## Supporting Information

## Oceanalin A, a Hybrid α,ω-Bifunctionalized Sphingoid-Tetrahydroisoquinoline β-Glycoside from the Marine Sponge *Oceanapia* sp.

## Tatyana N. Makarieva,<sup>‡</sup> Vladimir A. Denisenko,<sup>‡</sup> Pavel S. Dmitrenok,<sup>‡</sup> Alla G. Guzil,<sup>‡</sup> Elena A. Santalova,<sup>‡</sup> Valentin A. Stonik,<sup>‡</sup> John B. MacMillan<sup>†</sup> and Tadeusz F. Molinski<sup>\*,†</sup>

| Department of Chemistry, University of California, Davis, CA 95616 and Laboratory of MaNaPro    |
|-------------------------------------------------------------------------------------------------|
| Chemistry, Pacific Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 690022 |
| Vladivostok, Russia                                                                             |

† UC Davis ‡ Pacific Institute of Bioorganic Chemistry

S2 – S3 General procedure, isolation and oxidative degradation of 1, characterization of

**3-6**. Table S1: temperature dependent <sup>1</sup>H NMR ( $d_5$ -pyridine) of peracetate **4**.

- S4 Table S2:  ${}^{1}$ H NMR of **1a**, **3-6** (500 MHz).
- S5 <sup>1</sup>H NMR spectrum (600 MHz,  $CD_3OD$ ) of oceanalin A (1)
- S6  $^{13}$ C NMR spectrum (125 MHz, CD<sub>3</sub>OD) of oceanalin A (1)
- S7 DEPT (125 MHz,  $CD_3OD$ ) of oceanalin A (1)
- S8  ${}^{1}\text{H}{}^{-1}\text{H}$  COSY Spectrum (500 MHz, CD<sub>3</sub>OD) of oceanalin A (1)
- S9 HSQC spectrum (600 MHz) of oceanalin A (1)
- S10 HMBC spectrum (600 MHz, J = 10 Hz) of oceanalin A (1)

*General* Rotations ( $[\alpha]_D$ ) were measured using a Perkin-Elmer 343 polarimeter. The circular dichroism (CD) spectrum were recorded on a Jasco J-500A spectropolarimeter in quartz cells of 1 cm pathlength with the following parameters:  $\lambda$  range, 200-300 nm; band width 1 nm; scan speed 0.3 nm.sec<sup>-1</sup>. The NMR spectra were recorded on a Bruker DPX-400, DRX-500, and DRX-600 spectrometers at 400, 500, 600 for <sup>1</sup>H, and 100, 125 and 150 MHz, for <sup>13</sup>C, respectively, with (CH<sub>3</sub>)<sub>4</sub>Si as an internal standard. MALDI-TOF mass spectra were obtained on a Bruker Biflex III laser desorption mass-spectrometer coupled with delayed extraction using N<sub>2</sub> laser ( $\lambda$  337 nm) on 2,5-dihydroxybenzoic acid (DHB) and  $\alpha$ -cyano-4-hydroxy-cinnamic acid (CCA) as matrix. ESIMS mass spectra were obtained on a Surveyor MSQ Thermo Finnigan mass-spectrometer, coupled to an Agilent 1100 series HPLC, or by direct infusion in MeOH containing HCOOH (0.1%). FABMS and EIMS mass spectra were obtained on a AMD-604S mass-spectrometer (AMD-Intectra, Germany). FAB mass spectra were provided by the University of California, Riverside mass spectrometry facility.

Low pressure column liquid chromatography was performed using Si gel L (40/100  $\mu$ m, Chemapol, Praha, Czech Republic). Silica gel plates (4.5 × 6.0 cm, 5-17  $\mu$ , Sorbfil, Russia) were used for thin layer chromatography. Preparative HPLC for isolation and separation of sphingolipids was carried out using a Rainin Binary HPLC system (Dynamax C<sub>18</sub> column 10 × 250 mm, 5  $\mu$ m, 3 mL/min) in 80:20:0.1 MeOH-H<sub>2</sub>O-TFA with refractive index detection (Waters R401). Preparative HPLC separation of ozonolysis products was performed YMC Pack-ODS-A column (10 × 250 mm, 5  $\mu$ m, 0.8 mL/min) in 80:20 ethanol-H<sub>2</sub>O using an Agilent Series 1100 Instrument equipped with differential refractometer RID-DE14901810.

