Supporting Information

for

"A Convenient Enantioselective Synthesis of (S)- α-Trifluoromethylisoserine"

submitted to The Journal of Organic Chemistry as a NOTE by:
Alberto Avenoza, * Jesús H. Busto, Gonzalo Jiménez-Osés and Jesús M. Peregrina*

CONTENTS

Experimental procedures and a full listing of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and${ }^{19}$ F NMR data for all new compounds (4 pages).S2-S5${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for compounds as well as ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ correlations for the most relevant compounds (25 pages) S6-S30
Enantiomeric excess for Sharpless asymmetric dihydroxylation determined by GC-MS (1 page) S31
Computational energy data and the coordinates for structures (7 pages). S32-S37

Experimental procedures and a full listing of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ NMR data,

completed with peak assignments for all new compounds

General Procedures

Unless otherwise stated, all starting materials were obtained from commercial suppliers and used without further purification. Melting points are uncorrected. All manipulations involving airsensitive reagents were carried out under a dry argon atmosphere using standard Schlenk techniques. Solvents were purified according to standard procedures. Analytical TLC was performed using Polychrom $\mathrm{SI} \mathrm{F}_{254}$ plates. Column chromatography was performed using Kieselgel 60 (230-400 mesh). Organic solutions were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and, when necessary, concentrated under reduced pressure using a rotary evaporator. NMR spectra were recorded at 300 or 400 $\mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$, at 75 or $100 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$ and $282 \mathrm{MHz}\left({ }^{19} \mathrm{~F}\right)$ and are reported in ppm downfield from TMS; coupling constants (J) in Hz. Microanalyses were carried out on a elemental analyser and were in good agreement with the calculated values. Mass spectra were obtained by electrospray ionization (ESI).

Benzyl 2-(trifluoromethyl)acrylate (2b)

2-(Trifluoromethyl)acrylic acid 2a ($989 \mathrm{mg}, 7.06 \mathrm{mmol}$), 2-chloro-1-methylpyridinium iodide $(2.19 \mathrm{~g}, 8.31 \mathrm{mmol})$ and triethylamine (TEA) $(2.40 \mathrm{~mL}, 16.61 \mathrm{mmol})$ were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ at RT. Furthermore, benzylic alcohol $(0.86 \mathrm{~mL})$ was added and the mixture was stirred for 16 h at reflux. The solution was then evaporated and the reaction crude was purified by flash column chromatography (hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}, 8: 2$) to give compound 2b ($540 \mathrm{mg}, 34 \%$) as a colorless liquid and the racemic sideproduct benzyl 3-(benzyloxy)-2(trifluoromethyl)propanoate $\mathbf{3 b}$ (18\%).
Compound 3b: ESI $+(m / z)=339.3$. ${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 3.52(\mathrm{~m}, 1 \mathrm{H}) ; 3.86(\mathrm{dd}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz}, J=9.5)$; 3.92-3.99 (m, 1H); 4.51 (s, 2H); 5.19-5.28 (m, 2H); 7.22-7.37 $(\mathrm{m}, 10 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 51.1\left(\mathrm{q},{ }^{2} J_{\mathrm{CF}}=\right.$ 27.2); 65.4 (q, ${ }^{3} J_{\mathrm{CF}}=2.9$); 67.6; 73.5; 123.6 ($\mathrm{q},{ }^{1} J_{\mathrm{CF}}=280.2$); $127.6 ; 127.9 ; 128.1 ; 128.4 ; 128.6 ; 134.9 ; 131.1 ; 165.8\left(\mathrm{q},{ }^{3} J_{\mathrm{CF}}=\right.$ 3.2, CO). Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{O}_{3}$: C, 63.90; H, 5.06. Found: C, 64.01; H, 5.13.
Compound 2b: ESI $+(\mathrm{m} / \mathrm{z})=231.2$. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 5.30(\mathrm{~s}, 2 \mathrm{H}) ; 6.45(\mathrm{~d}, 1 \mathrm{H}, J=1.1) ; 6.75(\mathrm{~d}, 1 \mathrm{H}, J=$ 1.7); 7.31-7.42 (m, 5H). ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 67.4; $121.3\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=271.1\right) ; 128.0 ; 128.5 ; 128.7 ; 131.5\left(\mathrm{q},{ }^{2} J_{\mathrm{CF}}=\right.$ 32.0, CCF_{3}); $132.9\left(\mathrm{q},{ }^{3} J_{\mathrm{CF}}=2.5\right) ; 135.0 ; 161.1 .{ }^{19} \mathbf{F}$ NMR (282 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-64.4$ (s). Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{O}_{2}$: C, 57.40; H, 3.94. Found: C, 57.56; H, 3.83.

2-(Trifluoromethyl)- N-methoxy- N-methylacrylamide (2c)

A solution of N, O-dimethylhydroxylamine $(933 \mathrm{mg}, 9.37$ mmol), freshly prepared by slow addition of DIEA over the corresponding hydrochloride suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ at 0 ${ }^{\circ} \mathrm{C}$, was added to a solution of acid $2 \mathbf{2 a}(1.12 \mathrm{~g}, 7.83 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-40{ }^{\circ} \mathrm{C}$. Then DCC $(1.95 \mathrm{~g}, 9.37 \mathrm{mmol})$ was added and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 16 h . The suspension was filtered and the evaporated residue was treated with cold hexane. The resulting suspension was filtered again and concentrated to obtain a reaction crude that was purified by flash column chromatography (hexane/ethyl acetate, $8.5: 1.5$) to give compound $2 \mathbf{c}(1.21 \mathrm{~g}, 83 \%)$ as a colorless liquid and the racemic sideproduct 3-(N -methoxy- N -methylamino)-2-(trifluoromethyl)- N -methoxy- N methylpropanamide 3c (8\%).
Compound 3c: $\mathrm{ESI}+(m / z)=245.3$. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 2.58 (s, 3H); 2.92 (dd, $1 \mathrm{H}, J=2.9 \mathrm{~Hz}, J=12.9$); 3.23-3.34 (m, $4 \mathrm{H}) ; 3.45(\mathrm{~s}, 3 \mathrm{H}) ; 3.76(\mathrm{~s}, 3 \mathrm{H}) 4.15-4.30(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 32.3 ; 42.8\left(\mathrm{q},{ }^{2} J_{\mathrm{CF}}=26.1\right) ; 44.9 ; 56.7 ; 59.4$; 61.4; 124.5 ($\mathrm{q},{ }^{1} J_{\text {CF }}=280.3$); 167.2. Anal. Calcd. for $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 39.35; H, 6.19; N, 11.47. Found: C, 39.48; H, 6.23; N, 11.32.
Compound 2c: ESI $+(m / z)=184.1 .{ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $3.27(\mathrm{~s}, 3 \mathrm{H}) ; 3.63(\mathrm{~s}, 3 \mathrm{H}) ; 5.97(\mathrm{~s}, 1 \mathrm{H}) ; 6.13(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 32.7 ; 61.2 ; 121.4\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=271.9\right) ; 125.1\left(\mathrm{q},{ }^{3} J_{\mathrm{CF}}\right.$ $=2.5) ; 134.4\left(\mathrm{q},{ }^{2} J_{\mathrm{CF}}=32.6\right) ; 163.3 .{ }^{19} \mathbf{F}$ NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta-64.4$ (s). Anal. Calcd. for $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~F}_{3} \mathrm{NO}_{2}: \mathrm{C}, 39.35 ; \mathrm{H}, 4.40 ; \mathrm{N}$, 7.65 Found: C, 39.51; H, 4.32; N, 7.69.

