XAFS spectral analysis of the cadmium coordination geometry in cadmium-thiolate clusters in metallothionein **

by Jayna Chan^{*}, Maureen E. Merrifield^{*}, Alexander V. Soldatov[†] and Martin J. Stillman^{**}

Supplementary Figures

Supplementary Figure 1. Contributions of the XAFS spectra of the individual domains to the XAFS spectrum of the complete molecule in rabbit liver metallothionein.

Supplementary Figure 2. Site-specific and averaged XAFS spectra for the α domain of rat MT prior to and following energy minimization.

Supplementary Table

Table 1. Connectivities and Cd-S bond lengths and angles in the β and α domains of rabbit and rat metallothioneins.

			Bond							Bond			
	Cd-S	Bridging/	Lengths	S-Cd-S	Bridging/	Bond		Cd-S	Bridging/	Lengths	S-Cd-S	Bridging/	Bond
	Connectivity	Terminal	(pm)	Connectivity	Terminal	Angles (°)		Connectivity	/ Terminal	(pm)	Connectivity	Terminal	Angles (°)
2MRB rabbit	Cd1-S9	Т	253.4	S5-Cd1-S9	TT	110.7	2MRB rabbit	Cd1-S9	Т	246.8	S5-Cd1-S9	TT	105.5
beta NMR	Cd1-S5	Т	252.7	S5-Cd1-S7	TB	104.2	beta	Cd1-S5	Т	246.2	S9-Cd1-S4	TB	118.8
	Cd1-S7	В	253.6	S5-Cd1-S4	TB	113.9	Energy	Cd1-S4	В	256.7	S9-Cd1-S7	TB	109.7
	Cd1-S4	В	259.8	S9-Cd1-S7	TB	119.4	Minimized	Cd1-S7	В	256.5	S5-Cd1-S4	BB	113.8
				59-Cd1-54	IB BB	108.2					55-C01-57 54-Cd1-57	TB	108.4
	Cd3-S6	т	253.0	S6-Cd3-S1	TT	115.2		Cd2-S3	т	246.5	S3-Cd2-S8	TB	100.2
	Cd3-S1	Ť	253.0	S6-Cd3-S7	TB	111.9		Cd2-S8	Ť	246.4	S3-Cd2-S4	TT	111.2
	Cd3-S7	В	261.0	S6-Cd3-S2	TB	100.1		Cd2-S4	В	256.3	S3-Cd2-S2	TB	110.6
	Cd3-S2	В	254.0	S1-Cd3-S7	TB	107.3		Cd2-S2	В	256.4	S4-Cd2-S8	TB	103.4
				S1Cd3-S2	TB	111.2					S8-Cd2-S2	TB	113.5
		_		S2-Cd3-S7	BB	110.6			_		S2-Cd2-S4	BB	108.3
	Cd2-S3	T	253.1	S3-Cd2-S8	T	109.8		Cd3-S6	T	245.6	S1-Cd3-S6	TB	105.8
	Cd2-S8	I P	253.5	S3-Cd2-S4	IB TD	113.5		Cd3-S1	В	247.0	S1-Cd3-S7	IB TD	123.3
	Cd2-54 Cd2-52	B	253.0	S3-Cu2-S2 S8-Cd2-S4	TB	100.5		Cd3-57	B	200.0 256.4	S6-Cd3-S7	BB	107.2
	042 02	=	210.4	= S2-Cd2-S8	TB	96.4		000 02	D	200.4	S2-Cd3-S6	BB	96.2
				S2-Cd2-S4	BB	89.4					S2-Cd3-S7	BB	96.2
		Avg.	255.9		Avg.	109.0			Avg.	251.4		Avg.	108.1
		S. D.	5.3		S. D.	9.2			S. D.	5.2		S. D.	7.0
1MRB rabbit	Cd1-S9	Т	250.4	S9-Cd1-S10	TT	106.6	1MRB rabbit	Cd1-S9	Т	246.3	S10-Cd1-S9	TT	104.4
alpha NMR	Cd1-S10	Т	246.7	S10-Cd1-S8	TB	111.4	alpha	Cd1-S10	Т	248.3	S9-Cd1-S11	TB	102.4
	Cd1-S8	В	252.7	S10-Cd1-S11	TB	126.8	Energy	Cd1-S11	В	259.1	S9-Cd1-S8	TB	107.4
	C01-511	В	263.8	58-C01-511	BB TD	95.0	winimized	C01-58	В	257.1	S10-Cd1-S11	BB TD	124.2
				S9-Cd1-S0	TB	107.2					S8-Cd1-S0	TB	107.9
	Cd2-S1	т	252.2	S7-Cd2-S2	TB	104.3		Cd2-S1	т	246.4	S1-Cd2-S6	TB	107.7
