A Heteronuclear Bidentate Lewis Acid as a Phosphorescent Fluoride Sensor.

Mohand Melaimi and François P. Gabbaï*

Chemistry Department Texas A&M University 3255 TAMU College Station, Texas 77843-3255 Fax: (1) 979-845-4719 E-mail: gabbai@mail.chem.tamu.edu

Supplementary information

Experimental part

General Considerations.

Due to the toxicity of the mercury compounds discussed in these studies, great caution should be exercised when synthesizing and handling 2 and its anionic derivatives. Tetrakis(THF)lithium dimesityl-1,8-naphthalenediylborate (Hoefelmeyer, J. D.; Gabbaï, F. P. Organometallics 2002, 21, 982) and pentafluorophenylmercury chloride (Tschinkl, M. Schier, A. Riede, J. Gabbaï F. P. Organometallics 1999, 18, 2040) were synthesized by following published procedures. $Me_3SiF_2S(NMe_2)_3$ and trimethylchlorosilane were purchased from Aldrich and used as received. Solvents were dried by reflux under N₂ over the appropriate drying agents, and freshly distilled prior to use. Dichloromethane was dried over CaH₂. Diethylether and THF were dried over Na/K. Air-sensitive compounds were handled under N₂ atmosphere using standard Schlenk and glovebox techniques. UV-vis spectra were recorded on a JASCO V-530 spectrophotometer. Elemental analyses were performed at Atlantic Microlab (Norcross, GA). The luminescence spectra were recorded with a SLM/AMINCO, Model 8100 spectrofluorometer equipped with a xenon lamp. All melting points were measured on samples in sealed capillaries and are uncorrected.

NMR spectroscopy

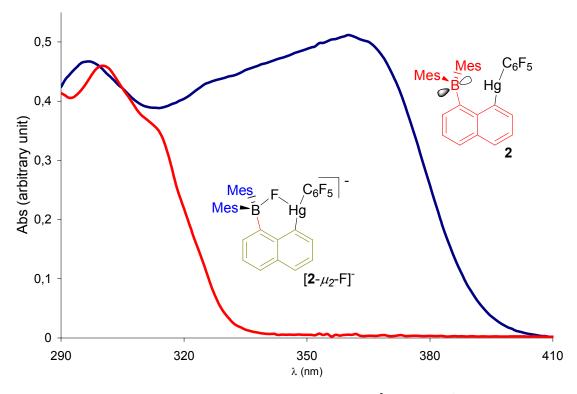
NMR spectra were recorded on a Varian Unity Inova 400 FT NMR spectrometer (399.63 MHz for ¹H, 376.03 MHz for ¹⁹F, 128.22 MHz for ¹¹B, 100.50 MHz for ¹³C, 75.52 for ¹⁹⁹Hg) by using internal deuterium lock. Chemical shifts δ are given in ppm, and are

referenced against external Me₄Si (¹H, ¹³C), BF₃.Et₂O (¹¹B), CFCl₃ (¹⁹F), and HgMe₂ (¹⁹⁹Hg).

Crystallography

The crystallographic measurements were performed using a Siemens SMART-CCD area detector diffractometer, with a graphite-monochromated Mo-K_{α} radiation ($\lambda = 0.71069$ Å). Specimens of suitable size and quality were selected and mounted onto glass fiber with apiezon grease. The structures were solved by direct methods, which successfully located most of the non-hydrogen atoms. Subsequent refinement on F^2 using the SHELXTL/PC package (version 5.1) allowed location of the remaining non-hydrogen atoms. Further crystallographic details can be found in table 1.