## Animal Material.

A sponge specimen, *Oceanapia* sp. (order Haplosclerida, family Phloeodictyidae) was collected in November 1990 at a depth 48 meter by dredging near Scott reef, north western Australia (16° 33'6 S; 121° 07'1 E) during a scientific cruise aboard RV "Akademik Oparin".

A voucher specimen is kept under registration number PIBOC # O12-200 in the marine invertabrate collection of Pacific Institute of Bioorganic Chemistry (Vladivostok, Russia).

**Oceanalin A (1).** The sponge *Oceanapia* sp. was exhaustively extracted with MeOH and the *n*-BuOH-soluble fraction purified by Sephadex LH-20 (MeOH elution). The ninhydrin-positive fraction was separated repeatedly by reversed phase HPLC (Dynamax  $C_{18}$  10 × 250 mm, 5 µm, 3 mL/min) in 80:20:0.1 MeOH-H<sub>2</sub>O-TFA) to give **1** as a colorless glass (0.003% of dry weight). Oceanalin A (1), 4.0 mg. Colorless

solid;  $[\alpha]_D - 5.7^\circ$  (*c* 0.14 EtOH), UV (MeOH),  $\lambda_{max}$  238 nm ( $\epsilon$  7600), 288 (7850). <sup>1</sup>H and <sup>13</sup>C NMR see Table 1. ESIMS *m*/*z* [M+Na]<sup>+</sup> 737 (100 %), [M+H<sub>2</sub>]<sup>2+</sup> 369 (30%). HRMS FAB *m*/*z* 737.5286 [M+H]<sup>+</sup> Calcd, C<sub>41</sub>H<sub>73</sub>N<sub>2</sub>O<sub>9</sub> 737.5311. <sup>1</sup>H, <sup>13</sup>C NMR, see Table 1.

**Octaacetyl Oceanalin A** (1a). A sample of 1 (1.5 mg) was dissolved in pyridine (0.5 mL) and acetic anhydride (0.5 mL) and allowed to stand at 25°C for 18 h. Removal of the volatile material gave a residue (2.0 mg) of 1a, MALDI MS m/z [M+Na]<sup>+</sup> 1095, [ $\alpha$ ]<sub>D</sub> 0° (*c* 0.15 CHCl<sub>3</sub>). <sup>1</sup>H NMR, see Table S2.

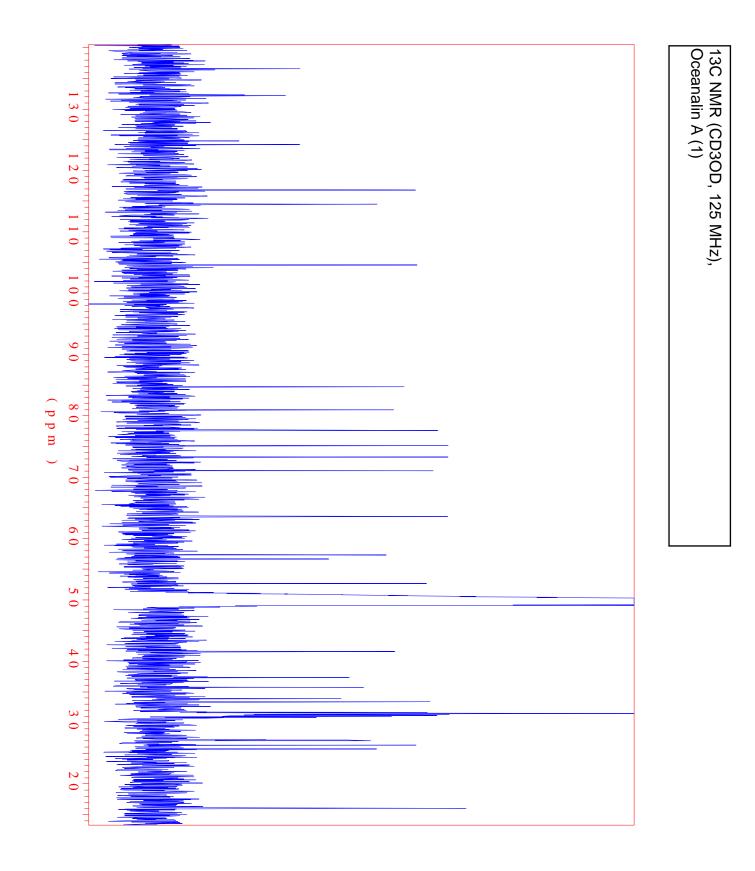
**Hydrolysis of Oceanalin A** (1). A solution of 1 (1.2 mg) in 6M HCl (1 mL) was heated at 100  $^{\circ}$ C for 2.5 h. The mixture was cooled and treated with ion-exchange resin Dowex (HCO<sub>3</sub><sup>-</sup> form). The aqueous solution was separated and concentrated to afford D-galactose (0.4 mg).

