Supporting Information

Total Synthesis of Naturally Ocurring Diacetylenic Spiroacetal Enol Ethers

Naoki Miyakoshi, Daisuke Aburano, and Chisato Mukai* Division of Pharmaceutical Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192,

JAPAN

Table of Contents

;
5
ŀ
5
)
)
,
8
)
0
1
2
3
4
5
6
7
8
9
20
21
22

General. Melting points are uncorrected. IR spectra were measured in CHCl₃. ¹H NMR spectra were taken in CDCl₃. CHCl₃ (7.26 ppm) for silyl compounds and tetramethylsilane (0.00 ppm) for compounds without a silyl group was used as an internal standard. ¹³C NMR spectra were recorded in CDCl₃ with CHCl₃ (77.0 ppm) as an internal standard. All reaction were corried out under a nitrogen atmosphere unless otherwise stated. Silica gel (silica gel 60, 230-400 mesh) was used for chromatography. Organic extracts were dried over anhydrous Na₂SO₄.

6-[(1R,2S)-1-Benzyloxy-2-(tert-Butyldiphenylsiloxy)-but-3-ynyl]-3,4-dihydro-2H-

pyran. (+)-24. According to the procedure described for the preparation of (-)-22, (-)-20 (61.0 mg, 0.10 mmol) was converted to the corresponding alcohol. A solution of PdCl₂(MeCN)₂ (13.0 mg, 0.050 mmol) in MeOH (3.5 mL) was stirred under a CO atmosphere at room temperature for 10 min, to which a solution of the crude alcohol and benzoquinone (11.9 mg, 0.11 mmol) in MeOH (1.5 mL) was added. After being stirred for 30 min, MeOH was evaporated off and the residue was taken up in CH₂Cl₂, which was successively washed with saturated aqueous NaS₂O₃, saturated aqueous NaHCO₃, water, and brine, dried, and concentrated to dryness. The residue was passed through a short pad of silica gel with hexane-AcOEt (5:1) to afford the crude tetrahydropyran derivative. CSA (4.60 mg, 0.20 x 10^{-1} mmol) and Molecular sieves 4 A (50.0 mg) were added to a solution of the crude tetrahydropyran derivative and the reaction mixture was stirred for 4 h at room temperature, quenched by addition of Et₃N (1.0 mL), and solid was filtered off. The filtrate was concentrated to leave the residual oil, which was chromatographed with hexane-AcOEt (5:1) to afford (+)-24 (29.0 mg, 59%) as a colorless oil: [α]²⁴_D+61.3 (*c* 0.72, CHCl₃); IR 3308, 1674 cm⁻¹;

¹H NMP δ 7.75-7.70 (m, 4H), 7.40-7.34 (m, 2H), 7.31-7.22 (m, 9H), 4.80 (t, 1H, J = 3.5 Hz), 4.64(dd, 1H, J = 7.3, 2.0 Hz), 4.64, 4.44 (AB-q, 2H, J = 11.7 Hz), 3.91 (m, 2H), 3.75 (d, 1H, J = 7.3Hz), 2.21 (d, 1H, J = 2.0 Hz), 2.02 (m, 2H), 1.76 (m, 2H), 1.07 (s, 9H); ¹³C NMR δ 149.7, 138.3, 136.3, 136.1, 133.6, 133.5, 129.5, 128.1, 128.0, 127.3, 127.3, 127.2, 101.6, 83.7, 82.5, 73.8, 70.8, 66.1, 65.7, 26.9, 22.2, 20.1, 19.4; FABMS *m/z* 497 (M⁺+1, 2.0). FABHRMS calcd for C₃₂H₃₇O₃Si 497.2512, found 497.2518.

(2*E*,3*R*,4*R*,5*R*)-4-Benzyloxy-3-(*tert*-butyldiphenylsiloxy)-2-(2-hydroxyethylidene)-1,6dioxaspiro[4.5]decane ((-)-25). DIBAL-H in hexane (1.00 M, 0.30 mL, 0.30 mmol) was added to a solution of (-)-22 (16.0 mg, 0.28 x 10⁻¹ mmol) in CH₂Cl₂ (3.0 mL) at -78 °C. The mixture was stirred for 30 min, quenched by addition of saturated aqueous Na₂SO₄, and the resulting solid was filtered off. The filtrate was concentrated to leave the residual oil, which was chromatographed with hexane-AcOEt (2:1) to afford (-)-25 (14.0 mg, 92%) as a colorless oil: $[\alpha]_{D}^{24}$ -68.7 (*c* 0.77, CHCl₃); IR 3564, 1686 cm⁻¹; ¹H NMR δ 7.80-7.74 (4H, m) 7.48-7.41 (m, 6H), 5.25 (dt, 1H, *J* = 1.3, 7.9 Hz), 4.58 (br-s, 1H), 4.14-3.68(m, 5H), 1.85-1.60(m, 6H), 1.06 (s, 9H); ¹³C NMR δ 158.5, 136.0, 136.0, 133.3, 132.9, 130.2, 130.0, 128.0, 127.8, 107.3, 102.0, 80.9, 62.2, 58.6, 28.2, 26.8, 24.9, 19.4, 19.0; MS *m*/*z* 454 (M⁺, 0.1). HRMS calcd for C₂₆H₃₄O₅Si 454.2175, found 454.2174. Anal. Calcd for C₃₃H₄₀O₅Si: C, 72.76; H, 7.40. Found: C, 72.70, H, 7.53.

