Diastereoselective synthesis of tetrahydrofurans via reaction of γ, δ-epoxycarbanions with aldehydes

Mieczysław Mąkosza*, Michał Barbasiewicz and Dariusz Krajewski
Institute of Organic Chemistry PAS, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland. Icho-s@icho.edu.pl

General. Unless otherwise noted, all reactions were carried out under atmosphere of argon in dried glassware using standard Schlenck techniques. THF was distilled from K / benzophenone ketyl. Lithium tert-butoxide (1 M solution in THF) was purchased from Aldrich, potassium tert-butoxide solution ($\approx 1 \mathrm{M}$ solution in THF) was prepared by dissolving of commercial material. BuLi was used as a 2.5 M solution in hexanes, purchased from Aldrich.
Analytical thin layer chromatography (TLC) was performed on 0.25 mm Merck silica gel $60 \mathrm{~F}_{254}$ plates. Visualization was accomplished with UV light or after development in anisaldehyde stain ${ }^{1}$. Preparative thin layer chromatography was performed on 2 mm silica gel plates. Preparative column chromatography was performed on Silica gel 60 ($0.040-0.063 \mathrm{~mm}, 230-400$ mesh ASTM) Merck. Enantiomeric excesses were determined using Knauer HPLC chromatograph (Diode Array Detector) with column Chiracel OD-H with hexane : iso-propanol ($9: 1 ; 1 \mathrm{~mL} / \mathrm{min}$). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker 500 and Varian 200 spectrometers. Chemical shifts are reported in ppm from the solvent resonance $\left(\mathrm{CDCl}_{3} 7.26 \mathrm{ppm}\right)$. Data are reported as follows: chemical shift, multiplicity, ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{br}=$ broad, $\mathrm{m}=$ multiplet $)$, coupling constants and number of protons. Mass spectra were obtained on AMD 604 Intectra GmbH spectrometer in electron ionization mode or on Mariner ${ }^{\mathrm{TM}}$ in electrospray mode. IR spectra were taken on a FT-IR Perkin Elmer Spectrum 2000 using a film (for oils) or in KBr pellets (for solids). Melting points were uncorrected.

Synthesis of 1. Methyl phenyl sulfone ($39 \mathrm{~g} ; 0.25 \mathrm{~mol}$) in THF (500 mL) was purged with argon and cooled to $0^{\circ} \mathrm{C}$. n-BuLi ($105 \mathrm{~mL}, 0.263 \mathrm{~mol}$) was added dropwise as a solution in hexanes. Mixture was left

[^0]for 1 h and then cooled to $-45^{\circ} \mathrm{C}$. Epichlorohydrine ($25.3 \mathrm{~g} ; 0.275 \mathrm{~mol}$) was added slowly as a solution in THF (150 mL) and mixture was allowed to warm to rt^{2}. Then it was refluxed for 1.5 h , cooled to rt, aquous solution of $\mathrm{NH}_{4} \mathrm{Cl}(10 \% \mathrm{w} / \mathrm{w}, 500 \mathrm{~mL})$ was added and mixture was concentrated in vacuo. Extraction with ethyl acetate ($3 \times 250 \mathrm{~mL}$), washing with brine and drying with MgSO_{4} gave crude material, which was separated chromatographically with hexane : ethyl acetate $(3: 1)$ as an eluent.

Products in order of separated fractions:
$\mathrm{PhSO}_{2} \mathrm{CH}_{3} \rightarrow$ recovered methyl phenyl sulfone $(26 \%, 10 \mathrm{~g}), \mathrm{mp}: 86-87^{\circ} \mathrm{C}\left(\right.$ Lit. $\left.^{3} 88^{\circ} \mathrm{C}\right)$.

Oil. IR (neat): 3616, 3062, 2997, 2927, 1585, 1447, 1411, 1307, 1147, 1086, 915, 799, $743,690,592,563,538 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.85-7.95(\mathrm{~m}, 2 \mathrm{H})$, 7.51$7.72(\mathrm{~m}, 3 \mathrm{H}), 3.13-3.30(\mathrm{~m}, 2 \mathrm{H}), 2.94-3.04(\mathrm{~m}, 1 \mathrm{H}), 2.72-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.44-2.51(\mathrm{~m}$, $1 \mathrm{H}), 2.05-2.24(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.91(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 138.8$, 133.9, 129.3, 128.0, 52.6, 50.0, 47.0, 25.8. HRMS (ESI): calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{SO}_{3} \mathrm{Na}$ 235.0399, found 235.0410. Anal. calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{SO}_{3} \mathrm{C}, 56.58$; H, 5.70; S, 15.11. Found C, 56.37; H, 5.60; S, 15.22.

- 3-hydroxycyclobutyl phenyl sulfone ($23 \%, 12.2 \mathrm{~g}$)

Oil. ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.83-7.95$ (m, 2H), 7.51-7.75 (m, 3H), 4.04-4.27 $(\mathrm{m}, 1 \mathrm{H}), 3.24-3.44(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.90(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 138.0$, 133.8, 129.3, 128.1, 61.7, 49.0, 34.6. MS (ESI): calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{SO}_{3} \mathrm{Na} 235.0399$, found 235.1.

Reaction of 1 with benzaldehyde and protonation at low temperature (scheme 1 in the article).
To a solution of $\mathbf{1}(212 \mathrm{mg}, 1 \mathrm{mmol})$ and benzaldehyde ($135 \mathrm{mg}, 1.25 \mathrm{mmol}$) in THF (4 mL) at $-75^{\circ} \mathrm{C}$ under argon solutions of t-BuOK ($2 \mathrm{~mL}, 1 \mathrm{M}$ in THF) was added. After 5 minutes aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added

[^1]${ }^{3}$ C. C. Price, J. J. Hydock, J. Am Chem. Soc. 1952, 74, 1943.
and mixture was extracted with ethyl acetate, washed with brine and dried MgSO_{4}. Chromatographic separation with hexane : ethyl acetate ($3: 1$ to $1: 1$) gave adduct 2 as a mixture of diastereoisomers of 2 ($273 \mathrm{mg}, 86 \%$ yield). This mixture was analyzed with ${ }^{1} \mathrm{H}$ NMR (35:35:15:15, diastereoselectivity was based on integration of signals at $5-5.5 \mathrm{ppm}$) and separated at preparative thin layer chromatography with hexane : ethyl acetate $(2: 1)$ to give two pairs of diastereoisomers erythro and threo as equimolar mixtures of products differing by configuration at the oxirane ring.
erythro-3-(oxiran-2-yl)-1-phenyl-2-(phenylsulfonyl)propan-1-ol (2 as equimolar mixture of erythro isomers)

erythro

signals of benzylic protons as "broad singlets" (multiplets) characteristic for erythro isomers