Sharpless asymmetric aminohydroxylation of olefin 2c: 3-Acetamido-2-(trifluoromethyl)- N -methoxy- N methylpropanamide (3d)

A round-bottomed flask was charged with $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$, $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(28 \mathrm{mg}, 0.67 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{OsO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{mg})$ to give a clear pink solution. (DHQD$)_{2} \mathrm{PHAL}(25 \mathrm{mg})$ and tert-butyl alcohol (4 mL) were added and the mixture was stirred at $25^{\circ} \mathrm{C}$ until both phases were clear. $\mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL})$ was then added and the mixture cooled to $0^{\circ} \mathrm{C}$ for 30 min . Olefin $2 \mathbf{c}(120 \mathrm{mg}, 0.66 \mathrm{mmol})$ and N -bromoacetamide $(99 \mathrm{mg}, 0.73 \mathrm{mmol})$ were added in a single portion. The color mixture became dark green at this point, and was stirred at $0{ }^{\circ} \mathrm{C}$ for 24 h , whereupon its color slowly turned into red. The reaction was quenched by addition of sodium sulphite ($325 \mathrm{mg}, 2.58 \mathrm{mmol}$) and then stirred at $25^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was extracted with ethyl acetate $(3 \times 10 \mathrm{~mL})$ and then dried
$\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by column chromatography (hexane/ethyl acetate, $4: 6$) to give, in the place of aminohydroxylation products, racemic compound 3d (coming from the Michel addition of acetamide on olefin 2c) and dihydroxylation product (10% of $\mathbf{4 c}$) in a $90 / 10$ ratio. Compound 3d: (colorless oil, $134 \mathrm{mg}, 84 \%) .[\alpha]^{24}{ }_{\mathrm{D}}\left(c 1.00, \mathrm{CHCl}_{3}\right)=0.0$. ESI $+(m / z)=243.2 .{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.98(\mathrm{~s}$, $3 \mathrm{H}) ; 3.25(\mathrm{~s}, 3 \mathrm{H}) ; 3.49-3.62(\mathrm{~m}, 1 \mathrm{H}) ; 3.72(\mathrm{~s}, 3 \mathrm{H}) ; 3.76-3.88(\mathrm{~m}$, $1 \mathrm{H})$; 4.17-4.33 (m, 1H), $6.60(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 22.7 ; 32.0 ; 36.5 ; 43.8\left(\mathrm{q},{ }^{2} J_{\mathrm{CF}}=25.8\right) ; 61.6 ; 124.1$ $\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=279.1\right) ; 168.2 ; 170.9$. Anal. Calcd. for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 39.67; H, 5.41; N, 11.57. Found: C, 39.78; H, 5.45; N, 11.42.

Benzyl (S)-2-(trifluoromethyl)-2,3-dihydroxypropanoate [(S)-4b, 66\% ee]*

A round-bottomed flask was charged with tert-butyl alcohol $(12 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(12 \mathrm{~mL}), \mathrm{AD}-$ mix $-\beta(3.31 \mathrm{~g}), \mathrm{K}_{2} \mathrm{OsO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(40$ mg), (DHQD$)_{2} \mathrm{PHAL}(94 \mathrm{mg}$) and methanesulfonamide (232 $\mathrm{mg}, 2.37 \mathrm{mmol}$). The mixture was stirred at $25^{\circ} \mathrm{C}$ until both phases are clear, and then cooled to $0{ }^{\circ} \mathrm{C}$, whereupon the inorganic salts partially precipitated. Olefin 2b ($540 \mathrm{mg}, 2.37$ mmol) was added and the heterogeneous slurry was vigorously stirred at $0{ }^{\circ} \mathrm{C}$ for 24 h . The reaction was quenched by addition of sodium sulphite $(3.56 \mathrm{~g})$ and then stirred for 1 h . The reaction mixture was extracted with ethyl acetate ($3 \times 60 \mathrm{~mL}$) and then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by column chromatography (hexane/ethyl acetate, 8:2) to give compound (S)-4b ($543 \mathrm{mg}, 87 \%, 66 \%$ ee) ${ }^{*}$ as a colorless oil. ESI $+(m / z)=265.3 .[\alpha]_{\mathrm{D}}^{24}\left(c 2.21, \mathrm{CHCl}_{3}\right)=-14.5 .{ }^{1} \mathbf{H} \mathbf{N M R}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.97$ (br s, 1 H); 3.87 (d, $1 \mathrm{H}, J=11.7$); 4.07 (d, $1 \mathrm{H}, J=11.7$); $4.53(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ; 5.26-5.35(\mathrm{~m}, 2 \mathrm{H}) ; 7.33-$ $7.38(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 62.2 ; 69.3 ; 78.6$ (q, ${ }^{2} J_{\mathrm{CF}}=28.3$); $122.5\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=284.5\right) ; 127.0 ; 128.0 ; 128.7$; 131.4; 168.2. ${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-76.5$ (s). Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{O}_{4}$: C, 50.01; H, 4.20. Found: C, 49.87; H, 4.31 .
(S)-2-(Trifluoromethyl)-2,3-dihydroxy- N-methoxy- N methylpropanamide [(S)-4c, 90% ee]*

A round-bottomed flask was charged with tert-butyl alcohol $(27 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(27 \mathrm{~mL})$, AD-mix- $\beta(7.51 \mathrm{~g}), \mathrm{K}_{2} \mathrm{OsO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(90$ mg), (DHQD) ${ }_{2}$ PHAL (213 mg) and methanesulfonamide (526 $\mathrm{mg}, 5.37 \mathrm{mmol}$). The mixture was stirred at $25^{\circ} \mathrm{C}$ until both phases are clear, and then cooled to $0^{\circ} \mathrm{C}$, whereupon the inorganic salts partially precipitated. Olefin 2c ($983 \mathrm{mg}, 5.37$

[^0]mmol) was added and the heterogeneous slurry was vigorously stirred at $0^{\circ} \mathrm{C}$ for 24 h . The reaction was quenched by addition of sodium sulphite $(8.06 \mathrm{~g})$ and then stirred for 1 h . The reaction mixture was extracted with ethyl acetate $(3 \times 100 \mathrm{~mL})$ and then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by column chromatography (hexane/ethyl acetate, 7:3) to give compound $(S)-4 \mathbf{c}\left(1.05 \mathrm{mg}, 90 \%, 90 \%\right.$ ee) ${ }^{*}$ as a colorless oil. $[\alpha]^{24}{ }_{\mathrm{D}}\left(c 1.28, \mathrm{CHCl}_{3}\right)=-28.9 . \mathrm{ESI}+(m / z)=218.1 .{ }^{1} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.60(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ; 3.36(\mathrm{~s}, 3 \mathrm{H}) ; 3.77(\mathrm{~s}, 3 \mathrm{H}) ; 3.93(\mathrm{~d}$, $1 \mathrm{H}, J=11.8) ; 4.25(\mathrm{~d}, 1 \mathrm{H}, J=11.8) ; 5.24(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 34.1 ; 61.1 ; 62.2\left(\mathrm{q},{ }^{3} J_{\mathrm{CF}}=1.6\right) ; 79.1\left(\mathrm{q},{ }^{2} J_{\mathrm{CF}}=\right.$ 28.4); 122.9 ($\mathrm{q},{ }^{1} J_{\mathrm{CF}}=284.6$); 165.7. ${ }^{19}$ F NMR (282 MHz , CDCl_{3}): $\delta-75.2$ (s). Anal. Calcd. for $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{NO}_{4}: \mathrm{C}, 33.19$; H , 4.64; N, 6.45. Found: C, 33.02; H, 4.76; N, 6.36.
(R)-2-(Trifluoromethyl)-2,3-dihydroxy- N-methoxy- N methylpropanamide [($\boldsymbol{R})-\mathbf{4 c}, 90 \%$ ee]*