(2E,3R,4R,5R)-4-Benzyloxy-3-(tert-butyldiphenylsiloxy)-2-propynylidene-1,6-

dioxaspiro[**4.5**]**decane** ((-)-**26**). A suspension of (-)-**25** (7.00 mg, 0.12 x 10⁻¹ mmol) and chemical manganese dioxide (18.3mg, 0.26 mmol) in CH₂Cl₂ (2.0 mL) was stirred at room temperature for 1 h. The mixture was filtered off and the filtrate was concentrated to leave the crude aldehyde. The crude aldehyde was converted to the title compound (5.80 mg, 0.11 x 10⁻¹ mmol) by the procedure described for conversion of (-)-17 into (-)-**18**. Compound (-)-**26** was a colorless plate: mp 130-131 °C (EtOH); [α]²⁵_D –68.5 (*c* 0.74, CHCl₃); IR 3308, 2110, 1655 cm⁻¹; ¹H NMR δ 7.83-7.80 (m, 4H), 7.44-7.35 (m, 6H), 7.22-7.20 (m, 3H), 6.96-6.94 (m, 2H), 5.08 (d, 1H, *J* = 3.0 Hz), 4.84 (s, 1H), 3.96 (dt, 1H, *J* = 3.0, 11.7 Hz), 3.75 (m, 1H), 3.71, 3.67 (AB-q, 2H, *J* = 11.7 Hz), 3.58 (s, 1H), 2.69 (d, 1H *J* = 3.0 Hz), 1.88-1.57 (m, 6H), 1.07 (s, 9H); ¹³C NMR δ 169.8, 137.7, 136.5, 133.8, 133.2, 129.7, 128.1, 127.6, 127.4, 127.1, 110.3, 86.5, 82.5, 80.7, 79.9, 74.6, 71.2, 62.3, 28.8, 26.9, 24.9, 19.6, 19.1; Anal. Calcd for C₃₄H₃₈O₂Si: C, 75.80; H, 7.11. Found: C, 75.58, H, 7.20.

(2*E*,3*R*,4*R*,5*R*)-4-Benzyloxy-2-propynylidene-1,6-dioxaspiro[4.5]decan-3-ol ((-)-27). To a solution of (-)-26 (10.0 mg, 0.18 x 10⁻¹ mmol) in THF (2.0 mL) was added TBAF in THF (1.00 M, 0.1 mL, 0.1 mmol) and the reaction mixture was stirred for 4 h at room temperature, quenched by addition of water, and extracted with Et₂O. The extract was washed with water and brine, dried, and concentrated to dryness. Chromatography of the residue with hexane-AcOEt (4:1) afforded (-)-27 (5.10 mg, 94%) as a colorless oil: $[\alpha]_{D}^{23}$ –106.9 (*c* 0.38, CHCl₃); IR 3693, 3306, 2106, 1655 cm⁻¹; ¹H NMR δ 7.37-7.28 (m, 5H), 5.14 (d, 1H, *J* = 2.4 Hz), 4.78 (d, 1H, *J* = 8.8 Hz), 4.74, 4.55 (AB-q, 2H, *J* = 11.7 Hz), 3.88 (dt, 1H, *J* = 2.9, 11.2 Hz), 3.73 (s, 1H), 3.72-3.69 (m, 1H), 3.04 (d, 1H, *J* = 2.4 Hz), 2.97 (d, 1H, *J* = 8.8 Hz), 2.06-2.01 (m, 1H), 1.85-1.58 (m, 5H); ¹³C NMR δ 167.0, 128.5, 128.0, 127.7, 110.1, 85.5, 83.2, 80.0, 79.4, 73.4, 71.8, 62.6, 28.0, 24.7, 18.6; FABMS *m/z* 301 (M⁺+1, 12.0). FABHRMS calcd for C₁₈H₂₁O₄ 301.1440, found 301.1438.