Mp: $127-130^{\circ} \mathrm{C}$. IR (KBr): $3463,3068,3005,2895,1585,1493,1456,1446,1403,1303,1284,1147,1085,1059$, $954,837,759,734,700,683,632,579,548,511,456 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.88-7.95(\mathrm{~m}, 4 \mathrm{H})$, 7.60-7.66 (m, 2H), 7.51-7.57 (m, 4H), 7.19-7.24 (m, 4H), 7.10-7.18 (m, 6H), 5.37-5.39 (m, 1H), 5.27-5.29 (m, $1 \mathrm{H}), 3.44(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{ddd}, J=7.5,4.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{ddd}, J=5.4$, $5.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.63-2.68(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{dd}, J=4.8,4.0 \mathrm{~Hz}), 2.38-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.31(\mathrm{dd}, J=4.4,4.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.94-2.15(\mathrm{~m}, 4 \mathrm{H}), 1.90(\mathrm{ddd}, J=15.6,6.4,4.0 \mathrm{~Hz}), 1.85(\mathrm{dd}, J=5.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (50 MHz , $\left.\mathrm{CDCl}_{3}\right): ~ \delta 139.3,139.2,137.4,137.2,134.3,134.3,129.5,129.5,128.7,128.5,127.8,125.3,69.3,68.9,67.9,67.5$, 50.1, 50.0, 48.1, 47.8, 25.0, 25.0. MS (ESI): calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{SO}_{4} 341.0818$ found 341.1. Anal. calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{SO}_{4} \mathrm{C}, 64.13 ; \mathrm{H}, 5.70 ; \mathrm{S}, 10.07$. Found C, $64.10 ; \mathrm{H}, 5.81 ; \mathrm{S}, 10.10$.
threo-3-(oxiran-2-yl)-1-phenyl-2-(phenylsulfonyl)propan-1-ol (2 as an equimolar mixture of threo isomers)

threo

characteristic signals of benzylic protons as doublets of doublets (signals of two products are overlapped) characteristic for threo isomers

Oil. IR (neat): 3502, 3062, 2925, 1603, 1585, 1495, 1480, 1447, 1410, 1305, 1145, 1084, 832, 757, 736, 703, 690, $628,586,564,543 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.85-7.93(\mathrm{~m}, 4 \mathrm{H}), 7.50-7.72(\mathrm{~m}, 6 \mathrm{H}), 7.20-7.37(\mathrm{~m}$, $10 \mathrm{H}), 5.10(\mathrm{dd}, J=8.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}$, isomer a), 5.06 (dd, $J=8.3,3.3 \mathrm{~Hz}, 1 \mathrm{H}$, isomer b), $4.32(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}$, isomer a), $4.23(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}$, isomer b), $3.53-3.67(\mathrm{~m}, 2 \mathrm{H}), 2.22-2.53(\mathrm{~m}, 4 \mathrm{H}), 2.01(\mathrm{dd}, J=4.9,2.7 \mathrm{~Hz}$, 1 H , isomer b), $1.85\left(\mathrm{dd}, J=4.9,2.7 \mathrm{~Hz}, 1 \mathrm{H}\right.$, isomer a), $1.73-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.70(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (50 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 139.3$ (isomer a), 139.1 (isomer b), 138.2 (isomer b), 137.8 (isomer a), 134.0, 129.2, 128.8, 128.7, 128.7, 128.6, 127.2 (isomer a), 127.1 (isomer b), 73.5 (isomer b), 73.1 (isomer a), 68.2 (isomer b), 67.8 (isomer a), 49.6 (isomer b), 49.3 (isomer a), 48.0 (isomer a), 47.7 (isomer b), 30.4 (isomer b), 29.7 (isomer
a). HRMS (ESI): calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{SO}_{4} 341.0818$ found 341.0822. Anal. calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{SO}_{4} \mathrm{C}, 64.13 ; \mathrm{H}, 5.70$; S, 10.07. Found C, 64.06; H, 5.86; S, 9.87.

To confirm assignment of product as pairs of erythro and threo diastereoisomers independent synthesis of these compounds was realized.

To a solution of 3-butenyl phenyl sulfone ${ }^{4}$ ($584 \mathrm{mg}, 2.98 \mathrm{mmol}$) and benzaldehyde ($404 \mathrm{mg}, 3.81 \mathrm{mmol}$) in THF $(7 \mathrm{~mL})$ at $-75^{\circ} \mathrm{C}$ under argon solution of t-BuOK ($3.5 \mathrm{~mL}, 1 \mathrm{M}$ in THF) was added. After 5 minutes aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added and mixture was extracted with ethyl acetate, washed with brine and dried MgSO_{4}. Chromatographic separation with hexane : ethyl acetate (3:1 to $1: 1$) gave in order of separated fractions:

[^2] 10.60. Found C, 67.40; H, 6.09; S, 10.59.

Both diastereoisomers of adducts were subjected to oxidation with m-chloroperbenzoic acid (MCPBA).

To a solution of erythro-1-phenyl-2-(phenylsulfonyl)-4-penten-1-ol ($255 \mathrm{mg}, 0.84 \mathrm{mmol}$) and in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10 \mathrm{~mL})$ at rt MCPBA ($254 \mathrm{mg}, 85 \% \mathrm{w} / \mathrm{w}, 1.25 \mathrm{mmol}$) was added. Flask was left at rt for 3 days, then solution was washed with aqueous solutions of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaCl and dried with MgSO_{4}. Chromatographic separation with hexane : ethyl acetate ($3: 1$ to $1: 1$) gave 3 as an equimolar mixture of diastereoisomers ($227 \mathrm{mg}, 85 \%$). This mixture was analyzed with ${ }^{1} \mathrm{H}$ NMR (diastereoselectivity was based on integration of doublets at 5-5.5 ppm).

To a solution of threo-1-phenyl-2-(phenylsulfonyl)-4-penten-1-ol ($106 \mathrm{mg}, 0.35 \mathrm{mmol}$) and in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL) at rt MCPBA ($117 \mathrm{mg}, 85 \% \mathrm{w} / \mathrm{w}, 0.58 \mathrm{mmol}$) was added. Flask was left at rt for 3 days, then solution was washed with aqueous solutions of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaCl and dried with MgSO_{4}. Chromatographic separation with hexane : ethyl acetate (3:1 to $1: 1$) gave 2-threo as an equimolar mixture of diastereoisomers ($99 \mathrm{mg}, 89 \%$). This mixture was analyzed with ${ }^{1} \mathrm{H}$ NMR (diastereoselectivity was based on integration of signals at 5-5.5 ppm).