The same protocol using AD-mix- α and the proper amount of $(\mathrm{DQD})_{2}$ PHAL lead to (R)-diol. $[\alpha]^{24}{ }_{\mathrm{D}}\left(c 0.87, \mathrm{CHCl}_{3}\right)=+29.2$.

Methyl (S)-2-(trifluoromethyl)-2,3-dihydroxypropanoate [(S)-4d]

To a solution of compound $(S)-4 \mathbf{c}(624 \mathrm{mg}, 2.87 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH}(1: 3,20 \mathrm{~mL}), \mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(603 \mathrm{mg}, 14.35 \mathrm{mmol})$ was added and the mixture was stirred at $25{ }^{\circ} \mathrm{C}$ for 2 h . The $\mathrm{N}, \mathrm{O}-$ dimethylhydroxylamine formed in the reaction and MeOH were removed and the mixture was acidified with conc. HCl to pH 1-2. After removing the solvent, the white solid was dissolved in $\mathrm{HCl} / \mathrm{MeOH}$, prepared by dropwise addition of $\mathrm{AcCl}(15 \mathrm{~mL})$ to $\mathrm{MeOH}(60 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, and the mixture was heated under reflux for 12 h . The mixture was concentrated and the residue partitioned between $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and $\mathrm{CHCl}_{3} /$ isopropanol $(3: 1,30 \mathrm{~mL})$. The aqueous layer was successively washed with $\mathrm{CHCl}_{3} /$ isopropanol $(4 \times 30 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated and the crude product was purified by column chromatography (hexane/ethyl acetate, $7: 3)$ to give $(S)-\mathbf{4 d}(458 \mathrm{mg}, 85 \%)$ as a colorless oil. $[\alpha]^{24}{ }_{\mathrm{D}}(c 1.45$, $\mathrm{MeOH})=-13.7 . \mathrm{ESI}+(\mathrm{m} / z)=189.0 .{ }^{1} \mathbf{H} \mathbf{N M R}(300 \mathrm{MHz}$, CDCl_{3}): $\delta 2.68(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ; 3.90(\mathrm{~d}, 1 \mathrm{H}, J=11.7) ; 3.93(\mathrm{~s}, 3 \mathrm{H}) ; 4.06$ $(\mathrm{d}, 1 \mathrm{H}, J=11.7) ; 4.36(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 54.5 ; 62.2\left(\mathrm{q},{ }^{3} J_{\mathrm{CF}}=1.7\right) ; 78.5\left(\mathrm{q},{ }^{2} J_{\mathrm{CF}}=28.5\right) ; 122.4\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=\right.$ 284.3); 168.8. ${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-75.8$ (s). Anal. Calcd. for $\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{O}_{4}$: C, 31.93; H, 3.75. Found: C, 32.08; H, 3.80.

Methyl (S)-5-(methoxymethylcarbamoyl)-5-(trifluoromethyl)-2,2-dioxo-2 ${ }^{6}-[1,2,3]$ oxathiazolidine-3carboxylate [(S)-5]

Diol (S)-4c (168 mg, 0.77 mmol) was dissolved in THF (60 mL) and Burgess reagent ($461 \mathrm{mg}, 1.93 \mathrm{mmol}$) was added. The resulting solution was stirred at reflux for 1 h , concentrated and then purified by column chromatography (hexane/ethyl acetate, $7: 3)$ to give $(S)-5(132 \mathrm{mg}, 51 \%)$ as a colorless oil. $[\alpha]^{24}{ }_{\mathrm{D}}(c$ $1.41, \mathrm{MeOH})=+6.8$. ESI $+(m / z)=337.3 .{ }^{1} \mathbf{H} \mathbf{~ N M R ~}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 3.31(\mathrm{~s}, 3 \mathrm{H}) ; 3.78(\mathrm{~s}, 3 \mathrm{H}) ; 3.94(\mathrm{~s}, 3 \mathrm{H}) ; 4.38(\mathrm{~d}, 1 \mathrm{H}, J$ $=11.6) ; 4.78(\mathrm{~d}, 1 \mathrm{H}, J=11.0) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 33.8 ; 44.0 ; 55.2 ; 61.9 ; 81.2\left(\mathrm{q},{ }^{2} J_{\mathrm{CF}}=33.3\right) ; 121.2\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=\right.$ 284.7); 149.2; 160.1. ${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-76.2$ (s). Anal. Calcd. for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}: \mathrm{C}, 28.58 ; \mathrm{H}, 3.30 ; \mathrm{N}, 8.33$; S, 9.54. Found: C, 28.33; H, 3.21; N, 8.49; S, 9.78.
(S)-3-Amino-2-(trifluoromethyl)-2-hydroxypropanoic acid hydrochloride or (S)-2-(trifluoromethyl)isoserine hydrochloride [(S)-1•HCl]

Sulfamidate $(S)-5(63 \mathrm{mg}, 0.19 \mathrm{mmol})$ was treated with an aqueous solution of $6 \mathrm{~N} \mathrm{HCl}(2 \mathrm{~mL})$ at reflux for 12 h . The solvent was removed to give (S)-1 as hydrochloride derivative (white solid). The N, O-dimethylhydroxylamine hydrochloride formed in the reaction was removed by suspending and filtrating the mixture in absolute ethanol. Further purification was achieved eluting the resulting mixture through a C_{18} reversephase Sep-pak cartridge with water and evaporating the solvent ($36 \mathrm{mg}, 90 \%$). $[\alpha]^{24}{ }_{\mathrm{D}}\left(c 0.95, \mathrm{H}_{2} \mathrm{O}\right)=-16.8$. ESI $+(m / z)=174.2$. ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta 3.36-3.54(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): \delta 42.1 ; 76.3\left(\mathrm{q},{ }^{2} J_{\mathrm{CF}}=29.6\right) ; 124.3\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=\right.$ 284.6); 169.7. ${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta-75.4$ (s).
(S)-4-(Trifluoromethyl)-2,2-dioxo-2 λ^{6} -
[1,3,2]dioxathiolane-4-carboxylic acid N-methoxy- N methylamide [(S)-6c]