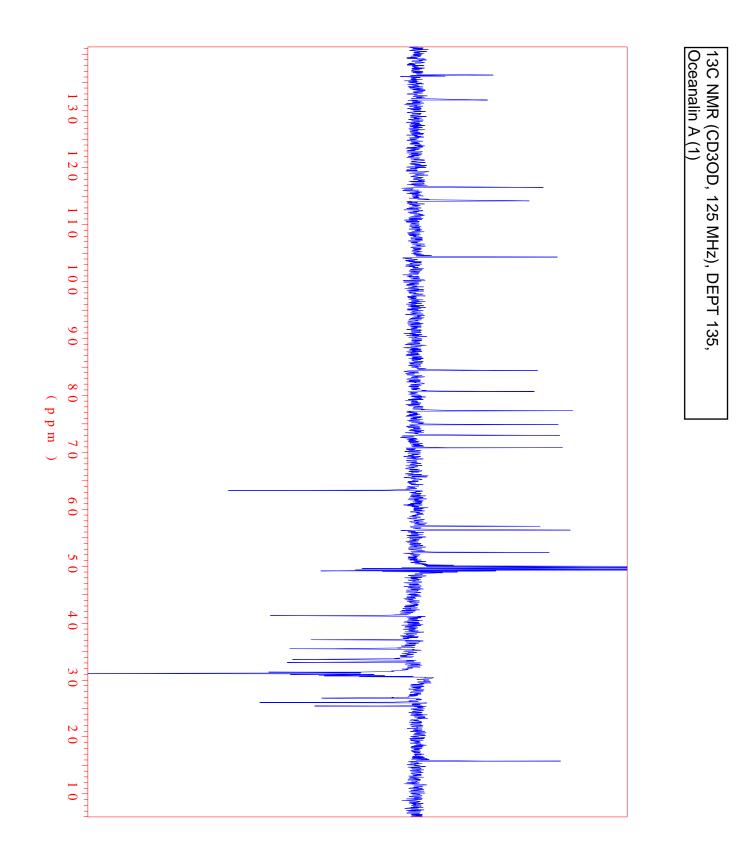
**Ozonolysis-Reduction of 1a**. Ozone was bubbled through a solution of **1a** (2.0 mg) in MeOH at a temperature of -20 °C to -30 °C over 4 h. The solution was cooled and treated with an excess of NaBH<sub>4</sub> (5 mg). The mixture was left at room temperature overnight and quenched with acetic acid (to pH=7). The mixture was evaporated and treated with Ac<sub>2</sub>O/pyridine (1:1, 0.5 mL) at room temperature, overnight. After removal of the volatiles, the residue was separated by chromatography (silica gel), using ethyl acetate as eluent, to afford a mixture of products **3-6** (1.0 mg). Separation of the mixture by preparative HPLC (C<sub>18</sub>, 80:20 EtOH:H<sub>2</sub>O) afforded the pure compounds **3-6**.

