Oceanalin A, a Hybrid α, ω Bifunctionalized SphingoidTetrahydroisoquinoline β-Glycoside from the Marine Sponge Oceanapia sp.

Tatyana N. Makarieva, ${ }^{\ddagger}$ Vladimir A. Denisenko, ${ }^{\ddagger}$ Pavel S. Dmitrenok, ${ }^{\ddagger}$ Alla G. Guzil, ${ }^{\ddagger}$ Elena A. Santalova, ${ }^{\ddagger}$ Valentin A. Stonik, ${ }^{\ddagger}$ John B. MacMillan ${ }^{\dagger}$ and Tadeusz F. Molinski*, ${ }^{\text {, }}$
Department of Chemistry, University of California, Davis, CA 95616 and Laboratory of MaNaPro Chemistry, Pacific Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 690022
Vladivostok, Russia
\dagger UC Davis $\quad \ddagger$ Pacific Institute of Bioorganic Chemistry

S2 - S3 General procedure, isolation and oxidative degradation of $\mathbf{1}$, characterization of 3-6. Table S 1 : temperature dependent ${ }^{1} \mathrm{H}$ NMR (d_{5}-pyridine) of peracetate 4.
S4 Table S2: ${ }^{1} \mathrm{H}$ NMR of 1a, 3-6 (500 MHz).
S5 ${ }^{1} \mathrm{H}$ NMR spectrum ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of oceanalin A (1)
S6 $\quad{ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of oceanalin $\mathrm{A}(\mathbf{1})$
S7 DEPT ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of oceanalin A (1)
S8 $\quad{ }^{1} \mathrm{H}^{-1} \mathrm{H}$ COSY Spectrum ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of oceanalin A (1)
S9 HSQC spectrum (600 MHz) of oceanalin A (1)
S10 HMBC spectrum ($600 \mathrm{MHz}, J=10 \mathrm{~Hz}$) of oceanalin A (1)

General Rotations $\left([\alpha]_{\mathrm{D}}\right)$ were measured using a Perkin-Elmer 343 polarimeter. The circular dichroism (CD) spectrum were recorded on a Jasco J-500A spectropolarimeter in quartz cells of 1 cm pathlength with the following parameters: λ range, $200-300 \mathrm{~nm}$; band width 1 nm ; scan speed $0.3 \mathrm{~nm} \cdot \mathrm{sec}^{-1}$. The NMR spectra were recorded on a Bruker DPX-400, DRX-500, and DRX-600 spectrometers at 400, 500, 600 for ${ }^{1} \mathrm{H}$, and 100,125 and 150 MHz , for ${ }^{13} \mathrm{C}$, respectively, with $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{Si}$ as an internal standard. MALDITOF mass spectra were obtained on a Bruker Biflex III laser desorption mass-spectrometer coupled with delayed extraction using N_{2} laser ($\lambda 337 \mathrm{~nm}$) on 2,5-dihydroxybenzoic acid (DHB) and α-cyano-4-hydroxycinnamic acid (CCA) as matrix. ESIMS mass spectra were obtained on a Surveyor MSQ Thermo Finnigan mass-spectrometer, coupled to an Agilent 1100 series HPLC, or by direct infusion in MeOH containing HCOOH (0.1%). FABMS and EIMS mass spectra were obtained on a AMD-604S mass-spectrometer (AMD-Intectra, Germany). FAB mass spectra were provided by the University of California, Riverside mass spectrometry facility.

Low pressure column liquid chromatography was performed using Si gel L ($40 / 100 \mu \mathrm{~m}$, Chemapol, Praha, Czech Republic). Silica gel plates ($4.5 \times 6.0 \mathrm{~cm}, 5-17 \mu$, Sorbfil, Russia) were used for thin layer chromatography. Preparative HPLC for isolation and separation of sphingolipids was carried out using a Rainin Binary HPLC system (Dynamax C_{18} column $10 \times 250 \mathrm{~mm}, 5 \mu \mathrm{~m}, 3 \mathrm{~mL} / \mathrm{min}$) in 80:20:0.1 MeOH$\mathrm{H}_{2} \mathrm{O}$-TFA with refractive index detection (Waters R401). Preparative HPLC separation of ozonolysis products was performed YMC Pack-ODS-A column ($10 \times 250 \mathrm{~mm}, 5 \mu \mathrm{~m}, 0.8 \mathrm{~mL} / \mathrm{min}$) in 80:20 ethanol$\mathrm{H}_{2} \mathrm{O}$ using an Agilent Series 1100 Instrument equipped with differential refractometer RID-DE14901810.