Distinctive reactivity of diastereoisomers was attributed to structure of preferred conformations according to ${ }^{1} \mathrm{H}$ NMR spectra ${ }^{5}$. Both isomers are oxidized to oxiranes, which favour anti orientation of sterically demanding phenyl and phenylsulfonyl groups, but second step - acid catalysed cyclization of epoxyalcohol ${ }^{6}$ - is possible only for erythro isomer, where reacting centers are synclinal. Antiperiplanar orientation in threo adduct preclude cyclization to 5-membered ring.

[^3]

1

3

Reaction of 1 with benzaldehyde and protonation at RT (scheme 1 in the article).
To a solution of $\mathbf{1}(212 \mathrm{mg}, 1 \mathrm{mmol})$ and benzaldehyde ($135 \mathrm{mg}, 1.25 \mathrm{mmol}$) in THF $(4 \mathrm{~mL})$ at $-75^{\circ} \mathrm{C}$ under argon solutions of t-BuOK ($1 \mathrm{~mL}, 1 \mathrm{M}$ in THF) was added. Flask was allowed to warm to rt and left for $18 h$, then aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added and mixture was extracted with ethyl acetate, washed with brine and dried MgSO_{4}. Chromatographic separation with hexane : ethyl acetate ($3: 1$ to $1: 1$) gave tetrahydrofuran derivative as a mixture of diastereoisomers ($117 \mathrm{mg}, 34 \%$). Small amounts of some unidentified byproducts were also isolated. Mixture of diastereoisomers of 3 was analyzed with ${ }^{1} \mathrm{H}$ NMR (diastereoselectivity was based on integration of doublets at 5-5.5 ppm).

Optimizations

Lewis acid additives were tested under conditions of reaction carried out at room temperature.

Entry	Lewis acid	Base t-BuOK	Conditions	Yield	Diastereoselectivity 3a :3b :3c :3d
a	LiBr (2eq.)	1eq.	RT, 10h	54%	$30: 30: 10: 10$
b	LiBr (1eq.)	1eq.	RT, 10h	31%	$73: 27: 0: 0$
c	LiBr (1eq.)	2eq.	RT, 10h	56%	$87: 13: 0: 0$
d	t-BuOLi (1eq.)	1eq.	RT, 10h	52%	$84: 16: 0: 0$
e	t-BuOLi (1eq.)	1eq.	$-15^{\circ} \mathrm{C}, 10 \mathrm{~h}$	87%	$77: 23: 0: 0$

Lithium bromide used in excess favored cyclization in good yield, however with poor diastereoselectivity (entry a). Decreasing its amount to 1 equivalent improved diastereoselectivity (entry b) and increasing amont of base also increased yield (entry c). Finnally mixture of lithium and potassium tert-butoxides was found superior (entry d) ensuring good yield and diastereoselectivity at lower temperature (entry e).

Reaction in entry "a" was performed on 2.5 mmol scale and all diastereoisomers were separated with consecutive chromatography purifications. Stereochemistry was established on ${ }^{1} \mathrm{H}$ NMR COSY $\left({ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}\right)$ and NOE spectra (see characterization data).

3a

3c

3d

General procedure of synthesis and isolation of tetrahydrofuranes (table 1 in the article).

To a solution of $1(212 \mathrm{mg}, 1 \mathrm{mmol})$ and aldehyde (1.25 mmol) in THF (4 mL) at $-75^{\circ} \mathrm{C}$ under argon solutions of t-BuOK ($1 \mathrm{~mL}, 1 \mathrm{M}$ in THF) and t-BuOLi ($1 \mathrm{~mL}, 1 \mathrm{M}$ in THF , Aldrich) were added consecutively. Flask was left at $-20 \sim-15^{\circ} \mathrm{C}$ for 10 h , then aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added and mixture was extracted with ethyl acetate, washed with brine and dried MgSO_{4}. Chromatographic separation with hexane : ethyl acetate ($6: 1$ to $1: 2)^{7}$ gave tetrahydrofuran derivative as a mixture of diastereoisomers. This mixture was analyzed with ${ }^{1} \mathrm{H}$ NMR (diastereoselectivity was based on integration of doublets at 5 $-5.5 \mathrm{ppm})$ and separated at preparative thin layer chromatography with hexane : diethyl ether ($1: 3$). Solid compounds were additionally crystalized form hexane : ethyl acetate mixture.

[^4]TLC analyses of reaction mixture (1 with benzaldehyde) before chromatographic purification

Reaction of aldol adducts of benzaldehyde with 1 and p-methoxybenzaldehyde under optimized reaction conditions (scheme 3 in the article).
Mixture of diastereoisomers of $2(243 \mathrm{mg}, 0.76 \mathrm{mmol})$ and p-methoxybenzaldehyde ($105 \mathrm{mg}, 0.77 \mathrm{mmol}$) were subjected to optimized reaction conditions. Flash chromatography separation of tetrahydrofurane derivatives gave mixture of products as colorless oil (193 mg). This mixture was analyzed with ${ }^{1} \mathrm{H}$ NMR. All four possible products, major and minor diastereoisomers of products from benzaldehyde and p methoxybenzaldehyde gave characteristic doublets around 5-5.5 ppm, which were undoubtedly assigned and integrated.

[^5]

Synthesis of enantiomerically enriched 1 (scheme 5 in the article) was performed according to procedure described in literature ${ }^{9}$ (colorless oil, yield 47\%; ee 91\% of (R)-1)

Reaction of enatiomerically enriched 1 (scheme 5 in the article) with benzaldehyde was performed according to optimized procedure. Products were analyzed on HPLC with chiral column (91\% ee for both isomers).

Derivatization of chiral tetrahydrofuranes

Products of reaction of enantiomerically enriched 1 with benzaldehyde were derivatized by esterification with $(-)$ - ω-camphanic acid chloride to establish absolute configuration by X -Ray analyses.