Diol $(S)-4 c(610 \mathrm{mg}, 2.81 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20$ $\mathrm{mL})$, and TEA ($1.7 \mathrm{~mL}, 12.36 \mathrm{mmol}$) and $\mathrm{SO}_{2} \mathrm{Cl}_{2}(0.47 \mathrm{~mL}$, 5.61 mmol) were added dropwise at $-20{ }^{\circ} \mathrm{C}$. The resulting solution was stirred for 1 h , concentrated and then purified by column chromatography (hexane/ethyl acetate, $4: 1$) to give (S) $\mathbf{6 c}(637 \mathrm{mg}, 81 \%)$ as a colorless liquid. $[\alpha]^{24}{ }_{\mathrm{D}}\left(c 1.12, \mathrm{CHCl}_{3}\right)=$ -17.0. ESI $+(\mathrm{m} / \mathrm{z})=280.0 .{ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.31$
(s, 3H); 3.79 (s, 3H); $4.96(\mathrm{~d}, 1 \mathrm{H}, J=10.4) ; 5.13(\mathrm{~d}, 1 \mathrm{H}, J=10.4)$. ${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 33.5 ; 62.2 ; 70.1 ; 84.0\left(\mathrm{q},{ }^{2} J_{\mathrm{CF}}=\right.$ 33.8); 121.1 ($\mathrm{q},{ }^{1} J_{\mathrm{CF}}=284.7$); 160.2. ${ }^{19} \mathbf{F}$ NMR (282 MHz , CDCl_{3}): $\delta-76.6$ (s). Anal. Calcd. for $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~F}_{3} \mathrm{NO}_{6} \mathrm{~S}: \mathrm{C}, 25.81$; H , 2.89; N, 5.02; S, 11.48. Found: C, 25.68; H, 2.98; N, 5.09; S, 11.36.

Methyl (S)-4-(trifluoromethyl)-2,2-dioxo-2 λ^{6}-[1,3,2] dioxathiolane-4-carboxylate $[(S)-6 d]$

Diol (S)-4c ($225 \mathrm{mg}, 1.20 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (15 $\mathrm{mL})$ and DIEA ($0.75 \mathrm{~mL}, 5.96 \mathrm{mmol})$ and $\mathrm{SO}_{2} \mathrm{Cl}_{2}(0.20 \mathrm{~mL}, 2.39$ mmol) were added dropwise at $-20^{\circ} \mathrm{C}$. The resulting solution was stirred for 1 h , concentrated and then purified by column chromatography (hexane/ethyl acetate, 4:1) to give (S)-6d (234 $\mathrm{mg}, 78 \%)$ as a colorless liquid. $[\alpha]^{24}\left(c 1.84, \mathrm{CHCl}_{3}\right)=-0.9$. ESI + $(m / z)=251.2 .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.00(\mathrm{~s}, 3 \mathrm{H}) ; 4.95$ (d, $1 \mathrm{H}, J=10.2$); $5.04(\mathrm{~d}, 1 \mathrm{H}, J=10.2) .{ }^{13} \mathbf{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 55.1 ; 68.8\left(\mathrm{q},{ }^{3} J_{\mathrm{CF}}=1.6\right) ; 82.2\left(\mathrm{q},{ }^{2} J_{\mathrm{CF}}=34.0\right) ; 120.5$ (q, ${ }^{1} J_{\mathrm{CF}}=283.6$); 161.9. ${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-77.4$ (s). Anal. Calcd. for $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~F}_{3} \mathrm{O}_{6} \mathrm{~S}: \mathrm{C}, 24.01 ; \mathrm{H}, 2.01 ; \mathrm{S}, 12.82$. Found: C, 24.16; H, 1.97; S, 12.73.
(S)-3-Azido-2-(trifluoromethyl)-2-hydroxy- N-methoxy- N methylpropanamide [(S)-7c]

Compound (S)-6c (560 mg, 2.00 mmol) and $\mathrm{NaN}_{3}(391 \mathrm{mg}, 6.02$ mmol) were heated in DMF (10 mL) at $70{ }^{\circ} \mathrm{C}$ for 12 h , when consumption of sulfite was observed by GC/MS. The solution was then cooled, concentrated and the residue was partitioned between $\mathrm{H}_{2} \mathrm{SO}_{4} 20 \%(10 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The aqueous layer was successively extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and the crude product chromatographed (hexane/ethyl acetate, $9: 1$) to give the β-azido- α-alcohol $(S)-7 \mathrm{c}(480 \mathrm{mg}, 99 \%)$ as a colorless liquid. $[\alpha]_{\mathrm{D}}^{24}\left(c 1.9, \mathrm{CHCl}_{3}\right)=-73.8$. $\mathrm{ESI}+(m / z)=$ 243.2. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.35(\mathrm{~s}, 3 \mathrm{H}) ; 3.72(\mathrm{~d}, 1 \mathrm{H}, J$ $=12.6) ; 3.73(\mathrm{~s}, 3 \mathrm{H}) ; 3.86(\mathrm{~d}, 1 \mathrm{H}, J=12.6) ; 5.28(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 34.0 ; 51.6 ; 61.0 ; 79.0\left(\mathrm{q},{ }^{2} J_{\mathrm{CF}}=\right.$ 29.1); $122.5\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=284.8\right) ; 165.0 .{ }^{19} \mathbf{F}$ NMR (282 MHz , CDCl_{3}): $\delta-76.0$ (s). Anal. Calcd. for $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{3}: \mathrm{C}, 29.76 ; \mathrm{H}$, 3.75; N, 23.14. Found: C, 29.92; H, 3.65; N, 23.34.

(S)-Methyl 3-azido-2-(trifluoromethyl)-2-hydroxypropanoate

 [(S)-7d]

Compound (S)-6d (160 mg, 0.64 mmol$)$ and $\mathrm{NaN}_{3}(125 \mathrm{mg}$, 1.92 mmol) were heated in DMF (5 mL) at $70{ }^{\circ} \mathrm{C}$ for 12 h , when consumption of sulfite was observed by GC/MS. The solution was then cooled, concentrated and the residue was partitioned between $\mathrm{H}_{2} \mathrm{SO}_{4} 20 \%(10 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The aqueous layer was successively extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 15 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and the crude product chromatographed (hexane/ethyl acetate, $9: 1$) to give the β-azido-α-alcohol (S)-7d (123 mg, 90%) as a colorless liquid. $[\alpha]^{24}{ }_{\mathrm{D}}(c$ 1.0, $\left.\mathrm{CHCl}_{3}\right)=-48.5 . \mathrm{ESI}+(\mathrm{m} / \mathrm{z})=214.1 .{ }^{1} \mathbf{H} \mathbf{~ N M R}(400 \mathrm{MHz}$, CDCl_{3}): $\delta 3.64(\mathrm{~d}, 1 \mathrm{H}, J=12.8) ; 3.73(\mathrm{~d}, 1 \mathrm{H}, J=12.8) ; 3.96(\mathrm{~s}$, $3 \mathrm{H}) ; 4.15(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 51.7; 54.8; 78.2 ($\mathrm{q},{ }^{2} J_{\mathrm{CF}}=29.2$); 122.2 (q, ${ }^{1} J_{\mathrm{CF}}=285.0$); 168.1. ${ }^{19} \mathbf{F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-75.9$ (s). Anal. Calcd. for $\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{3}$: C, 28.18; H, 2.84; N, 19.72. Found: C, 28.31; H, 2.99; N, 19.56.
(S)-3-Amino-2-(trifluoromethyl)-2-hydroxypropanoic acid or (S)-2-(trifluoromethyl)isoserine [(S)-1]