Synthesis and characterization


<u>1-(dimesitylboron)-8-(pentafluorophenylmercury)naphthalenediyl (2)</u>. A solution of pentafluoromecury chloride (360 mg, 0.89 mmol) in THF (3 mL) was added to a solution of tetrakis(THF)lithium dimesityl-1,8-naphthalenediylborate (600 mg, 0.89 mmol) in THF (10 mL) at 0°C. The mixture was stirred overnight at room temperature. The solvent were removed under reduced pressure and the product was extracted with hexane (3 x 10 mL). Following filtration and evaporation of the solvent, the yellow solid was washed with acetonitrile (4 x 5 mL) and dried under vacuum to yield a pale yellow powder (480 mg : 72%). mp. 235°C. ¹H NMR (CDCl₃): 1.44 (br s, 3H, Mes-CH₃), 1.67 (br s, 3H, Mes-CH₃), 1.89 (br s, 3H, Mes-CH₃), 2.14-2.42 (m, 9H, Mes-CH₃), 6.37 (br s, 1H, Mes-CH), 6.83 (br s, 3H, Mes-CH), 7.37-7.44 (m, 2H, CH), 7.48-7.60 (m, 2H, CH), 7.86 (dd, 1H,

 ${}^{3}J_{\text{H-H}} = 8.0 \text{ Hz}, {}^{4}J_{\text{H-H}} = 1.1 \text{ Hz}, CH), 7.98 (dd, 1H, {}^{3}J_{\text{H-H}} = 8.0 \text{ Hz}, {}^{4}J_{\text{H-H}} = 1.2 \text{ Hz}, CH).$ ${}^{13}\text{C}$ NMR (CDCl₃): 21.34, 22.54, 23.83, 25.23 (CH₃-Mes), 125.53, 125.75, 130.48 133.74, 135.18, 137.29 (CH-Np), 127.63 (br s), 128.64 (br s), 130.36 (br s), 130.72 (br s) (CH-Mes), 134.76, 142.42, 151.50, (CF). 136.89 (br s), 138.65 (br s), 138.89 (br s), 139.34 (br s), 139.81 (br s), 143.50 (br s), 143.88 (br s), 146.22, 146.43, 146.96, 148.51, 148.70, 163.54 (quaternary C, CB and CHg). ${}^{19}\text{F}$ NMR (CDCl₃): -116.8 (m, 2F, ${}^{3}J_{\text{F-Hg}} =$ 499 Hz, F_{ortho}), -152.5 (t, 1F, ${}^{3}J_{\text{F-F}} = 19.7 \text{ Hz}$, F_{para}), -159.09 (m, 2F, F_{meta}). ${}^{19}\text{Hg}$ NMR (CDCl₃): -741.9 (tt, ${}^{3}J_{\text{Hg-F}} = 499 \text{ Hz}$, ${}^{4}J_{\text{Hg-F}} = 165 \text{ Hz}$). ${}^{11}\text{B}$ NMR (CDCl₃): +72. Anal. Calcd for C₃₄H₂₈BF₅Hg: C, 54.96; H, 3.80. Found: C 54.92; H 3.75.

[2•\mu_2-F[TS(NMe_2)_3]^+: To a solution of **2** (100 mg, 0.13 mmol) in CHCl₃ (2 mL) was added one equivalent of TASF (37 mg, 0.13 mmol) at room temperature. The mixture is stirred at room temperature for 10 minutes and stored at -18°C overnight to induce the crystallization of [**2**• μ_2 -F]⁻[S(NMe_2)_3]⁺. After filtration and washing with hexane (2 mL) and ether (2 mL), the product was obtained as colorless crystals (m= 110 mg, 89 %). mp. 215 °C (dec). ¹H NMR (CD₃CN): 1.67 (br s, 6H, Mes-CH₃), 1.83 (br s, 3H, Mes-CH₃), 2.00 (br s, 3H, Mes-CH₃), 2.16 (m, 6H, Mes-CH₃), 2.84 (s, 18H, N-CH₃), 6.32-6.64 (br s, 4H, Mes-CH), 7.08 (t, 1H, ³ $J_{H-H} = 7.5$ Hz), 7.19 (dd, 1H, ³ $J_{H-H} = 7.5$ Hz, ⁴ $J_{H-H} = 1.4$ Hz), 7.30 (d, 2H, ³ $J_{H-H} = 5.1$ Hz), 7.54 (dd, 1H, ³ $J_{H-H} = 7.5$ Hz, ⁴ $J_{H-H} = 1.4$ Hz), 7.69 (t, 1H, ³ $J_{H-H} = 5.1$ Hz). ¹³C NMR (CD₃CN): 20.04 (Br s), 23.65 (Br s), 24.44 (Br s) (CH₃-Mes), 37.99 (N-CH₃), 123.10, 124.78, 126.35, 129.40, 132.81, 135.88 (CH-Np), 127.91 (Br s), 128.33 (Br s), 128.92 (Br s) (CH-Mes), 131.90 (br s), 134.29 (br s), 135.53, 136.46, 138.24, 138.68, 138.94, 140.59 (br s), 142.50 (br s), 145.54, 145.92, 146.32, 148.51,