To solution of (-) - ω-camphanic acid chloride ($61 \mathrm{mg}, 0.28 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ pyridine ($100 \mathrm{mg}, 1.27$ mmol) and $3(60 \mathrm{mg}, 0.19 \mathrm{mmol})$ were added consecutively. Mixture was stirred at rt for 1 h and separated by flash chromatography (hexane : ethyl acetate, $3: 1$). Crystallization from hexane : ethyl

[^6]acetate mixture gave product ($60 \mathrm{mg}, 64 \%$ yield). Second crystallization from the same mixture formed crystals appropriate for X-Ray analysis.
[(2S,4R,5S)-5-phenyl-4-(phenylsulfonyl)tetrahydro-2-furanyl]methyl (1S)-4,7,7-trimethyl-3-oxo-2-oxabicyclo[2.2.1]heptane-1-carboxylate (derivative of 3a, CCDC 269770)

Mp: 172-174 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.82-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.69(\mathrm{~m}, 3 \mathrm{H}), 7.10-7.25(\mathrm{~m}, 5 \mathrm{H}), 5.33$ $(\mathrm{d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.49-4.63(\mathrm{~m}, 1 \mathrm{H}), 4.34-4.52(\mathrm{~m}, 2 \mathrm{H}), 3.71-3.82(\mathrm{~m}, 1 \mathrm{H}), 2.56$ (ddd, $J=13.6,5.9,3.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.26-2.48(\mathrm{~m}, 2 \mathrm{H}), 1.84-2.12(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 178.0,167.4,139.6,137.8,134.0,129.4,128.5,128.2,125.9,91.0,80.4,76.6,70.6$, $65.3,54.8,54.3,30.8,29.7,28.9,16.7,16.7,9.7$.
[(2S,4S,5R)-5-phenyl-4-(phenylsulfonyl)tetrahydro-2-furanyl]methyl (1S)-4,7,7-trimethyl-3-oxo-2-oxabicyclo[2.2.1]heptane-1-carboxylate (derivative of 3b, CCDC 269769)

Mp: 133-135 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.81-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.68(\mathrm{~m}, 3 \mathrm{H}), 7.10-7.27(\mathrm{~m}, 5 \mathrm{H}), 5.46$ $(\mathrm{d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.30-4.59(\mathrm{~m}, 3 \mathrm{H}), 3.89(\mathrm{dt}, J=8.5,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.56(\mathrm{~m}, 3 \mathrm{H}), 1.83-2.14(\mathrm{~m}, 2 \mathrm{H})$, 1.63-1.78 (m, 1H), $1.12(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 178.0,167.2,139.5$, $137.9,134.1,129.4,128.6,128.5,128.1,125.7,91.1,79.8,76.5,70.7,65.5,54.8,54.3,30.6,29.0,16.8,16.7,9.7$.

Crystalographic data (excluding structural factors) for the structures reported in this paper has been deposited with the Cambridge Crystallographic Data Center and allocated the deposition numbers CCDC 269769 and 269770. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EW, UK (Fax: Int code + (1223)336-033; E-mail:deposit@ccdc.cam.ac.uk).

Characterization data of tetrahydrofuranes

Entry 1, major isomer [(2S* $\left.4 \mathrm{R}^{*}, 5 \mathrm{~S}^{*}\right)$-5-(4-chlorophenyl)-4-(phenylsulfonyl)tetrahydro-2furanyl] methanol

racemate

Mp: $106-1^{\circ}{ }^{\circ} \mathrm{C}$. IR (KBr): 3307, 2900, 1585, 1492, 1448, 1306, 1143, 1089, 1058, 1014, 940, 822, 750, 724, 685, 604, 567, $504 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (200 MHz , CDCl_{3}): $\delta 7.79-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.72(\mathrm{~m}, 3 \mathrm{H}), 7.06-7.26(\mathrm{~m}, 4 \mathrm{H}), 5.29(\mathrm{~d}, \mathrm{~J}=$ $5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.35(\mathrm{~m}, 1 \mathrm{H}), 3.84-3.98(\mathrm{~m}, 1 \mathrm{H}), 3.58-3.73(\mathrm{~m}, 2 \mathrm{H}), 2.47$ (ddd, $J=13.6,6.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-2.35(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.96(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 138.3,138.0,134.1,129.5,128.7,128.5,127.6,79.9$, 79.7, 70.9, 63.2, 29.5. HRMS (ESI): calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{SO}_{4} \mathrm{Cl}^{35} \mathrm{Na} 375.0428$, found 375.0447. Anal. calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{SO}_{4} \mathrm{Cl} \mathrm{C}, 57.87 ; \mathrm{H}, 4.86 ; \mathrm{S}, 9.09 ; \mathrm{Cl}$, 10,05 . Found C, 58.04; H, 4.97; S, 9.17; Cl, 9.95.

Entry 1, minor isomer

racemate
[(2R*,4R*,5S*)-5-(4-chlorophenyl)-4-(phenylsulfonyl)tetrahydro-2furanyl] methanol
Mp: $97-98^{\circ} \mathrm{C}$. IR (KBr): 3390, 2870, 1584, 1490, 1448, 1306, 1146, 1087, 1013, $804,756,725,686,590,557,503 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.85-$ $7.93(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.73(\mathrm{~m}, 3 \mathrm{H}), 7.15-7.31(\mathrm{~m}, 4 \mathrm{H}), 5.52(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H})$, 4.29-4.43 (m, 1H), 3.76-3.92 (m, 2H), 3.60-3.75 (m, 1H), 2.36-2.54 (m, 1H), 2.12-2.29 (m, 1H), 1.97-2.06 (m, 1H). ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 138.7$, 137.8, 134.1, 133.8, 129.4, 128.7, 128.5, 127.1, 79.8, 78.9, 71.3, 63.4, 29.7. HRMS (ESI): calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{SO}_{4} \mathrm{Cl}^{35} \mathrm{Na} 375.0428$, found 375.0438. Anal. calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{SO}_{4} \mathrm{Cl}$ C, 57.87 ; H, 4.86; S, 9.09; Cl, 10,05. Found C, 57.76; H, 4.91; S, 9.18; Cl, 9.90.

Entry 2, major isomer, 3a

racemate
[(2S* $\left.{ }^{*}, 4 \mathrm{R}^{*}, 5 \mathrm{~S}^{*}\right)$-5-phenyl-4-(phenylsulfonyl)tetrahydro-2-

furanyl]methanol

Mp: 118-119 ${ }^{\circ} \mathrm{C}$. IR (KBr): 3532, 2879, 1446, 1287, 1189, 1147, 1108, 1084, 1026, 937, 770, 749, 719, 690, 618, 602, 534, $518 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.82-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.25$ (m, 3H), 7.11-7.16 (m, 2H), $5.30(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.31-4.37(\mathrm{~m}, 1 \mathrm{H}), 3.87-$ $3.93(\mathrm{~m}, 1 \mathrm{H}), 3.70-3.75(\mathrm{~m}, 1 \mathrm{H}), 3.64-3.69(\mathrm{~m}, 1 \mathrm{H}), 2.59$ (ddd, $J=13.8,6.0,3.3$ $\mathrm{Hz}, 1 \mathrm{H}), 2.25-2.33(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.96(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (50 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta$ 139.7, 138.1, 134.0, 129.7, 128.6, 128.3, 126.1, 80.5, 79.8, 71.0, 63.2, 29.4. HRMS (ESI): calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{SO}_{4} \mathrm{Na} 341.0818$, found 341.0838. Anal. calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{SO}_{4} \mathrm{C}, 64.13 ; \mathrm{H}, 5.70 ; \mathrm{S}, 10.07$. Found C, $64.27 ; \mathrm{H}, 5.88 ; \mathrm{S}, 10.16$.