Method A: To a solution of compound (S)-7c (128 mg, 0.53 $\mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH}(1: 3,10 \mathrm{~mL})$ was added $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(111$ $\mathrm{mg}, 2.64 \mathrm{mmol}$) with the resulting mixture stirred at $25^{\circ} \mathrm{C}$ for 2 h. The N, O-dimethylhydroxylamine formed in the reaction along with MeOH was removed and the mixture acidified with conc. HCl to $\mathrm{pH} 1-2$. The solvent was removed and the residue partitioned between $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and ethyl acetate (20 mL). The aqueous layer was successively extracted with ethyl acetate $(2 \times 20 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The obtained acid was dissolved in $\mathrm{MeOH}(5 \mathrm{~mL})$ after which palladium on carbon ($1: 5$, catalyst/substrate by weight) was added. The resulting suspension was stirred at $25{ }^{\circ} \mathrm{C}$ for 48 h . Then, $\mathrm{H}_{2} \mathrm{O}$ (5 ml) was added, the catalyst was removed by filtration and the solvent evaporated to give the corresponding amino acid (S)-1 ($87 \mathrm{mg}, 95 \%$) as a white solid.

Method B: Compound $(S)-7 d(67 \mathrm{mg}, 0.31 \mathrm{mmol})$ was treated with an aqueous solution of $6 \mathrm{~N} \mathrm{HCl}(5 \mathrm{~mL})$ at $60^{\circ} \mathrm{C}$ for 12 h . The solvent was removed and the residue partitioned between $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and ethyl acetate $(20 \mathrm{~mL})$. The aqueous layer was
successively extracted with ethyl acetate $(2 \times 20 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The acid obtained was dissolved in methanol (5 mL) after which palladium on carbon (1:5, catalyst/substrate by weight) was added. The resulting suspension was stirred at $25{ }^{\circ} \mathrm{C}$ for 48 h . Then, $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added, the catalyst was removed by filtration and the solvent evaporated to give the corresponding amino acid (S) $\mathbf{- 1}(47 \mathrm{mg}, 87 \%)$ as a white solid. $[\alpha]^{24}{ }_{\mathrm{D}}\left(c\right.$ 1.0, $\left.\mathrm{H}_{2} \mathrm{O}\right)=-24.1$. ESI $+(m / z)=174.2$. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta 3.39-3.51(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz , $\left.\mathrm{D}_{2} \mathrm{O}\right): \delta 40.8 ; 74.8\left(\mathrm{q},{ }^{2} J_{\mathrm{CF}}=28.0\right) ; 123.7\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=283.3\right) ; 169.9$. ${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta-75.4$ (s). Anal. Calcd. for $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{~F}_{3} \mathrm{NO}_{3}$: C, 27.76; H, 3.49; N, 8.09. Found: C, 27.89; H, 3.57; N, 7.98.
(S)-N-(Tosyl)phenylalaninyl (S)-2-(trifluoromethyl)isoserine methyl ester $[(S, S)-8]$

Amino acid (S)-1 (48 mg, 0.28 mmol$)$ was dissolved in $\mathrm{HCl} / \mathrm{MeOH}$, prepared by dropwise addition of $\mathrm{AcCl}(4 \mathrm{~mL})$ to $\mathrm{MeOH}(16 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, and the mixture was heated under reflux for 10 h . The solvent was evaporated and the resulting hydrochloride was exhaustively dried before being suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2} \quad(10 \mathrm{~mL})$ under an argon atmosphere. N (tosyl)phenylalaninyl chloride ($124 \mathrm{mg}, 0.36 \mathrm{mmol}$) and DIEA $(146 \mu \mathrm{~L}, 0.84 \mathrm{mmol})$ were added and the mixture was stirred at 25 ${ }^{\circ} \mathrm{C}$ for 14 h . The reaction was quenched with $0.5 \mathrm{~N} \mathrm{HCl}(2 \mathrm{~mL})$, and the aqueous layer was extracted with ethyl acetate $(2 \times 15 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and the crude product chromatographed (hexane/ethyl acetate, 6:4) to give dipeptide $(S, S)-\mathbf{8}(120 \mathrm{mg}, 88 \%)$ as a white solid $\left(\mathrm{mp}=124-126^{\circ} \mathrm{C}\right) .[\alpha]_{\mathrm{D}}^{24}$ $\left(c\right.$ 1.27, $\left.\mathrm{CHCl}_{3}\right)=-29.0$. ESI $+(m / z)=489.5 .{ }^{1} \mathbf{H} \mathbf{~ N M R ~}(400 \mathrm{MHz}$, CDCl_{3}): $\delta 2.42(\mathrm{~s}, 3 \mathrm{H}) ; 2.75$ (dd, $1 \mathrm{H}, J=14.1, J=8.7$); 2.99 (dd, $1 \mathrm{H}, J=14.1, J=5.2) ; 3.53(\mathrm{dd}, 1 \mathrm{H}, J=14.0, J=4.9) ; 3.84(\mathrm{td}$, $1 \mathrm{H}, J=8.6, J=5.7) ; 3.89(\mathrm{~s}, 3 \mathrm{H}) ; 4.18(\mathrm{dd}, 1 \mathrm{H}, J=14.0, J=7.9)$, 4.71 (br s, 1H); 5.23 (d, 1H, $J=6.3$); 6.84-6.90 (m, 2H); 7.04 (dd, $1 \mathrm{H}, J=7.4, J=5.0) ; 7.09-7.18(\mathrm{~m}, 5 \mathrm{H}) ; 7.40-7.47(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 21.5; 37.9; 41.3; 54.4; 58.0; 73.3 (q, $\left.{ }^{2} J_{\mathrm{CF}}=28.9\right) ; 122.6\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=286.5\right) ; 125.3 ; 126.7 ; 126.9 ; 127.2 ;$ 128.9; 129.8; 135.1; 143.9; 168.4; 171.8. ${ }^{19}$ F NMR (282 MHz , CDCl_{3}): $\delta-77.5$ (s). Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}: \mathrm{C}, 51.63$; H, 4.75; N, 5.73; S, 6.56. Found: C, 51.39; H, 4.87; N, 5.81; S, 6.45 .

