃) δ 0.88 (t, *J* = 7.0 Hz, 6H), 1.24–1.38 (m, 20H), 1.59 (quin, *J* = 7.8 Hz, 4H), 2.49 (d, *J* = 1.0 Hz, 6H), 2.67 (t, *J* = 7.8 Hz, 4H), 6.70 (dq, *J* = 3.4 Hz, *J* = 1.0 Hz, 2H), 6.93 (d, *J* = 3.4 Hz, 2H), 7.13 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 14.1, 15.3, 22.6, 29.0, 29.2, 29.3, 29.4, 30.4, 31.8, 77.4, 78.5, 118.8, 125.7, 126.6, 132.6, 134.8, 137.1, 138.9, 140.9; MS (EI) *m/z* 630 (M⁺); Anal. Calcd for C₃₈H₄₆S₄: C, 72.33; H, 7.35%. Found: C, 72.04; H, 7.38%.

3: 70% yield from 1,4-bis(5'-methyl-3-octyl-2,2'-bithien-5-yl)-1,3-butadiyne; yellow cotton-like crystals from hexane; mp 86–87 °C; ¹H NMR (400 MHz, CDCl₃) δ 0.88 (t, *J* = 7.0 Hz, 6H), 1.24–1.38 (m, 20H), 1.66 (quin, *J* = 7.8 Hz, 4H), 2.51 (d, *J* = 1.0 Hz, 6H), 2.70 (t, *J* = 7.8 Hz, 4H), 6.71 (dq, *J* = 3.4 Hz, *J* = 1.0 Hz, 2H), 6.91 (d, *J* = 3.4 Hz, 2H), 6.98 (s, 2H), 7.03 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 14.1, 15.3, 22.6, 29.2, 29.3, 29.4, 29.5, 30.5, 31.8, 123.9, 125.6, 125.8, 126.3, 130.2, 133.5, 134.3, 135.9, 139.7, 140.1; MS (EI) *m*/*z* 664 (M⁺); Anal. Calcd for C₃₈H₄₈S₅: C, 68.62; H, 7.27%. Found: C, 68.91; H, 7.16%.

Figure S1. ESR spectra of **4a** (left, g = 2.0022) and **4b** (right, g = 2.0022) in dichloromethane under controlled oxidation with FeCl₃.

Figure S2. Electronic absorption spectra of 4d in dichloromethane under controlled oxidation at rt with FeCl₃. N, P, and D denote neutral, polaronic, and π -dimeric bands, respectively.

Figure S3. Electronic absorption spectra of 4e in dichloromethane under controlled oxidation at rt with FeCl₃. N, P, and D denote neutral, polaronic, and π -dimeric bands, respectively.

Figure S4. ESR spectra of 4c (g = 2.0023) in dichloromethane under controlled oxidation with FeCl₃.