Entry 2, minor isomer, [($\left.2 \mathrm{R}^{*}, 4 \mathrm{R}^{*}, 5 \mathrm{~S}^{*}\right)$-5-phenyl-4-(phenylsulfonyl)tetrahydro-2-

3b

racemate

furanyl]methanol

Mp: 91-92 ${ }^{\circ} \mathrm{C}$. IR (KBr): 3508, 2935, 1447, 1322, 1291, 1148, 1085, 1036, 832, $763,741,721,699,605,583,529 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.87-$ $7.90(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.30(\mathrm{~m}, 5 \mathrm{H}), 5.54(\mathrm{~d}$, $J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.35-4.41(\mathrm{~m}, 1 \mathrm{H}), 3.88-3.94(\mathrm{~m}, 1 \mathrm{H}), 3.81-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.65-$ $3.71(\mathrm{~m}, 1 \mathrm{H}), 2.42-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.17-2.21(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 140.1,138.0,134.1,129.4,128.7,128.6,128.0$, 125.6, 79.7, 79.6, 71.3, 63.5, 29.3. HRMS (ESI): calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{SO}_{4} \mathrm{Na}$ 341.0818, found 341.0834. Anal. calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{SO}_{4} \mathrm{C}, 64.13 ; \mathrm{H}, 5.70$; S, 10.07. Found C, 64.13; H, 5.86; S, 9.96.

Isolated in optimization $\left[\left(2 R^{*}, 4 S^{*}, 5 S^{*}\right)\right.$-5-phenyl-4-(phenylsulfonyl)tetrahydro-2experiment only, 3d furanyl]methanol

Mp: $93^{\circ} \mathrm{C}$ (dec.). IR (KBr): 3256, 2886, 1447, 1307, 1193, 1143, 1115, 1085,

racemate 939, 732, 686, 557, $512 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.47-7.49(\mathrm{~m}, 1 \mathrm{H})$, 7.35-7.38 (m, 2H), 7.27-7.31 (m, 2H), 7.19-7.25 (m, 3H), 7.14-7.18 (m, 2H), $5.36(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.72-4.77(\mathrm{~m}, 1 \mathrm{H}), 4.15-4.20(\mathrm{~m}, 1 \mathrm{H}), 3.81-3.87(\mathrm{~m}$, $1 \mathrm{H}), 3.58-3.65(\mathrm{~m}, 1 \mathrm{H}), 2.59$ (ddd, $J=14.0,7.3,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.46(\mathrm{~m}$, 1H), 2.08-2.12 (m, 1H), 1.88-1.93 (m, 1H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 139.2, 135.8, 132.8, 128.8, 128.0, 127.8, 127.7, 127.3, 81.3, 78.6, 67.9, 64.5, 29.2. MS (ESI): calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{SO}_{4} \mathrm{Na}$ 341.0818, found 341.1. Anal. calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{SO}_{4} \mathrm{C}, 64.13 ; \mathrm{H}, 5.70 ; \mathrm{S}, 10.07$. Found C, $62.91 ; \mathrm{H}, 5.43 ;$ S, 9.11.

Isolated in optimization experiment only, 3c

racemate
[(2S* $\left.{ }^{*} 4 S^{*}, 5 S^{*}\right)$-5-phenyl-4-(phenylsulfonyl)tetrahydro-2furanyl]methanol
Mp: 149-150${ }^{\circ}$ C. IR (KBr): 3521, 2889, 1446, 1305, 1290, 1140, 1114, 1083, 1057, 757, 732, 687, 575, $508 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.42-7.46$ $(\mathrm{m}, 1 \mathrm{H}), 7.31-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.29(\mathrm{~m}, 5 \mathrm{H}), 5.07(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-$ $4.22(\mathrm{~m}, 1 \mathrm{H}), 4.10-4.15(\mathrm{~m}, 1 \mathrm{H}), 4.04(\mathrm{dd}, J=12.1,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{dd}, J=$ $12.1,4.5 \mathrm{~Hz} 1 \mathrm{H}), 2.77-2.84(\mathrm{~m}, 1 \mathrm{H}), 2.39-2.47(\mathrm{~m}, 1 \mathrm{H}), 2.50(\mathrm{~s}$ br, 1 H$) .{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 139.2,134.6,132.8,128.8,128.1,127.8,127.7$, 127.7, 127.6, 127.6, 127.5, 81.6, 78.1, 67.1, 63.5, 28.5. MS (ESI): calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{SO}_{4} \mathrm{Na}$ 341.0818, found 341.1. Anal. calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{SO}_{4} \mathrm{C}, 64.13 ; \mathrm{H}$, $5.70 ;$ S, 10.07. Found C, 64.11 ; H, 5.65; S, 10.00 .

racemate

Entry 3, minor isomer
PhSO_{2}

racemate
[(2S* $\left., 4 \mathrm{R}^{*}, 5 S^{*}\right)$-5-(4-methylphenyl)-4-(phenylsulfonyl)tetrahydro-2furanyl] methanol
Mp: $100-102^{\circ} \mathrm{C}$. IR (KBr): 3497, 3306, 2917, 2877, 1516, 1446, 1306, 1144, 1083, 1036, 938, 818, 754, 724, 688, 612, 583, 561, 543, $516 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.82-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.53(\mathrm{~m}, 2 \mathrm{H}), 6.99-$ $7.05(\mathrm{~m}, 4 \mathrm{H}), 5.26(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.28-4.34(\mathrm{~m}, 1 \mathrm{H}), 3.85-3.91(\mathrm{~m}, 1 \mathrm{H})$, 3.68-3.74 (m, 1H), 3.61-3.67 (m, 1H), 2.59 (ddd, $J=13.8,6.0,3.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.29(\mathrm{~s}, 3 \mathrm{H}), 2.24-2.32(\mathrm{~m}, 1 \mathrm{H}), 1.95-2.00(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}): $\delta 138.2,138.1,136.7,133.9,129.3,129.2,128.6,126.1,80.4,79.7,70.9$, 63.2, 29.5, 21.2. HRMS (ESI): calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{SO}_{4} \mathrm{Na} 355.0975$, found 355.0955. Anal. calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{SO}_{4} \mathrm{C}, 65.04 ; \mathrm{H}, 6.06 ; \mathrm{S}, 9.65$. Found C, 64.83; H, 5.93; S, 9.51.
[(2R*,4R*,5S*)-5-(4-methylphenyl)-4-(phenylsulfonyl)tetrahydro-2furanyl] methanol
Mp: $116-117^{\circ} \mathrm{C}$. IR (KBr): 3359, 2956, 1516, 1450, 1305, 1290, 1241, 1148, 1084, 1042, 973, 827, 774, 755, 717, 691, 624, 596, 565, 536, $519 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.87-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.55(\mathrm{~m}, 2 \mathrm{H})$, 7.06-7.11 (m, 4H), $5.50(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.33-4.39(\mathrm{~m}, 1 \mathrm{H}), 3.86-3.92(\mathrm{~m}$, $1 \mathrm{H}), 3.79-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.63-3.69(\mathrm{~m}, 1 \mathrm{H}), 2.41-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H})$, 2.20-2.27 (m, 1H), 2.14-2.20 (m, 1H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 138.0$, 137.7, 137.0, 134.0, 129.3, 129.3, 128.6, 125.6, 79.5, 79.5, 71.2, 63.6, 29.4, 21.0. HRMS (ESI): calcd for $\mathrm{C}_{18} \mathrm{H}_{2} \mathrm{SO}_{4} \mathrm{Na} 355.0975$, found 355.0992. Anal. calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{SO}_{4} \mathrm{C}, 65.04 ; \mathrm{H}, 6.06 ; \mathrm{S}, 9.65$. Found C, $65.15 ; \mathrm{H}, 6.19 ;$ S, 9.71.