149.11, 150.12 (br s), 156.26 (br s), 161.18 (br s), 165.87 (*C*F, quaternary C, *C*B and *C*Hg). ¹⁹F NMR (CD₃CN): -117.1 (m, 2F, ${}^{2}J_{\text{F-Hg}} = 384.8 \text{ Hz}, F_{ortho}$), -159.0 (t, 1F, ${}^{3}J_{\text{F-F}} = 19.2 \text{ Hz}, F_{para}$), -163.5 (m, 2F, F_{meta}), -164.3 (m, 1F, μ^{2} -F). ¹⁹⁹Hg NMR (CD₃CN): -811.8 (dtt, ${}^{1}J_{\text{Hg-F}} = 135.2 \text{ Hz}, {}^{3}J_{\text{Hg-F}} = 387.1 \text{ Hz}, {}^{4}J_{\text{Hg-F}} = 65.8 \text{ Hz}$). ¹¹B NMR (CD₃CN): +8.5 Anal. Calcd for C₄₀H₄₆BF₆HgN₃S: C, 51.87; H, 5.01. Found: C 51.48; H 4.91. MS (ESI) $m/z = 763.135 [2-F]^{-}$. CV (DMSO): reversible wave at 1.965 eV relatice to Fc/Fc⁺.

UV-Vis spectrum of 2 and $[2-\mu^2-F]^{-}[nBu_4N]^{+}$ - Titration of 2 with F⁻

Figure SI-1: UV-Visible spectrum of **2** and $[2-\mu^2-F]^{-}[nBu_4N]^{+}$.

Derivation of the fluoride titration isotherm

In the following equations pFBHg = 2 and pFBHgF = $[2 \cdot \mu^2 - F]^-$...

pFBHg + F
$$\xrightarrow{K_{pFBHg}}$$
 [pFBHgF] $C_{pFBHg0} - x$ $F_0 - x$ x

Equation SI-1: Chemical distribution after addition of fluoride to a solution of 2.

$$K_{pFBHg} = \frac{[pFBHg]}{[pFBHgF] * [F^{-}]} = \frac{x}{(C_{pFBHg0} - x) * (F_{0}^{-} - x)}$$

$$\Rightarrow x^{2} - x \left(C_{pFBHg0} + F_{0}^{-} + \frac{1}{K_{pFBHg}} \right) + C_{pFBHg0} * F_{0}^{-} = 0$$

$$\Rightarrow x = \frac{A - \sqrt{A^{2} - 4 * C_{pFBHg0} * F_{0}^{-}}}{2} \quad \text{with } A = C_{pFBHg0} + F_{0}^{-} + \frac{1}{K_{pFBHg}}$$

Equation SI- 2: Relationship between the observed absorption with respect to the amount of fluoride added and to the binding constant K_{pFBHg} .

Titration in THF

A solution of **2** (3 mL, 5 10^{-5} M, THF) was placed in the cell and was titrated with incremental amounts of fluoride by addition of a solution of nBu₄NF in THF (5.82 10^{-3} M). The absorption was monitored at $\lambda_{max} = 361$ nm ($\epsilon = 10200$).