(2E,3R,4R,5R)-3-(tert-Butyldiphenylsiloxy)-2-propynylidene-1,6-

dioxaspiro[4.5]decan-4-ol ((-)-30). According to the procedure for the preparation of (-)-26, (-)-29 was converted to the corresponding alkyne. The title compond was obtained in 84% yield as a colorless oil: $[\alpha]_{D}^{25} - 80.7$ (*c* 0.44, CHCl₃); IR 3568, 3308, 2110, 1655 cm⁻¹; ¹H NMR δ 7.82-7.78 (m, 4H), 7.46-7.37 (m, 6H), 5.18 (d, 1H, *J* = 3.0 Hz), 4.71 (s, 1H), 3.93 (dt, 1H, *J* = 3.4, 11.7 Hz), 3.75 (s, 1H), 3.73 (m, 1H), 2.77 (d, 1H *J* = 3.0 Hz), 1.82-1.48 (m, 6H), 1.10 (s, 9H); ¹³C NMR δ 168.8, 136.3, 136.1, 134.0, 133.0, 129.9, 129.8, 127.6, 127.6, 109.5, 82.8, 80.5, 80.3, 80.2, 78.8, 62.5, 28.1, 26.9, 24.7, 19.6, 18.9; MS *m/z* 448 (M⁺, 3.4). HRMS calcd for C₂₇H₃₂O₄Si 448.2070, found 448.2073.

(2E,3R,4R,5R)-4-Benzoyloxy-2-(2,4-hexadiynylidene)-1,6-dioxaspiro[4.5]decan-3-ol

((+)-32). According to the procedure described for coupling reaction of (+)-28, (+)-31 (5.90 mg, 0.19 x 10⁻¹ mmol) was converted into (+)-32 (4.00 mg, 60%) as a colorless oil: $[\alpha]_{D}^{26}$ +183.0 (*c*

0.092, CHCl₃); IR 3547, 2142, 1728, 1649 cm⁻¹; ¹H NMR δ 8.03-7.98 (m, 2H), 7.60 (m, 1H), 7.48-7.42 (m, 2H), 5.29 (s, 1H), 5.24 (d, 1H, *J* = 1.0 Hz), 4.76 (d, 1H, *J* = 9.9 Hz), 3.92 (dt, 1H, *J* = 3.3, 10.9 Hz), 3.80 (m, 1H), 2.98 (d, 1H, *J* = 9.9 Hz), 1.95 (d, 3H, *J* = 1.0 Hz), 1.92-1.58 (m, 6H); ¹³C NMR δ 170.7, 164.9, 133.6, 129.9, 128.9, 128.6, 109.9, 84.1, 80.1, 79.7, 77.4, 74.6, 69.7, 68.0, 64.7, 62.8, 27.6, 24.4, 18.5, 4.6; MS *m/z* 352 (M⁺, 14.5). HRMS calcd for C₂₁H₂₀O₅ 352.1311, found 352.1310.

(2*E*,3*S*,4*R*,5*S*)-3,4-Epoxy-2-propynylidene-1,6-dioxaspiro[4.5]decane (+)-36. MsCl (0.27 x 10⁻¹ mL, 0.36 mmol) was added to a solution of (-)-30 (16.0 mg, 0.36 x 10⁻¹ mmol), Et₃N (0.10 mL, 0.72 mmol) in CH₂Cl₂ (1.0 mL) at 0 °C. After being stirred for 5 min, the reaction mixture was quenched by addition of water and extracted with CH₂Cl₂, which was washed with water and brine, dried, and concentrated to dryness. The residue was passed through a short pad of silica gel with hexane-AcOEt (5:1) to afford the crude mesylate. TBAF (1.0M solution of THF, 0.36 mL, 0.36 mmol) was added to a solution of the crude mesylate in THF (3.0 mL) and the reaction mixture was stirred for 1 h at room temperature, refluxed for 3h, quenched by addition of water, and extracted with Et₂O. The extract was washed with water and brine, dried, and concentrated to dryness. Chromatography of the residue with hexane-AcOEt (5:1) afforded (+)-**36** (6.90 mg, quant.) as a colorless oil: [α]²⁸_D +167.6 (*c* 0.10, CHCl₃); IR 3308, 2106, 1661 cm⁻¹; ¹H NMR δ 5.11 (d, 1H,

J=2.4 Hz), 4.29 (d, 1H, J=2.9 Hz), 3.91-3.88 (m, 2H), 3.79 (d, 1H, J=2.9 Hz), 2.94 (d, 1H, J=2.4 Hz), 1.86-1.60 (m, 6H); ¹³C NMR δ 162.2, 134.8, 129.7, 127.7, 105.7, 85.1, 79.0, 64.7, 58.8, 52.1, 30.6, 29.7, 26.6, 24.4, 18.0; MS *m*/*z* 192 (M⁺, 9.0). HRMS calcd for C₂₁H₂₀O₅ 192.0786, found 192.0796.