Entry 4, major isomer

racemate
[(2S* $\left., 4 \mathrm{R}^{*}, 5 S^{*}\right)$-5-(4-methoxyphenyl)-4-(phenylsulfonyl)tetrahydro-2furanyl]methanol
Mp: $87-89^{\circ} \mathrm{C}$. IR (KBr): 3261, 2958, 1613, 1585, 1515, 1448, 1305, 1252, 1172, 1147, 1084, 1034, 831, 752, 718, 690, 638, 622, 607, 586, 544, $517 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.78-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.67(\mathrm{~m}, 3 \mathrm{H}), 7.00-7.09$ $(\mathrm{m}, 2 \mathrm{H}), 6.70-6.80(\mathrm{~m}, 2 \mathrm{H}), 5.22(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.23-4.37(\mathrm{~m}, 1 \mathrm{H}), 3.84-$ $3.94(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.58-3.75(\mathrm{~m}, 2 \mathrm{H}), 2.50(\mathrm{ddd}, J=13.6,6.2,3.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.20-2.39(\mathrm{~m}, 1 \mathrm{H}), 1.88\left(\mathrm{~s}\right.$ br, 1H). ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.6$, 138.1, 133.9, 131.6, 129.3, 128.5, 127.5, 113.9, 80.4, 79.5, 70.7, 63.2, 55.3, 29.4. HRMS (ESI): calcd for $\mathrm{C}_{18} \mathrm{H}_{2} \mathrm{SO}_{5} \mathrm{Na} 371.0924$, found 371.0944. Anal. calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{SO}_{5} \mathrm{C}, 62.05 ; \mathrm{H}, 5.79 ; \mathrm{S}, 9.20$. Found C, $62.26 ; \mathrm{H}, 5.74 ; \mathrm{S}, 9.03$.

Entry 4, minor isomer $\quad\left[\left(2 \mathbf{R}^{*}, 4 \mathbf{R}^{*}, 5 S^{*}\right)-5-(4-m e t h o x y p h e n y l)-4-(p h e n y l s u l f o n y l) t e t r a h y d r o-2-\right.$ furanyl]methanol

racemate

Mp: $93-94^{\circ} \mathrm{C}$. IR (KBr): 3340, 2938, 1611, 1584, 1512, 1451, 1304, 1247, 1177, 1147, 1085, 1033, 972, 841, 777, 758, 690, 573, 546, $528 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (200 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.83-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.69(\mathrm{~m}, 3 \mathrm{H}), 7.07-7.19(\mathrm{~m}, 2 \mathrm{H}), 6.75-$ $6.85(\mathrm{~m}, 2 \mathrm{H}), 5.46(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.30-4.44(\mathrm{~m}, 1 \mathrm{H}), 3.76-3.94(\mathrm{~m}, 2 \mathrm{H})$, $3.77(\mathrm{~s}, 3 \mathrm{H}), 3.61-3.72(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.17-2.34(\mathrm{~m}, 1 \mathrm{H}), 1.85(\mathrm{~s}$ br, 1H). ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.4,138.0,134.0,131.9,129.3,128.6$, 127.1, 114.0, 79.5, 79.4, 71.0, 63.6, 55.3, 29.4. HRMS (ESI): calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{SO}_{5} \mathrm{Na}$ 371.0924, found 371.0942. Anal. calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{SO}_{5} \mathrm{C}, 62.05$; H, 5.79; S, 9.20. Found C, 62.19; H, 5.75; S, 9.18.

Entry 5, major isomer

racemate
[(2S*, 4R*,5R*)-4-(phenylsulfonyl)-5-(2-thienyl)tetrahydro-2furanyl]methanol
Mp: 102-103${ }^{\circ} \mathrm{C}$. IR (KBr): 3534, 3106, 2974, 2933, 2878, 1582, 1478, 1446, 1386, 1288, 1274, 1190, 1147, 1108, 1147, 1108, 1082, 1014, 950, 936, 852, 839, $783,752,719,689,609,552,527 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.83-$ $7.92(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.70(\mathrm{~m}, 3 \mathrm{H}), 7.17$ (dd, $J=5.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{dd}, J=$ 5.1, $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.40$ $(\mathrm{m}, 1 \mathrm{H}), 3.73-3.94(\mathrm{~m}, 2 \mathrm{H}), 3.53-3.68(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.46$ (m, 1H), 1.91-2.02 (m, 1H). ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 143.0,137.8,134.1$, 129.4, 128.5, 126.8, 125.5, 125.2, 79.9, 76.9, 71.2, 63.1, 28.9. HRMS (ESI): calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~S}_{2} \mathrm{O}_{4} \mathrm{Na}$ 347.0382, found 347.0379. Anal. calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~S}_{2} \mathrm{O}_{4} \mathrm{C}$, 55.53; H, 4.97; S, 19.77. Found C, 55.35; H, 4.97; S, 20.04.