Animal Material.

A sponge specimen, Oceanapia sp. (order Haplosclerida, family Phloeodictyidae) was collected in November 1990 at a depth 48 meter by dredging near Scott reef, north western Australia ($16^{\circ} 33$ ' 6 S; 121° 07 '1 E) during a scientific cruise aboard RV "Akademik Oparin".

A voucher specimen is kept under registration number PIBOC \# O12-200 in the marine invertabrate collection of Pacific Institute of Bioorganic Chemistry (Vladivostok, Russia).

Oceanalin A (1). The sponge Oceanapia sp. was exhaustively extracted with MeOH and the n BuOH -soluble fraction purified by Sephadex LH-20 (MeOH elution). The ninhydrin-positive fraction was separated repeatedly by reversed phase HPLC (Dynamax $C_{18} 10 \times 250 \mathrm{~mm}, 5 \mu \mathrm{~m}, 3 \mathrm{~mL} / \mathrm{min}$) in 80:20:0.1 $\left.\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}-\mathrm{TFA}\right)$ to give $\mathbf{1}$ as a colorless glass $(0.003 \%$ of dry weight). Oceanalin A(1), 4.0 mg . Colorless
solid; $[\alpha]_{\mathrm{D}}-5.7^{\circ}(c 0.14 \mathrm{EtOH}), \mathrm{UV}(\mathrm{MeOH}), \lambda_{\max } 238 \mathrm{~nm}(\varepsilon 7600), 288(7850) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR see Table 1. ESIMS $m / z[\mathrm{M}+\mathrm{Na}]^{+} 737$ (100 \%) , $\left[\mathrm{M}+\mathrm{H}_{2}\right]^{2+} 369$ (30\%). HRMS FAB $m / z 737.5286[\mathrm{M}+\mathrm{H}]^{+}$Calcd, $\mathrm{C}_{41} \mathrm{H}_{73} \mathrm{~N}_{2} \mathrm{O}_{9} 737.5311 .{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, see Table 1.

Octaacetyl Oceanalin A (1a). A sample of $\mathbf{1}(1.5 \mathrm{mg})$ was dissolved in pyridine $(0.5 \mathrm{~mL})$ and acetic anhydride $(0.5 \mathrm{~mL})$ and allowed to stand at $25^{\circ} \mathrm{C}$ for 18 h . Removal of the volatile material gave a residue $(2.0 \mathrm{mg})$ of $\mathbf{1 a}$, MALDI MS $m / z[\mathrm{M}+\mathrm{Na}]^{+} 1095,[\alpha]_{\mathrm{D}} 0^{\circ}\left(c 0.15 \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR, see Table S2.

Hydrolysis of Oceanalin A (1). A solution of $\mathbf{1}(1.2 \mathrm{mg})$ in $6 \mathrm{M} \mathrm{HCl}(1 \mathrm{~mL})$ was heated at $100{ }^{\circ} \mathrm{C}$ for 2.5 h . The mixture was cooled and treated with ion-exchange resin Dowex $\left(\mathrm{HCO}_{3}{ }^{-}\right.$form). The aqueous solution was separated and concentrated to afford D-galactose (0.4 mg).