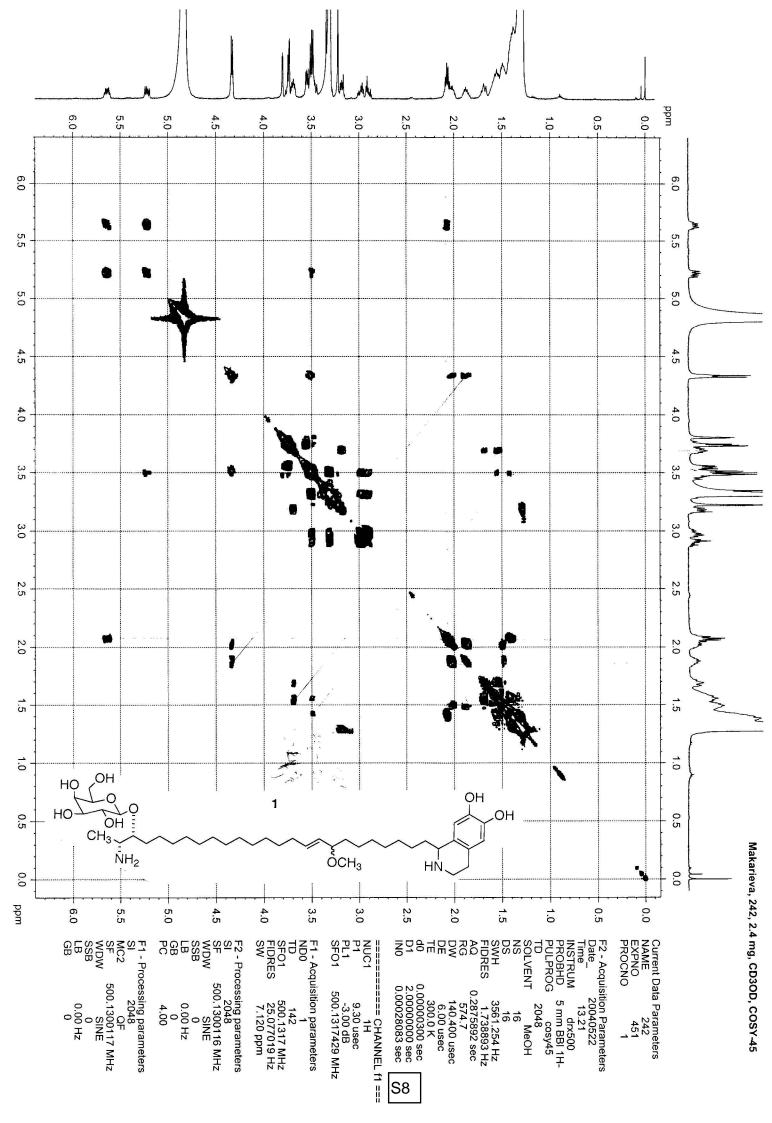
Peracetate 3. 0.7 mg, colorless solid, m/z 710 [M+Na<sup>+</sup>],  $[\alpha]_D + 1^\circ$  (*c* 0.07 EtOH), <sup>1</sup>H NMR see Table S2. Peracetate 4. 0.7 mg, colorless solid, m/z 528 [M+Na<sup>+</sup>],  $[\alpha]_D 0^\circ$  (*c* 0.07 EtOH), <sup>1</sup>H NMR see Table S2. Peracetate 5. 0.2 mg, colorless solid, m/z 754 [M+Na<sup>+</sup>],  $[\alpha]_D + 1^\circ$  (*c* 0.02 EtOH), <sup>1</sup>H NMR see Table S2. Peracetate 6. 0.2 mg, colorless solid, m/z 484 [M+Na<sup>+</sup>],  $[\alpha]_D \circ$  (*c* 0.02 EtOH), <sup>1</sup>H NMR see Table S2.

| T ∕°C | δOAc  |       |       |       |       |       | δOMe  |       |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|       | C33a  | C33b  | C32   | C27a  | C27b  | C17   | C18a  | C18b  |
| 27    | 2.320 | 2.305 | 2.315 | 2.204 | 2.193 | 2.053 | 3.403 | 3.394 |
| 40    | 2.292 | 2.282 | 2.290 | 2.188 | 2.171 | 2.036 | 3.395 | 3.382 |
| 60    | 2.263 | 2.263 | 2.256 | 2.166 | 2.146 | 2.016 | 3.374 | 3.374 |
| 80    | 2.238 | 2.238 | 2.232 | 2.129 | 2.129 | 1.996 | 3.365 | 3.365 |
| 100   | 2.222 | 2.222 | 2.217 | 2.113 | 2.113 | 1.981 | 3.357 | 3.357 |
| 110   | 2.210 | 2.210 | 2.204 | 2.107 | 2.107 | 1.976 | 3.355 | 3.355 |


Table S1. Variable temperature <sup>1</sup>H NMR Data for compound 4 (pyridine-*d*<sub>5</sub>, 500 MHz)<sup>[a]</sup>


[a]. For clarity, the numbering of 3-6 conforms to that of 1. Designations 'a' and 'b' are arbitrary assignments of doubled AcO and OMe signals.