Entry 5, minor isomer

racemate
[($\left.2 \mathrm{R}^{*}, 4 \mathrm{R}^{*}, 5 \mathrm{R}^{*}\right)$-4-(phenylsulfonyl)-5-(2-thienyl)tetrahydro-2furanyl]methanol
Mp: $92-93^{\circ} \mathrm{C}$. IR (KBr): 3516, 3071, 2914, 1584, 1448, 1395, 1322, 1292, 1150, 1086, 1071, 1025, 831, 764, 722, 688, 605, 582, $527 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (200 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.86-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.71(\mathrm{~m}, 3 \mathrm{H}), 7.20(\mathrm{dd}, J=5.1,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $6.86(\mathrm{dd}, J=5.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.75-6.80(\mathrm{~m}, 1 \mathrm{H}), 5.71(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.32-$ $4.46(\mathrm{~m}, 1 \mathrm{H}), 3.91-4.05(\mathrm{~m}, 1 \mathrm{H}), 3.78-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.59-3.73(\mathrm{~m}, 1 \mathrm{H}), 2.25-$ $2.61(\mathrm{~m}, 2 \mathrm{H}), 2.02-2.12(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 143.4,137.8$, 134.1, 129.4, 128.6, 127.0, 125.6, 125.2, 79.4, 76.5, 71.2, 63.3, 28.9. HRMS (ESI): calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~S}_{2} \mathrm{O}_{4} \mathrm{Na}$ 347.0382, found 347.0398. Anal. calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~S}_{2} \mathrm{O}_{4} \mathrm{C}, 55.53$; H, 4.97; S, 19.77. Found C, 55.53; H, 5.06; S, 20.11.

Entry 6, major isomer

racemate
[(2S* $\left., 4 \mathbf{R}^{*}, 5 S^{*}\right)-5-(2$-furyl)-4-(phenylsulfonyl)-tetrahydro-2-

furanyl]methanol

Mp: $69-70^{\circ} \mathrm{C}$. IR (KBr): 3350, 3263, 2932, 2876, 1586, 1504, 1449, 1348, 1306, 1147, 1110, 1086, 1045, 1015, 925, 784, 746, 721, 685, 599, $566 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.76-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.65(\mathrm{~m}, 3 \mathrm{H}), 7.21-7.25(\mathrm{~m}, 1 \mathrm{H})$, $6.17(\mathrm{dd}, J=3.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H})$, 4.23-4.37 (m, 1H), 4.01-4.14 (m, 1H), 3.74-3.87 (m, 1H), 3.48-3.63 (m, 1H), 2.54-2.70 (m, 1H), 2.31-2.49 (m, 1H), 2.00-2.12 (m, 1H). ${ }^{13} \mathrm{C}$ NMR (50 MHz , CDCl_{3}): $\delta 150.3,143.0,137.8,133.9,129.2,128.3,110.4,109.3,79.7,74.3,67.0$, 63.6, 28.9. HRMS (ESI): calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{SO}_{5} \mathrm{Na} 331.0611$, found 331.0625. Anal. calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{SO}_{5} \mathrm{C}, 58.43$; H, 5.23; S, 10.40. Found C, 58.40; H, 5.42; S, 10.88.

Entry 6, minor isomer

racemate

[(2R*,4R*,5S*)-5-phenyl-4-(phenylsulfonyl)tetrahydro-2-

 furanyl]methanolMp: $77-78^{\circ} \mathrm{C}$. IR (KBr): 3467, 3133, 2932, 1584, 1504, 1448, 1301, 1246, 1149, 1103, 1086, 1069, 1046, 1016, 967, 915, 883, 834, 751, 723, 687, 599, $562 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.82-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.68(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.28$ (m, 1H), $6.21(\mathrm{dd}, J=3.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{~d}, J=5.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.28-4.42(\mathrm{~m}, 1 \mathrm{H}), 4.08-4.22(\mathrm{~m}, 1 \mathrm{H}), 3.74-3.87(\mathrm{~m}, 1 \mathrm{H}), 3.54-3.69$ (m, 1H), 2.28-2.58 (m, 2H), 2.10-2.21 (m, 1H). ${ }^{13} \mathrm{C}$ NMR (50 MHz, CDCl_{3}): δ 151.3, 143.0, 137.7, 134.0, 129.3, 128.4, 110.4, 108.8, 79.5, 73.6, 67.2, 63.3, 28.6. HRMS (ESI): calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{SO}_{5} \mathrm{Na}$ 331.0611, found 331.0626. Anal. calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{SO}_{5} \mathrm{C}, 58.43 ; \mathrm{H}, 5.23 ; \mathrm{S}, 10.40$. Found C, $58.63 ; \mathrm{H}, 5.24 ; \mathrm{S}, 10.41$.

Entry 7, major isomer

racemate
[(2S* $\left.4 \mathrm{R}^{*}, 5 S^{*}\right)$-5-(tert-butyl)-4-(phenylsulfonyl)-tetrahydro-2-

furanyl]methanol

Mp: $100-101^{\circ} \mathrm{C}$. IR (KBr): 3462, 3067, 2954, 2898, 1585, 1481, 1447, 1397, 1366, 1305, 1149, 1085, 1038, 998, 961, 850, 781, 752, 720, 690, 648, 616, 583, $553,530 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.87-7.96(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.73(\mathrm{~m}$, $3 \mathrm{H}), 4.11-4.28(\mathrm{~m}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.74-3.87(\mathrm{~m}, 1 \mathrm{H}), 3.41-3.59$ (m, 2H), 2.25 (ddd, $J=13.9,4.9,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.77-2.04(\mathrm{~m}, 2 \mathrm{H}), 0.79(\mathrm{~s}, 9 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 138.0,134.0,129.4,128.9,85.4,79.1,66.0,63.3$, 34.5, 30.1, 25.5. HRMS (ESI): calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{SO}_{4} \mathrm{Na} 321.1131$, found 321.1138. Anal. calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{SO}_{4} \mathrm{C}, 60.38$; H, 7.43; S, 10.75. Found C, 60.23; H, 7.49; S, 10.25.
$\begin{array}{ll}\text { Entry 7, minor isomer } & \quad\left(2 \mathbf{R}^{*}, 4 \mathbf{R}^{*}, 5 S^{*}\right)-5-(t e r t-b u t y l)-4-(p h e n y l s u l f o n y l)-t e t r a h y d r o-2-~ \\ \text { furanyllmethanol }\end{array}$

racemate

Mp: $104-106^{\circ} \mathrm{C}$. IR (KBr): 3528, 2968, 2922, 2875, 1584, 1478, 1451, 1398, 1370, 1305, 1212, 1148, 1117, 1087, 1059, 1030, 998, 951, 880, 819, 768, 730, $691,649,588,551,511 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.89-7.97(\mathrm{~m}, 2 \mathrm{H})$, $7.52-7.73(\mathrm{~m}, 3 \mathrm{H}), 4.18-4.36(\mathrm{~m}, 1 \mathrm{H}), 4.26(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.45-3.80(\mathrm{~m}$, $3 \mathrm{H}), 2.33-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.09-2.33(\mathrm{~m}, 2 \mathrm{H}), 0.81(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (50 MHz , CDCl_{3}): $\delta 137.8,134.0,129.4,128.9,87.2,80.8,65.7,64.1,36.1,29.1,25.9$. HRMS (ESI): calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{SO}_{4} \mathrm{Na} 321.1131$, found 321.1123. Anal. calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{SO}_{4} \mathrm{C}, 60.38 ; \mathrm{H}, 7.43 ; \mathrm{S}, 10.75$. Found C, $60.19 ; \mathrm{H}, 7.11 ; \mathrm{S}, 10.62$.