Ozonolysis-Reduction of 1a. Ozone was bubbled through a solution of $\mathbf{1 a}(2.0 \mathrm{mg})$ in MeOH at a temperature of $-20^{\circ} \mathrm{C}$ to $-30^{\circ} \mathrm{C}$ over 4 h . The solution was cooled and treated with an excess of $\mathrm{NaBH}_{4}(5$ mg). The mixture was left at room temperature overnight and quenched with acetic acid (to $\mathrm{pH}=7$). The mixture was evaporated and treated with $\mathrm{Ac}_{2} \mathrm{O} /$ pyridine $(1: 1,0.5 \mathrm{~mL})$ at room temperature, overnight. After removal of the volatiles, the residue was separated by chromatography (silica gel), using ethyl acetate as eluent, to afford a mixture of products 3-6 $(1.0 \mathrm{mg})$. Separation of the mixture by preparative HPLC $\left(\mathrm{C}_{18}\right.$, 80:20 EtOH: $\mathrm{H}_{2} \mathrm{O}$) afforded the pure compounds 3-6.
Peracetate 3. 0.7 mg , colorless solid, $m / z 710\left[\mathrm{M}+\mathrm{Na}^{+}\right],[\alpha]_{\mathrm{D}}+1^{\circ}(c 0.07 \mathrm{EtOH}),{ }^{1} \mathrm{H}$ NMR see Table S2.
Peracetate 4. 0.7 mg , colorless solid, $m / z 528\left[\mathrm{M}+\mathrm{Na}^{+}\right],[\alpha]_{\mathrm{D}} 0^{\circ}(c 0.07 \mathrm{EtOH}),{ }^{1} \mathrm{H}$ NMR see Table S2.
Peracetate 5. 0.2 mg , colorless solid, $m / z 754\left[\mathrm{M}+\mathrm{Na}^{+}\right],[\alpha]_{\mathrm{D}}+1^{\circ}(c 0.02 \mathrm{EtOH}),{ }^{1} \mathrm{H}$ NMR see Table S2.
Peracetate 6. 0.2 mg , colorless solid, $m / z 484\left[\mathrm{M}+\mathrm{Na}^{+}\right],[\alpha]_{\mathrm{D}}{ }^{\circ}(c 0.02 \mathrm{EtOH}),{ }^{1} \mathrm{H}$ NMR see Table S 2.

Table S1. Variable temperature ${ }^{1} \mathrm{H}$ NMR Data for compound 4 (pyridine- $d_{5}, 500 \mathrm{MHz}{ }^{[\mathrm{aa}]}$

$\mathrm{T} /{ }^{\circ} \mathrm{C}$	$\delta \mathrm{OAc}$							$\delta \mathrm{OMe}$	
	C 33 a	C 33 b	C 32	C 27 a	C 27 b	C 17	C 18 a	C 18 b	
27	2.320	2.305	2.315	2.204	2.193	2.053	3.403	3.394	
40	2.292	2.282	2.290	2.188	2.171	2.036	3.395	3.382	
60	2.263	2.263	2.256	2.166	2.146	2.016	3.374	3.374	
80	2.238	2.238	2.232	2.129	2.129	1.996	3.365	3.365	
100	2.222	2.222	2.217	2.113	2.113	1.981	3.357	3.357	
110	2.210	2.210	2.204	2.107	2.107	1.976	3.355	3.355	

[a]. For clarity, the numbering of $\mathbf{3 - 6}$ conforms to that of $\mathbf{1}$. Designations ' a ' and ' b ' are arbitrary assignments of doubled AcO and OMe signals.

Table S2. ${ }^{1} \mathrm{H}$ NMR data for octa-acetyloceanalin A (1a) and degradation products 3-6. ${ }^{a}$