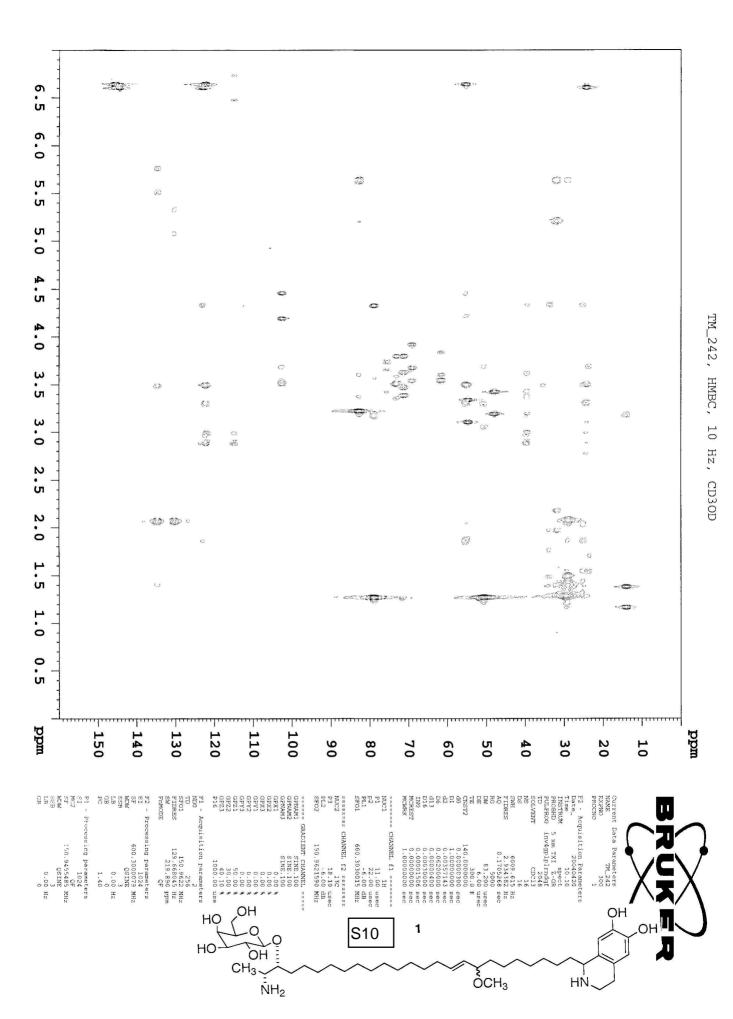

| #                | 1a                                            | 3                    | 4                                      | 5                    | 6                |
|------------------|-----------------------------------------------|----------------------|----------------------------------------|----------------------|------------------|
| 1                | 1.167 (d, 6.8)                                | 1.165 (d, 6.8)       | -                                      | 1.165 (d, 6.8)       | -                |
| 2                | 4.09 (m)                                      | 4.09 (m)             | -                                      | 4.09 (m)             | -                |
| 3                | 3.49 (dt, 3.0, 6.5)                           | 3.49 (dt, 2.7, 6.3)  | -                                      | 3.49 (td, 6.2, 2.7)  | -                |
| 6-13             | 1.25 (bs)                                     | 1.25 (bs)            | -                                      | 1.25 (bs)            | -                |
| 16               | 5.58 (m)                                      | 4.05 (t, 6.7)        |                                        | 3.35 (m)             |                  |
| 17               | 5.22 (dd, 8.3, 15.5)                          | -                    | 4.16 (dt, 11.6, 3.7);                  | 4.02 (dd, 6.0. 11.6) |                  |
|                  |                                               |                      | 4.01 (ddd, 2.4, 6.0,                   | 4.17 (dd, 3.3, 11.6) |                  |
|                  |                                               |                      | 11.6)                                  |                      |                  |
| 18               | 3.43 (m)                                      | -                    | 3.40 (m)                               | -                    | 4.05 (m, 2H)     |
| 20-24            | 1.25 (s)                                      | -                    | 1.25 (bs)                              | -                    | 1.25 (bs)        |
| 26               | 5.58 (m)                                      | -                    | 5.58 (dd, 5.5, 9.7)                    | -                    | 5.58 (dd, 5.7    |
|                  | 4.68 (m)                                      |                      | 4.69 (m)                               |                      | 9.5)             |
|                  |                                               |                      |                                        |                      | 4.69 (m)         |
| 2-NHAc           | 5.84 (d, 8.3)                                 | 5.81 (d, 8.4)        |                                        | 5.84 (d, 8.3)        | ( )              |
| 28a              | 3.78 (ddd, 4.0, 5.4, 13.6)                    | -                    | 3.78 (dt, 13.5, 5.1)                   | -                    | 3.78 (m)         |
|                  |                                               |                      |                                        |                      | ( )              |
| 28b              | 3.52 (m)                                      | -                    | 3.52 (m)                               | -                    | 3.50 (m)         |
| 29a              | 2.65-3.05 (m)                                 | -                    | 2.65-3.05 (m)                          | -                    | ( )              |
| 29b              | 2.65-3.05 (m)                                 | -                    | 2.65-3.05 (m)                          | -                    |                  |
| 31               | 6.93 (s)                                      | -                    | 6.93 (s)                               | -                    | 6.93 (s)         |