Entry 8, major isomer

racemate
[(2S*4R*,5S*)-5-(isopropyl)-4-(phenylsulfonyl)-tetrahydro-2furanyllmethanol
Oil. IR (neat): 3502, 2962, 1585, 1447, 1305, 1146, 1085, 1046, 853, 752, 720, $690,636,612,581,559 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.88-7.95(\mathrm{~m}, 2 \mathrm{H})$, $7.53-7.73(\mathrm{~m}, 3 \mathrm{H}), 4.24(\mathrm{dd}, J=4.9,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.07-4.20(\mathrm{~m}, 1 \mathrm{H}), 3.74-3.85$ $(\mathrm{m}, 1 \mathrm{H}), 3.43-3.57(\mathrm{~m}, 2 \mathrm{H}), 2.31(\mathrm{ddd}, J=13.8,5.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.93-2.17(\mathrm{~m}$, $1 \mathrm{H}), 1.77-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.77(\mathrm{~m}, 1 \mathrm{H}), 0.78-0.87(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (50 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 138.1,134.0,129.4,128.7,83.0,78.9,66.5,63.2,32.2,29.5$, 18.8, 16.7. HRMS (ESI): calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{SO}_{4} \mathrm{Na} 307.0975$, found 307.0974. Anal. calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{SO}_{4} \mathrm{C}, 59.13 ; \mathrm{H}, 7.09 ; \mathrm{S}, 11.28$. Found C, $57.59 ; \mathrm{H}, 7.21$; S, 11.06.

Entry 8, minor isomer
[(2R*, $\left.4 \mathbf{R}^{*}, 5 S^{*}\right)$-5-(isopropyl)-4-(phenylsulfonyl)-tetrahydro-2furanyl]methanol

racemate
Oil. IR (neat): 3502, 2962, 2876, 1585, 1468, 1447, 1390, 1305, 1148, 1086, $1036,948,856,758,722,691,594,557 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.88-7.96 (m, 2H), 7.53-7.73 (m, 3H), 4.13-4.27 (m, 1H), 4.02-4.16 (m, 1H), 3.68-3.81 (m, 1H), 3.41-3.65 (m, 2H), 2.25-2.42 (m, 1H), 2.00-2.20 (m, 2H), 1.54-1.76 (m, 1H), 0.78-0.93 (m, 6H). ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 138.0$, 134.0, 129.4, 128.7, 83.8, 78.6, 66.9, 63.5, 31.7, 28.8, 19.0, 17.3. HRMS (ESI): calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{SO}_{4} \mathrm{Na} 307.0975$, found 307.0987. Anal. calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{SO}_{4}$ C, 59.13; H, 7.09; S, 11.28. Found C, 55.56; H, 7.08; S, 11.57.

Reproductions of ${ }^{1} \mathrm{H}$ NMR spectra of tetrahydrofuranes

[^0]: ${ }^{1}$ See for example Leonard, J., Lygo, B., Procter, G., Advanced Practical Organic Chemistry, 2nd Ed.; Stanley Thornes (Publishers) Ltd 1998, p. 149.

[^1]: ${ }^{2}$ When reaction was quenched below $0^{\circ} \mathrm{C} 1$-chloro- 4 -(phenylsulfonyl)-2-butanol was isolated Mp: $75-76^{\circ} \mathrm{C}$. IR (neat): 3511 , $3446,3064,2927,1585,1446,1420,1262,1153,1084,1024,915,857,813,746,685,602,576,536 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (200 MHz, CDCl 3$)$: $\delta 7.87-7.96(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.73(\mathrm{~m}, 3 \mathrm{H}), 3.87-4.02(\mathrm{~m}, 1 \mathrm{H}), 3.14-3.63(\mathrm{~m}, 4 \mathrm{H}), 2.50\left(\mathrm{~s}\right.$ br, 1H), 1.77-2.15 (m, 2H). ${ }^{13} \mathrm{C}$ NMR (50 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 138.8,133.9,129.4,128.0,69.4,52.7,49.4,27.2$. MS (ESI): calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{SO}_{3}{ }^{35} \mathrm{ClNa}^{271.0}$, found 271.0. Anal. calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{SO}_{3} \mathrm{Cl}$ C, $48.29 ; \mathrm{H}, 5.27 ; \mathrm{S}, 12.89$; Cl 14.25. Found C, $48.20 ; \mathrm{H}, 5.41 ; \mathrm{S}, 12.74 ; \mathrm{Cl} 14.15$.

[^2]: ${ }^{4}$ Synthesized from 4-bromo-1-butene and phenylsulfinic acid sodium salt in DMSO: Oil. IR (neat): 3624, 3069, 2982, 2924, $1642,1585,1479,1447,1406,1307,1234,1146,1086,998,922,800,746,690,633,591,556,533,441 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (200 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 7.88-7.96(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.72(\mathrm{~m}, 3 \mathrm{H}), 5.62-5.84(\mathrm{~m}, 1 \mathrm{H}), 5.04-5.11(\mathrm{~m}, 1 \mathrm{H}), 4.99-5.03(\mathrm{~m}, 1 \mathrm{H}), 3.11-3.22(\mathrm{~m}, 2 \mathrm{H}), 2.39-$ $2.54(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 139.0, 133.7, 129.3, 128.1, 117.1, 55.4, 26.8. Anal. calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{SO}_{2} \mathrm{C}, 61.20 ; \mathrm{H}$, 6.16; S, 16.34. Found C, 61.48 ; H, 6.11; S, 16.60.

[^3]: ${ }^{5}$ Truce, W. E.; Klingler, T. C. J. Org. Chem. 1970, 35, 1834.
 ${ }^{6}$ Coxon, J. M.; Hartshorn, M. P.; Swallow, W. H. Aust. J. Chem. 1973, 26, 2521.

[^4]: ${ }^{7}$ For reaction in entry $7(\mathrm{R}=$ tert-butyl; table 1 in the article $)$ hexane : chloroform $(3: 1)$ was used as eluent.

[^5]: ${ }^{8}$ See for example Leonard, J., Lygo, B., Procter, G., Advanced Practical Organic Chemistry, 2nd Ed.; Stanley Thornes (Publishers) Ltd 1998, p. 149.

[^6]: ${ }^{9}$ Jin C., Ramirez R. D., Gopalan A. S., Tetrahedron Lett. 2001, 42, 4747.