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for compounds as well as ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ correlations for all new compounds

Benzyl 2-(trifluoromethyl)acrylate (2b)

2-(Trifluoromethyl)- N -methoxy- N -methylacrylamide (2c)

[^1]
Benzyl (S)-2-(trifluoromethyl)-2,3-dihydroxy-propanoate

[$(\boldsymbol{S}) \mathbf{- 4 b}]$

(S)-2-(Trifluoromethyl)-2,3-dihydroxy- N-methoxy- N-methylpropanamide [(S)-4c]

S13

Methyl (S)-2-(trifluoromethyl)-2,3-dihydroxypropanoate [(S)-4d]

Lppm

Methyl

(S)-5-(methoxymethylcarbamoyl)-5-(trifluoromethyl)-2,2-dioxo-2 λ^{6} -
[1,2,3]oxathiazolidine-3-carboxylate [(S)-5]

(S)-2-(Trifluoromethyl)isoserine hydrochloride $\quad[(S)-1 \cdot \mathbf{H C l}]$

ฐ
Hiff

(S)-4-(Trifluoromethyl)-2,2-dioxo-2 $\lambda^{6}-[1,3,2]$ dioxathiolane-4-carboxylic acid $\quad N$ -methoxy- N-methylamide [(S)-6c]

Methyl (S)-4-(trifluoromethyl)-2,2-dioxo-2 λ^{6}-[1,3,2]dioxathiolane-4-carboxylate

(S)-3-Azido-2-(trifluoromethyl)-2-hydroxy- N-methoxy- N-methylpropanamide

(S)-Methyl 3-azido-2-(trifluoromethyl)-2-hydroxypropanoate [(S)-7d]

(S)-2-(Trifluoromethyl)isoserine [(S)-1]

(S)-N-(Tosyl)phenylalaninyl (S)-2-(trifluoromethyl)isoserine methyl ester [(S,S)-8]

Enantiomeric excess for Sharpless asymmetric dihydroxylation
 determinted by GC-MS

For compound 4b. β-DEX ${ }^{\mathrm{TM}}$ column ($30 \mathrm{~m} \times 0.25 \mathrm{~mm} \times 0.25 \mu \mathrm{~m}$); $\mathrm{T}=110{ }^{\circ} \mathrm{C}$ isotherm. Tdet. $=$ Tinlet $=225^{\circ} \mathrm{C}$;

For compound 4c. β-DEX ${ }^{\mathrm{TM}}$ column ($30 \mathrm{~m} \times 0.25 \mathrm{~mm} \times 0.25 \mu \mathrm{~m}$); $\mathrm{T}=110{ }^{\circ} \mathrm{C}$ isotherm. Tdet. $=$ Tinlet $=225^{\circ} \mathrm{C}$;

Computational energy data and the coordinates for structures

Computational Details

In order to understand the behavior of this kind of fluorinated cyclic sulfates in the ring-opening reaction with the azide ion, we performed a theoretical study.

All ground state and transition state (TS) geometries were located using hybrid density functional theory (B3LYP) ${ }^{1}$ and the $6-31+G(d)$ basis implemented in Gaussian $98 .{ }^{2}$ All the TS geometries were fully optimized and characterized by frequency analysis. In all cases single-point energy calculations at the B3LYP/6$311++G(2 d, p)$ level were carried out on the B3LYP/6-31+G(d) geometries. Furthermore, solvent effects were taken into account through single point energy calculations with the Isodensity Polarized Surface Continuum Model (IPCM) method, ${ }^{3}$ as implemented in Gaussian 98, at the B3LYP/6-31+G(d) level, using the dielectric permittivity of dimethylformamide (38.25), which was the solvent used in the experiments.

Two competitive $\mathrm{S}_{\mathrm{N}} 2$ pathways were examined; azide attack at the "free" (f) secondary position and at the "hindered" (h) quaternary position. Each TS was located in the two possible carbonyl conformations, namely $\operatorname{syn}(\mathbf{s})$ and anti (a) with regard to the trifluoromethyl group. This leads to four possible TS for each sulfate and these are denoted as TSc-d_af, TSc-d_ah, TSc-d_sf and TSc-d_sh, respectively. Several geometrical features of the minimum energy TS are shown in Figure SI-1 and the energetic results are gathered in Table SI-1.

Only Gibbs free energies are used for the discussion on the relative stabilities of the TS considered. These energies were obtained using the following correction formula:

$$
\Delta \Delta \mathrm{G}^{\ddagger}=\Delta \Delta \mathrm{E}_{\text {basis }}+\Delta \Delta \mathrm{G}_{298}+\Delta \Delta \mathrm{G}_{\text {solv }}
$$

where $\Delta \Delta \mathrm{E}_{\text {basis }}$ is the relative energy at the B3LYP/6-311++G(2d,p)//B3LYP/6-31+G(d) level, $\Delta \Delta \mathrm{G}_{298}$ represents the thermal and entropic corrections at 298 K , calculated at the B3LYP/6-31+G(d) level, and

[^2]$\Delta \Delta \mathrm{G}_{\text {solv }}$ is the solvation correction (relative solvation free energies), calculated at the IPCM/B3LYP/6$31+G(d)$ level.

As far as substrates $(S)-\mathbf{6 c}$ and $(S)-\mathbf{6 d}$ are concerned, the TS obtained for the $\mathrm{S}_{\mathrm{N}} 2$ reaction on "free" position (TSc_sf and TSd_sf, respectively) were considerably lower in energy $(4.82 \mathrm{Kcal} / \mathrm{mol}$ and $5.94 \mathrm{Kcal} / \mathrm{mol}$ more stable) than that resulting from the nucleophilic attack on "hinderend" position (TSc_ah and TSd_ah, respectively). This situation is in agreement with the experimentally observed regioselectivity.

NOTE: Stereochemistry is ignored for simplicity

Table SI-1. Calculated energies, entropies, Gibbs free energies and lowest frequencies of the reactants and transition structures (B3LYP/6-31+G(d) optimized geometries).

	$\begin{gathered} \mathrm{E}_{0}(\mathrm{~B} 3 \mathrm{LYP} / 6-31+\mathrm{G}(\mathrm{~d})) \\ (\text { a.u. })^{\mathrm{a}} \end{gathered}$	Lowest freq. $\left(\mathrm{cm}^{-1}\right)$	S $\left(\mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}\right)$	$\mathrm{G}_{298}(\mathrm{~B} 3 \mathrm{LYP} / 6-31+\mathrm{G}(\mathrm{~d}))$ (a.u.)	$\mathrm{E}_{\text {IPCM }}(\mathrm{B} 3 \mathrm{LYP} / 6-31+\mathrm{G}(\mathrm{d}))$ (a.u.)	$\begin{gathered} \mathrm{E}_{\text {basis }}(\mathrm{B} 3 \mathrm{LYP} / 6-311++\mathrm{G}(2 \mathrm{~d}, \mathrm{p})) \\ (\text { a.u. }) \end{gathered}$
$\mathbf{N}_{3}{ }^{-}$	-164,244683	618.7	43.6	-164.252070	-164.345127	-164.289798
6c	-1437.1553473	32.2	133.9	-1437.035306	-1437.1743712	-1437.5113275
6d (cf. 1)	$-1342,5517623$	32.2	122.3	-1342.473141	-1342.5694346	-1342.8829437
6d (cf. 2)	-1342,5493817	22.0	122.9	-1342.471180	-1342.5677627	-1342.8806749
TSc_sf	-1601,4116550	483.7 i	151.1	-1601.286744	-1601,4904122	-1601,8122998
TSc_sh	-1601,3999335	370.91	148.9	-1601.273693	-1601,4774615	-1601,8007655
TSc_af	-1601,4058438	$504.6 i$	151.2	-1601.281087	-1601,4820702	-1601,8059319
TSc_ah	-1601,4008135	393.7 i	147.3	-1601.273987	-1601,4849121	-1601,8011866
TSd_sf	$-1506,8152859$	500.0 i	139.1	-1506.731503	-1506,8948209	$-1507,1906104$
TSd_sh	$-1506,8035882$	376.01	137.3	-1506.718721	$-1506,8816253$	-1507,1791442
TSd_af	$-1506,8128216$	502.11	139.8	-1506.729427	$-1506,8898273$	-1507,1880992
TSd_ah	$-1506,8023411$	380.41	137.7	-1506.717742	$-1506,8860671$	-1507,1777738