| 34               | 6.94 (s)                                      | -                    | 6.95 (s)                               | -                    | 6.95 (s)         |
| OCH <sub>3</sub> | $3.230 (s)^{b}; 3.233 (s)^{b}$                | -                    | $3.399 (s),^{b} 3.404 (s)^{b}$         | 3.40 (s)             |                  |
| 1'               | 4.48 (d, 8.0)                                 | 4.48 (d, 7.9)        | -                                      | 4.48 (d, 7.9)        | -                |
| 2'               | 5.16 (dd, 8.0, 10,6)                          | 5.16 (dd, 7.9, 10.6) | -                                      | 5.16 (dd, 7.9, 10.6) | -                |
| 3'               | 5.04 (dd, 3.3, 10.6)                          | 5.04 (dd, 3.5, 10.6) | -                                      | 5.04 (dd, 3.3, 10.6) | -                |
| 4'               | 5.39 (dd, 0.8, 3.3)                           | 5.39 (dd, 0.8, 3.5)  | -                                      | 5.39 (dd, 0.8, 3.3)  | -                |
| 5'               | 3.91 (dt, 0.8, 6.6)                           | 3.91 (td, 6.7, 0.9)  | -                                      | 3.90 (td, 6.6, 0.8)  | -                |
| 6'               | 4.10 (dd, 6.6, 11.3)                          | 4.10 (dd, 6.7, 11.4) | -                                      | 4.10 (dd, 6.6, 11.1) | -                |
|                  | 4.19 (dd, 6.6, 11.3)                          | 4.19 (dd, 6.7, 11.4) |                                        | 4.19 (dd, 6.6, 11.1) |                  |
| 16-OAc           |                                               | 2.04 (s)             |                                        |                      |                  |
| 17-OAc           |                                               |                      |                                        | 2.08 (s)             |                  |
| 18-OAc           |                                               |                      |                                        |                      | 2.04 (s)         |
| 4xOAc            | 1.97 (s)                                      | 1.97 (s);            | -                                      | 1.97 (s)             | -                |
|                  | 2.00 (s)                                      | 1.99 (s);            | -                                      | 1.99 (s)             | -                |
|                  | 2.04 (s)                                      | 2.04 (s);            | -                                      | 2.04 (s)             | -                |
|                  | 2.05 (s)                                      | 2.05 (s)             | -                                      | 2.05 (s)             | -                |
| 32-OAc           | 2.28 (s)                                      |                      | 2.28 (s)                               |                      | 2.28(s)          |
| 33-OAc           | $2.27 (s)^{b}$ ; 2.29 (s) <sup>b</sup>        |                      | $2.27 (s)^{b}$ ; 2.29 (s) <sup>b</sup> |                      | $2.27 (s)^{b}$ , |
|                  | (-) , (-)                                     |                      | . (-) , (-)                            |                      | $2.29 (s)^{b}$   |
| 27-              | 2.15 (s) <sup>b</sup> ; 2.16 (s) <sup>b</sup> |                      | $2.15 (s)^{b}$ ; 2.16 $(s)^{b}$        |                      | $2.15 (s)^{b}$ , |
| NHAc             | = (0) , 2.10 (0)                              |                      |                                        |                      | $2.16 (s)^{b}$   |


Table S2. <sup>1</sup>H NMR data for octa-acetyloceanalin A (1a) and degradation products 3-6.<sup>a</sup>

 $\overline{a, \text{CDCl}_3, 500 \text{ MHz}, \delta_{\text{H}}(\text{mult}, J \text{ Hz})}$ . For clarity, the numbering of **3-6** conforms to that of **1**; *b*, doubled signals.












title

•