C _{Fluoride}	Abs _(361 nm)	C _{Fluoride}	Abs _(361 nm)
0.00E+00	0.51022	3.61E-05	0.13821
2.42E-06	0.48784	3.85E-05	0.11064
4.84E-06	0.45853	4.09E-05	0.08489
7.26E-06	0.43579	4.33E-05	0.05932
9.68E-06	0.41097	4.57E-05	0.03284
1.21E-05	0.38955	4.81E-05	0.01376
1.45E-05	0.36446	5.04E-05	0.00443
1.69E-05	0.34091	5.28E-05	0.00377
1.93E-05	0.31701	5.52E-05	0.00579
2.17E-05	0.29065	5.76E-05	0.0055
2.41E-05	0.26501	6.00E-05	0.00513
2.65E-05	0.23971	6.23E-05	0.00585
2.89E-05	0.2119	6.47E-05	0.00732
3.13E-05	0.18763	6.71E-05	0.00599
3.37E-05	0.16385		

Table SI-1: Absorbance of a solution of 2 (THF) after successive additions of fluoride.

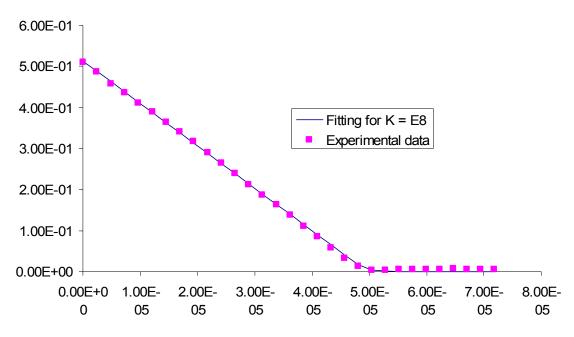


Figure SI- 2: Absorbance of a solution of 2 (THF) vs. fluoride concentration (M)

The experimental data obtained indicated that the binding constant is higher than 10^8 M^{-1} in THF.

Determination of the fluoride binding constant of trimesitylborane in THF-H₂O (90/10)

$$Mes_{3}B + F^{-} \xrightarrow{K_{Mes_{3}B}} [Mes_{3}BF]^{-}$$

$$C_{0} - x \qquad C_{0} - x \qquad x$$
with $C_{0} = C_{Mes_{3}B0} = F_{0}^{-} = 0.163 \text{ M}.$

$$K_{Mes_{3}B} = \frac{[Mes_{3}BF]^{-}}{[Mes_{3}B]^{*}[F^{-}]} = \frac{x}{(C_{0} - x)^{2}}$$

Equation SI- 3: Chemical distribution after addition of fluoride to a solution of Mes₃B and TBAF.

60 mg of trimesitylborane (1.63 mmol) and 51 mg of TBAF-3H₂O (1.63 mmol, 1 eq) were dissolved in 1 mL of a THF-H₂O (90/10) solution. The ¹⁹F NMR (400 MHz) was recorded, showing two signals at -119.3 ppm and -151.7 ppm for free fluoride anion and trimesitylborane fluoride adduct respectively.

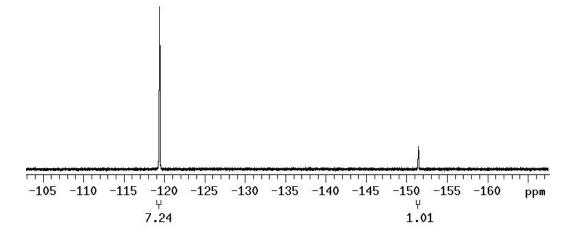


Figure SI- 3: ¹⁹F NMR of a 0.163 M solution of BMes₃ and TBAF in THF-H₂O (90/10).

The relative integration gives $x = 1.99 \ 10^{-2} \text{ M}$, and $C_0 \text{-} x = 0.143 \text{ M}$. Therefore the binding constant of trimesitylborane is $K_{Mes3B} = 1 \ (\pm 0.3) \text{ M}^{-1}$.

Titration in a THF-H₂O (90/10)

A solution of **2** (3 mL, 4.5 10^{-5} M, THF-H₂O 90/10 (vol.)) was placed in the cell and was titrated with incremental amounts of fluoride by addition of a solution of nBu₄NF in THF (5.7 10^{-3} M). The absorption was monitored at $\lambda_{max} = 361$ nm ($\epsilon = 9850$).