	Cd2-S7	Т	250.3	S1-Cd2-S7	TT	123.8		Cd2-S7	Т	247.9	S1-Cd2-S7	TT	115.0
	Cd2-S2	В	262.6	S1-Cd2-S6	TB	112.8		Cd2-S6	В	258.7	S1-Cd2-S2	TB	107.8
	Cd2-S6	В	253.3	S7-Cd2-S6	TB	104.3		Cd2-S2	В	258.0	S7-Cd2-S6	TB	114.6
				S1-Cd2-S2	TB	103.1					S7-Cd2-S2	TB	103.7
		-		S6-Cd2-S2	BB	107.3			_		S2-Cd2-S6	BB	107.5
	Cd3-S5	I	248.1	S5-Cd3-S6		92.2		Cd3-S5	I	247.0	S5-Cd3-S11	IB	102.9
	Cd3-56	B	264.0	S5-Cd3-S4	IB TB	120.2		Cd3-S11	B	255.0	55-Cd3-54	TB	105.9
	Cd3-S11	=	2/2.4	=	BB -	115.2		Cd3-S6	B	253.0	S11-Cd3-S4	BB	106.1
	003-011	D	243.0	S4-Cd3-S11	BB	90.5		003-50	D	230.2	S4-Cd3-S6	BB	105.4
				S6-Cd3-S11	BB -	103.8					S11-Cd3-S6	BB	116.8
	Cd4-S3	Т	244.4	S3-Cd4-S8	TB	110.4		Cd4-S3	Т	248.3	S3-Cd4-S2	TB	109.5
	Cd4-S8	В	269.5	S3-Cd4-S4	TB	133.6		Cd4-S2	В	258.0	S3-Cd4-S4	TB	111.6
	Cd4-S4	В	243.7	S3-Cd4-S2	TB	109.3		Cd4-S8	В	258.0	S3-Cd4-S8	TB	107.8
	Cd4-S2	В	247.2	S4-Cd4-S8	BB	96.1		Cd4-S4	В	257.5	S2-Cd4-S4	BB	104.6
				S4-Cd4-S2	BB	104.6					S8-Cd4-S4	BB	106.1
		Ava	254.4	32-004-36	Ava	109.3			Ανα	253.8	36-004-32	Ava	109.4
		S. D.	9.1		S. D.	12.0			S. D.	5.2		S. D.	5.6
4MT2 rat	Cd1-S10	Т	250.5	S10-Cd1-S9	TT	111.7	4MT2 rat	Cd1-S9	Т	245.6	S10-Cd1-S9	TT	105.5
alpha X-ray	Cd1-S9	Т	250.4	S10-Cd1-S11	TB	122.5	alpha	Cd1-S10	Т	248.3	S9-Cd1-S11	TB	116.0
	Cd1-S8	В	257.2	S10-Cd1-S8	TB	100.2	Energy	Cd1-S11	В	258.1	S9-Cd1-S8	TB	101.4
	Cd1-S11	В	249.5	S8-Cd1-S11	BB	104.4	Minimized	Cd1-S8	В	257.0	S10-Cd1-S11	TB	116.2
				59-Cd1-511		102.3					S10-Cd1-S8		115.0
	Cd2-S1	т	254 9	S1-Cd2-S6	TB	102.5		Cd2-S1	т	247 6	S1-Cd2-S6	TR	102.1
	Cd2-S7	Ť	247.3	S1-Cd2-S7	TT	101.4		Cd2-S7	Ť	247.7	S1-Cd2-S7	TT	107.4
	Cd2-S2	В	244.8	S1-Cd2-S2	TB	115.0		Cd2-S6	В	258.3	S1-Cd2-S2	TB	112.6
	Cd2-S6	В	262.1	S7-Cd2-S2	TB	111.8		Cd2-S2	В	258.6	S7-Cd2-S6	TB	112.1
				S7-Cd2-S6	TB	110.2					S7-Cd2-S2	TB	104.3
				S2-Cd2-S6	BB	114.9					S2-Cd2-S6	BB	112.6
	Cd3-S5	Т	248.3	S5-Cd3-S11	TB	101.0		Cd3-S5	Т	248.3	S5-Cd3-S11	TB	108.8
	Cd3-S11	В	259.8	S5-Cd3-S4	IB TD	99.9		Cd3-S11	В	258.3	S5-Cd3-S4	IB	120.7
	Cd3-S4	В	251.7	S5-Cd3-S6	IB	118.9		Cd3-S4	В	255.7	S5-C03-S6	IB	106.5
	003-30	G	200.7	S6-Cd3-S11	BR	114.6		003-30	u	200.9	S4-Cd3-S6	BR	103.6
				S6-Cd3-S4	BB	122.1					S11-Cd3-S6	BB	120.8
	Cd4-S3	т	248.6	S3-Cd4-S2	TB	97.9		Cd4-S3	т	247.8	S3-Cd4-S2	TB	121.9
	Cd4-S8	В	250.2	S3-Cd4-S4	TB	132.2		Cd4-S2	В	257.3	S3-Cd4-S4	TB	108.3
	Cd4-S4	В	244.0	S3-Cd4-S8	TB	113.2		Cd4-S8	В	257.5	S3-Cd4-S8	TB	103.6
	Cd4-S2	В	250.6	S4-Cd4-S2	BB	97.8		Cd4-S4	В	256.6	S2-Cd4-S4	BB	107.3
				S8-Cd4-S2	BB	100.2					S8-Cd4-S4	BB	112.6
		A.v.a	254.2	58-C04-54	BB	107.8			A.v.a	252.7	58-Cd4-52	BB	103.0
		Avg. S. D	∠ວ⊺.3 50		Avg. S.D	9.5			Avy. S. D	∠⊃⊃./ 50		Avg. S D	6.6
			0.0			0.0				0.0		5.5.	5.0