${ }^{\text {a }} 1$ a.u. $=627.5 \mathrm{kcal} \mathrm{mol}^{-1}$
Figure SI-1. Minimum energy TS calculated with 6c and 6d and azide anion. Relative energies shown in brackets were obtained by using the following above-mentioned correction formula: $\Delta \Delta \mathrm{G}^{\ddagger}=\Delta \Delta \mathrm{E}_{\text {basis }}+\Delta \Delta \mathrm{G}_{298}+\Delta \Delta \mathrm{G}_{\text {solv }}$

TSc_sf $(0.00 \mathrm{Kcal} / \mathrm{mol})$

TSd_sf $(0.00 \mathrm{Kcal} / \mathrm{mol})$

TSc_ah ($4.82 \mathrm{Kcal} / \mathrm{mol}$)

TSd_ah ($5.94 \mathrm{Kcal} / \mathrm{mol}$)

B3LYP/6-31+G (d) geometries

Azide anion			
N	1.112410	0.411590	0.000000
N	0.000000	0.000350	0.000000
N	-1.112410	-0.411940	0.000000
6 c			
C	-0.249348	0.539788	0.256074
C	-1.070221	0.238613	1.539050
0	-1.445023	-1.147288	1.403911
S	-1.866648	-1.436260	-0.149281
0	-0.826467	-0.275398	-0.770402
0	-3.225998	-1.011431	-0.412905
0	-1.386917	-2.745795	-0.527276
C	-0.438290	2.016818	-0.166068
C	1.266016	0.229153	0.521788
N	2.015740	-0.323958	-0.474101
C	1.859319	-0.281568	-1.925444
0	1.689935	0.434805	1.651694
0	3.367492	-0.496800	-0.144647
C	3.580725	-1.739225	0.548952
H	-0.452700	0.321680	2.430008
H	-1.967648	0.859291	1.602978
H	4.664688	-1.800178	0.668235
H	3.219273	-2.583253	-0.049717
H	3.096704	-1.721839	1.529268
H	2.490283	0.514940	-2.334444
H	0.820991	-0.109645	-2.192387
H	2.178683	-1.243945	-2.334220
F	0.315980	2.327047	-1.240943
F	-1.721218	2.274739	-0.476139
F	-0.080035	2.834281	0.843566
6d (conform. 1)			
\bigcirc	-1.587311	0.390378	1.399010
S	-2.134380	0.404885	-0.151922
0	-0.634097	0.066509	-0.810504
C	0.318341	-0.283578	0.190038
C	-0.485244	-0.529920	1.493573
0	-3.003763	-0.726256	-0.402554
\bigcirc	-2.514535	1.756073	-0.490140
C	1.026827	-1.577452	-0.280266
C	1.363651	0.845979	0.397774
0	1.427149	1.667320	-0.640354
C	2.387872	2.746647	-0.540734
0	2.026749	0.914223	1.409799
H	0.088676	-0.261249	2.378211
H	-0.857842	-1.556001	1.554544
H	2.282149	3.303083	-1.470698
H	3.395511	2.337438	-0.438530
H	2.151469	3.374131	0.321415
F	1.814962	-2.053880	0.707924
F	1.797955	-1.353555	-1.358973
F	0.132405	-2.529410	-0.593236
6d (conform. 2)			
0	0.816722	-0.035063	-0.872817
C	-0.278500	0.121206	0.021676
C	0.256469	-0.192103	1.457914
0	1.678446	-0.010175	1.384547
S	2.184817	-0.562430	-0.077741
C	-1.421350	-0.833737	-0.403067
\bigcirc	-2.307168	-0.951042	0.596385
C	-3.458944	-1.789623	0.330487
C	-0.729234	1.601556	-0.104742
0	2.190939	-2.012684	-0.081767
0	3.314189	0.219060	-0.514592
0	-1.482191	-1.379971	-1.473355
H	0.024860	-1.219887	1.746494
H	-0.117974	0.504420	2.206627

H	-4.053424	-1.752199	1.242308
H	-3.133621	-2.809565	0.114063
H	-4.018052	-1.390520	-0.518590
F	-1.735027	1.867616	0.759882
F	-1.167204	1.870942	-1.345546
F	0.284786	2.437200	0.178123

TSc_s

C	-0.416136	1.368897	0.212189
C	0.250098	-0.145417	0.440840
C	-1.224372	-0.695066	0.346750
O	-1.740904	-1.225081	1.312263
O	1.009677	-0.875227	-0.528542
S	2.270984	-0.001036	-1.258517
O	3.519337	-0.693767	-0.961395
O	2.089776	1.306356	-0.456057
C	0.824607	-0.531938	1.845351
O	1.871705	0.123077	-2.664027
N	-1.796800	-0.734186	-0.909702
C	-1.555015	0.151812	-2.039863
O	-3.152978	-1.119121	-0.883488
C	-3.268927	-2.539672	-0.991825
H	0.702811	2.003834	1.033230
H	-0.003096	1.825457	-0.667134
H	-2.017595	1.134285	-1.884175
H	-2.000947	-0.318020	-2.920311
H	-0.485521	0.245301	-2.224637
H	-4.346038	-2.730047	-1.022219
H	-2.827342	-3.032314	-0.120238
H	-2.798538	-2.901897	-1.915791
N	-1.598033	1.878439	1.010025
N	-1.878984	2.897400	0.436116
N	-2.145591	3.890002	-0.126707
F	0.169068	0.060296	2.856888
F	0.814388	-1.864391	2.039956
F	2.121912	-0.141816	1.943016

TSc_sh

\bigcirc	-1.375566	-0.510478	-0.926914
S	-2.464329	-1.042950	0.034469
0	-1.538910	-1.018706	1.417740
C	-0.539648	0.022474	1.447977
C	-0.068015	0.522293	0.061292
C	1.061058	-0.028178	-0.802657
O	1.461955	0.625299	-1.753084
C	-0.602161	1.918647	-0.443375
\bigcirc	-3.585274	-0.118015	0.208669
O	-2.768177	-2.456199	-0.192355
N	1.677024	-1.207785	-0.396440
C	1.016175	-2.432572	0.043080
H	-0.926813	0.872485	2.007040
H	0.286138	-0.429951	1.992729
H	0.706900	-3.022663	-0.828593
H	0.135069	-2.212845	0.639001
H	1.727547	-3.005525	0.643966
N	1.511863	1.557146	1.270178
N	2.211957	0.796069	1.884355
N	2.894799	0.069443	2.495364
O	2.742366	-1.580488	-1.247023
C	3.941547	-0.881230	-0.890308
H	4.718487	-1.333705	-1.514027
H	4.167903	-1.021059	0.172323
H	3.851031	0.184569	-1.122685
F	0.321312	2.886334	-0.509389
F	-1.567104	2.356441	0.410594
F	-1.159916	1.856322	-1.664292
TSc_af			
C	0.587536	1.470032	-0.196936
C	0.215221	0.051316	0.262198
C	-1.060021	-0.389224	-0.569933