C _{Fluoride}	Abs _(361 nm)	C _{Fluoride}	Abs _(361 nm)
0.00E+00	0.45047	5.18E-05	0.24579
4.75E-06	0.43114	5.64E-05	0.21995
9.48E-06	0.40972	7.50E-05	0.1829
1.42E-05	0.38949	9.34E-05	0.15881
1.89E-05	0.3701	1.12E-04	0.13525
2.37E-05	0.34852	1.30E-04	0.11735
2.84E-05	0.31669	1.48E-04	0.10578
3.31E-05	0.30459	1.66E-04	0.09523
3.77E-05	0.28971	1.84E-04	0.08509
4.24E-05	0.26564	2.02E-04	0.07974
4.71E-05	0.25625		

Table SI-2: Absorbance of a solution of **2** (THF- H_2O : 90/10) after successive addition of fluoride.

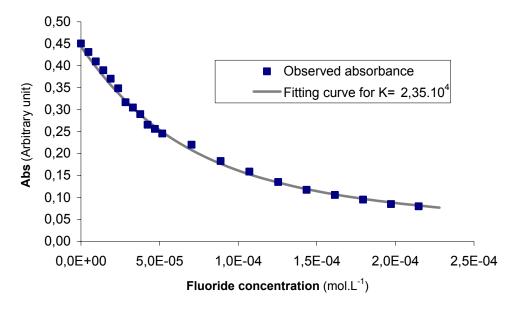


Figure SI- 4: Absorbance of a solution of 2 (THF-H₂O: 90/10) vs. fluoride concentration.

The experimental data was fitted by hand to the above equation ($C_{pFBHg0} = 4.5 \ 10^{-5} \text{ M}$). This fit yielded $K_{pFBHg} = 2.35 \ (\pm 0.2) \ 10^4 \text{ M}^{-1}$.

Binding selectivity studies

Fluoride binding by **2** also occurs in the presence of other anions. This has been confirmed by monitoring the absorption, ¹H NMR, or ¹⁹F NMR spectra of **2** upon successive additions of different anions. For example, the successive addition of chloride, bromide, and iodide to a solution of **2** in THF does not lead to any noticeable changes of the spectroscopic features of **2**. Addition of fluoride to the same solution results in the formation of [**2**-F]⁻. Similar experiments have been carried out with the other anions.

Solid state luminescence spectrum of 2 and $[2-\mu^2-F]^2$. $[S(NMe_2)_3]^+$

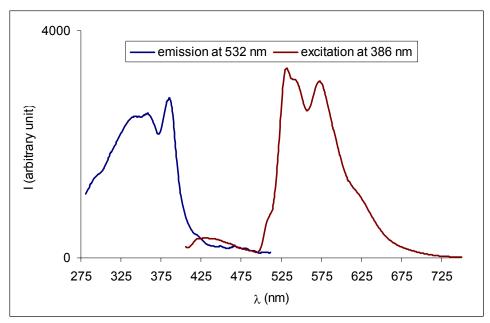
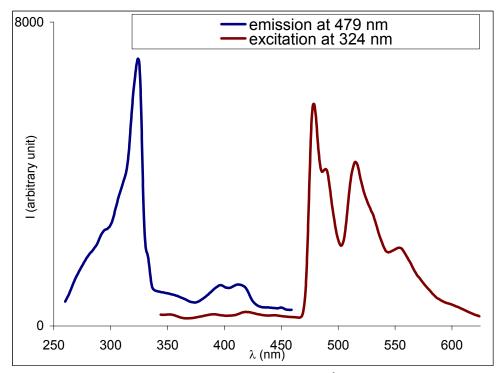



Figure SI- 5: Emission and excitation spectrum of 2 at 77 K.

Figure SI- 6: Emission and excitation spectrum of $[2-\mu^2-F]^-$. $[S(NMe_2)_3]^+$ at 77 K.