\#	1a	3	4	5	6
1	1.167 (d, 6.8)	1.165 (d, 6.8)	-	1.165 (d, 6.8)	-
2	4.09 (m)	4.09 (m)	-	4.09 (m)	-
3	3.49 (dt, 3.0, 6.5)	3.49 (dt, 2.7, 6.3)	-	3.49 (td, 6.2, 2.7)	-
6-13	1.25 (bs)	1.25 (bs)	-	1.25 (bs)	-
16	5.58 (m)	4.05 (t, 6.7)		3.35 (m)	
17	5.22 (dd, 8.3, 15.5)	-	4.16 (dt, 11.6, 3.7);	4.02 (dd, 6.0. 11.6)	
			$\begin{aligned} & 4.01 \text { (ddd, } 2.4,6.0 \text {, } \\ & 11.6 \text {) } \end{aligned}$	4.17 (dd, 3.3, 11.6)	
18	3.43 (m)	-	3.40 (m)	-	4.05 (m, 2H)
20-24	1.25 (s)	-	1.25 (bs)	-	1.25 (bs)
26	5.58 (m)	-	5.58 (dd, 5.5, 9.7)	-	5.58 (dd, 5.7,
	4.68 (m)		4.69 (m)		9.5)
					4.69 (m)
2-NHAc	5.84 (d, 8.3)	5.81 (d, 8.4)		5.84 (d, 8.3)	
28a	3.78 (ddd, 4.0, 5.4, 13.6)	-	3.78 (dt, 13.5, 5.1)	-	3.78 (m)
28b	3.52 (m)	-	3.52 (m)	-	3.50 (m)
29a	2.65-3.05 (m)	-	2.65-3.05 (m)	-	
29b	2.65-3.05 (m)	-	2.65-3.05 (m)	-	
31	6.93 (s)	-	6.93 (s)	-	6.93 (s)
34	6.94 (s)	-	6.95 (s)	-	6.95 (s)
OCH_{3}	3.230 (s$)^{b} ; 3.233$ (s) ${ }^{\text {b }}$	-	3.399 (s), ${ }^{b} 3.404$ (s) ${ }^{\text {b }}$	3.40 (s)	
1,	4.48 (d, 8.0)	4.48 (d, 7.9)	-	4.48 (d, 7.9)	-
2,	5.16 (dd, 8.0, 10,6)	5.16 (dd, 7.9, 10.6)	-	5.16 (dd, 7.9, 10.6)	-
3 '	5.04 (dd, 3.3, 10.6)	5.04 (dd, 3.5, 10.6)	-	5.04 (dd, 3.3, 10.6)	-
4,	5.39 (dd, 0.8, 3.3)	5.39 (dd, 0.8, 3.5)	-	5.39 (dd, 0.8, 3.3)	-
5 ,	3.91 (dt, 0.8, 6.6)	3.91 (td, 6.7, 0.9)	-	3.90 (td, 6.6, 0.8)	-
6'	4.10 (dd, 6.6, 11.3)	4.10 (dd, 6.7, 11.4)	-	4.10 (dd, 6.6, 11.1)	-
	4.19 (dd, 6.6, 11.3)	4.19 (dd, 6.7, 11.4)		4.19 (dd, 6.6, 11.1)	
16-OAc		2.04 (s)			
17-OAc				2.08 (s)	
18-OAc					2.04 (s)
4 xOAc	1.97 (s)	1.97 (s);	-	1.97 (s)	-
	2.00 (s)	1.99 (s);	-	1.99 (s)	-
	2.04 (s)	2.04 (s);	-	2.04 (s)	-
	2.05 (s)	2.05 (s)	-	2.05 (s)	-
$32-\mathrm{OAc}$	2.28 (s)		2.28 (s)		2.28 (s)
$33-\mathrm{OAc}$	2.27 (s$)^{b} ; 2.29$ (s) ${ }^{\text {b }}$		2.27 (s) ${ }^{b} ; 2.29(\mathrm{~s})^{b}$		$2.27(\mathrm{~s})^{b}$
27-	$2.15(\mathrm{~s})^{b} ; 2.16(\mathrm{~s})^{b}$		$2.15(\mathrm{~s})^{b} ; 2.16(\mathrm{~s})^{b}$		$2.29(\mathrm{~s})^{\text {b }}$ 2.15 (${ }^{\text {b }}$,
NHAc					$2.16(\mathrm{~s})^{b}$

$a, \mathrm{CDCl}_{3}, 500 \mathrm{MHz}, \delta_{\mathrm{H}}(\mathrm{mult}, J \mathrm{~Hz})$. For clarity, the numbering of 3-6 conforms to that of $\mathbf{1} ; b$, doubled signals.

$\begin{array}{llllllll} \\ 0 \text { I } & 0 \tau & 0 \varepsilon & 0 t & 0 \varsigma & 09 & 0 L & 08\end{array}$