O	-0.925292	-0.367332	-1.777121
O	1.180409	-0.924681	-0.137058
S	2.658768	-0.317413	-0.725068
O	3.698440	-0.904428	0.119572
O	2.396632	1.168658	-0.416615
C	0.244852	-0.044205	1.819424
O	2.688171	-0.630410	-2.152375
N	-2.111549	-1.060097	0.054908
C	-2.929656	-0.505756	1.130229
H	0.804573	2.247941	0.513963
H	0.432511	1.704779	-1.237730
H	-3.301708	-1.324439	1.753860
H	-3.770763	0.039998	0.687174
H	-2.356789	0.196109	1.725011
N	-1.444336	2.118169	0.112809
N	-1.690528	2.941568	-0.734057
N	-1.931173	3.748045	-1.540998
O	-3.008763	-1.637813	-0.882991
C	-2.500937	-2.886660	-1.355596
H	-3.291858	-3.280277	-2.000991
H	-2.319502	-3.573267	-0.518790
H	-1.584939	-2.744414	-1.937561
F	-0.496636	0.890636	2.457915
F	1.507998	0.118114	2.266594
F	-0.176634	-1.256148	2.253703

TSc ah

TSC_ah			
C	0.115442	-1.321995	-1.330755
C	-0.020119	-0.557157	0.020984
C	-1.017170	0.554250	0.340914
N	-1.900814	0.973649	-0.661409
O	-2.629344	2.128545	-0.276667
C	-1.842976	3.304771	-0.484444
C	0.861532	-1.056747	1.178877
O	2.254796	-0.755459	1.003170
S	2.523013	0.723062	0.292850
O	2.500609	1.760748	1.325795
O	1.253057	0.748831	-0.604736
O	3.754903	0.560080	-0.479112
O	-0.893404	1.154411	1.394483
C	-2.838765	0.092102	-1.349369
N	-1.641281	-1.823840	0.831626
N	-1.918100	-1.621831	1.992514
N	-2.215243	-1.466633	3.106619
H	0.816283	-2.143425	1.236254
H	0.492975	-0.601771	2.098885
H	-3.771351	0.040611	-0.773212
H	-2.437501	-0.913150	-1.425562
H	-3.042281	0.494834	-2.346369
H	-2.513728	4.132126	-0.233572
H	-1.525318	3.377099	-1.532101
H	-0.971922	3.317462	0.177381
F	-0.717230	-2.377482	-1.479135
F	1.361433	-1.828948	-1.449134
F	-0.106416	-0.523656	-2.397672
TSd_sf			
C	-0.147133	-0.279958	-1.230629
C	0.070378	0.418340	0.123314
O	1.180958	-0.135552	0.834270
S	2.179685	-1.175953	-0.064729
O	1.582505	-0.865401	-1.450396
C	0.399234	1.929453	-0.063754
C	-1.141830	0.226278	1.070573
O	-1.647120	1.100257	1.736768
O	-1.452109	-1.075769	1.141474
C	-2.549582	-1.413287	2.003816
O	1.883867	-2.528093	0.410034
O	3.540787	-0.673495	0.103264
N	-2.212375	0.375960	-1.351300
N	-2.889795	-0.601735	-1.541488

-3.552700	-1.547248	-1.723748
-0.087742	0.274906	-2.150266
-0.557442	-1.276832	-1.224860
-2.658635	-2.494326	1.916382
-3.458375	-0.907571	1.667761
-2.322888	-1.124763	3.034455
-0.624137	2.638237	-0.567477
0.770721	2.500151	1.099076
1.441940	2.072108	-0.922186

TSd_sh

C	-0.062334	1.926395	0.281859
C	-0.300743	0.409719	-0.026146
C	0.116335	-0.165216	-1.396364
O	1.169402	-1.137165	-1.304314
S	2.314608	-0.739519	-0.174435
O	3.265231	0.195563	-0.783479
C	-1.080168	-0.391121	0.984883
O	-1.484366	0.026402	2.048453
O	-1.222909	-1.657966	0.553318
C	-1.928682	-2.540194	1.436865
O	2.832454	-2.011592	0.326279
O	1.360404	-0.042623	0.834006
N	-2.347301	0.781606	-0.860296
N	-2.834958	-0.181142	-1.394894
N	-3.319575	-1.101550	-1.926672
H	0.421461	0.657432	-2.047233
H	-0.696390	-0.722753	-1.851696
H	-1.958885	-3.498628	0.917853
H	-1.393525	-2.628640	2.386767
H	-2.940840	-2.168110	1.618210
F	-1.113904	2.735266	0.076586
F	0.319152	2.132194	1.553988
F	0.930208	2.386114	-0.523975

TSd_af			
C	0.047046	1.225377	-0.244043
C	-0.077490	-0.284195	0.053503
C	0.066427	-1.127069	-1.249016
C	0.937511	-0.653681	1.176100
O	1.889234	-1.495738	0.762930
C	3.040621	-1.582161	1.618469
O	-1.348603	-0.614834	0.594621
S	-2.574312	0.548252	0.373874
O	-2.841495	1.100580	1.701539
O	0.823224	-0.216511	2.294488
O	-3.665985	-0.142014	-0.309950
O	-1.778884	1.496197	-0.541406
N	2.198805	1.214518	0.020076
N	2.836869	2.100642	-0.481881
N	3.502223	2.942297	-0.946710
H	0.253210	1.582359	-1.238970
H	0.079282	1.896165	0.597622
H	3.723864	-2.265170	1.112069
H	2.763818	-1.964491	2.604506
H	3.483380	-0.586236	1.707846
F	-0.920879	-0.817702	-2.121640
F	1.231270	-0.924780	-1.895457
F	-0.041997	-2.449512	-0.988827
TSd_ah			
C	-0.246557	1.749915	-0.289038
C	-0.293526	0.183601	-0.210606
C	0.331123	-0.657145	-1.340674
O	1.502173	-1.381609	-0.930708
S	2.438824	-0.555359	0.155896
O	3.314512	0.359166	-0.583827
C	-1.086033	-0.536931	0.845657
O	-1.154668	-1.747125	0.904932
O	-1.662274	0.303000	1.724747
C	-2.435593	-0.328576	2.753282

O	3.069236	-1.572245	0.994631
O	1.285320	0.190644	0.883495
N	-2.249355	0.097695	-1.274592
N	-2.589155	-1.015868	-1.591132
N	-2.935863	-2.080989	-1.914476
H	0.570183	-0.004733	-2.183275
H	-0.352241	-1.443238	-1.649510
H	-2.809698	0.488125	3.372698
H	-3.264688	-0.891720	2.314492
H	-1.808450	-1.004852	3.341346
F	-1.344503	2.350018	-0.778732
F	-0.030091	2.320166	0.912495
F	0.776089	2.113868	-1.103381

[^0]: * Enantiomeric excess (ee) of the resulting diols were measured by GCMS using a chiral capilar column (β-DEX ${ }^{\mathrm{TM}}$) as stationary phase, and obtained cromatograms are shown in other section (page S31).

[^1]:

[^2]: 1 Becke, A. D. J. Chem. Phys. 1993, 98, 1372-1377.
 ${ }^{2}$ Gaussian 98, Revision A.11, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, P. Salvador, J. J. Dannenberg, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 2001.
 ${ }^{3}$ Foresman, J. B.; Keith, T. A.; Wiberg, K. B.; Snoonian, J.; Frisch, M. J. J. Phys. Chem. 1996, 100, 16098-16104.