(2R,3R)-3-Benzyloxy-4-(*tert*-butyldimethylsiloxy)-2-(*tert*-butyldiphenylsiloxy)butan-

1-ol ((**+**)-**17**): colorless oil: [α]²⁸_D +15.1 (*c* 1.00, CHCl₃) Anal. Calcd for C₃₃H₄₈O₄Si₂: C, 70.16; H, 8.56. Found: C, 69.84, H, 8.57.

(3R,4R)-4-Benzyloxy-5-(*tert*-butyldimethylsiloxy)-3-(*tert*-butyldiphenylsiloxy)pent-1yne ((+)-18): colorless oil: [α]³⁰_D +0.1 (c 0.93, CHCl₃); Anal. Calcd for C₃₄H₄₆O₃Si₂: C, 73.07; H, 8.30. Found: C, 72.78, H, 8.42.

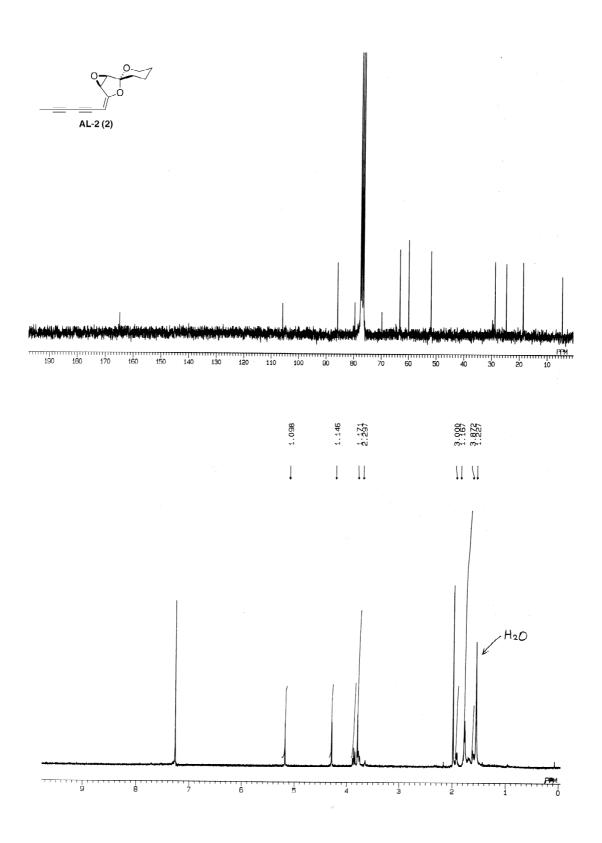
(2R,3R)-2-Benzyloxy-3-(*tert*-butyldiphenylsiloxy)-4-pentyn-1-ol ((+)-19): colorless oil: [α]²⁶_D +5.7 (*c* 1.00, CHCl₃); Anal. Calcd for C₂₈H₃₂O₃Si: C, 75.63; H, 7.25. Found: C, 75.51, H, 7.25.

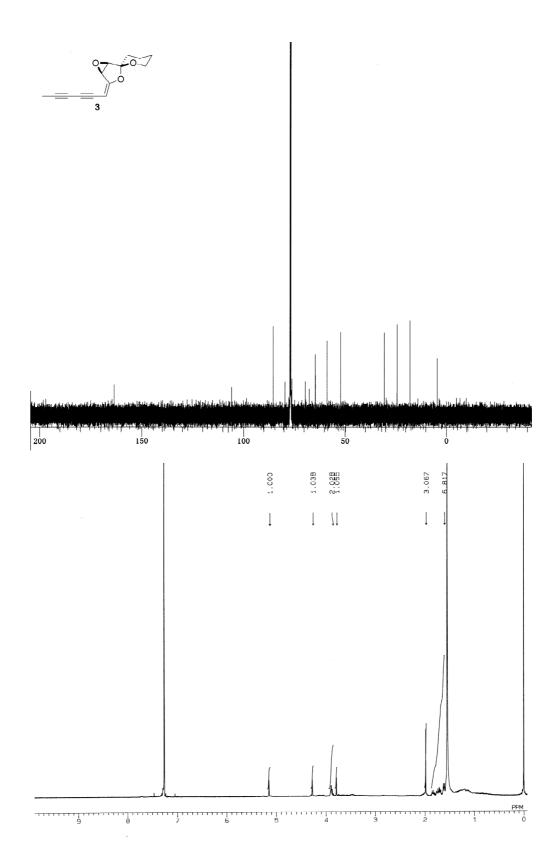
(3R,4S)-4-Benzyloxy-9-(tert-butyldimethylsiloxy)-3-(tert-butyldiphenylsiloxy)-1-

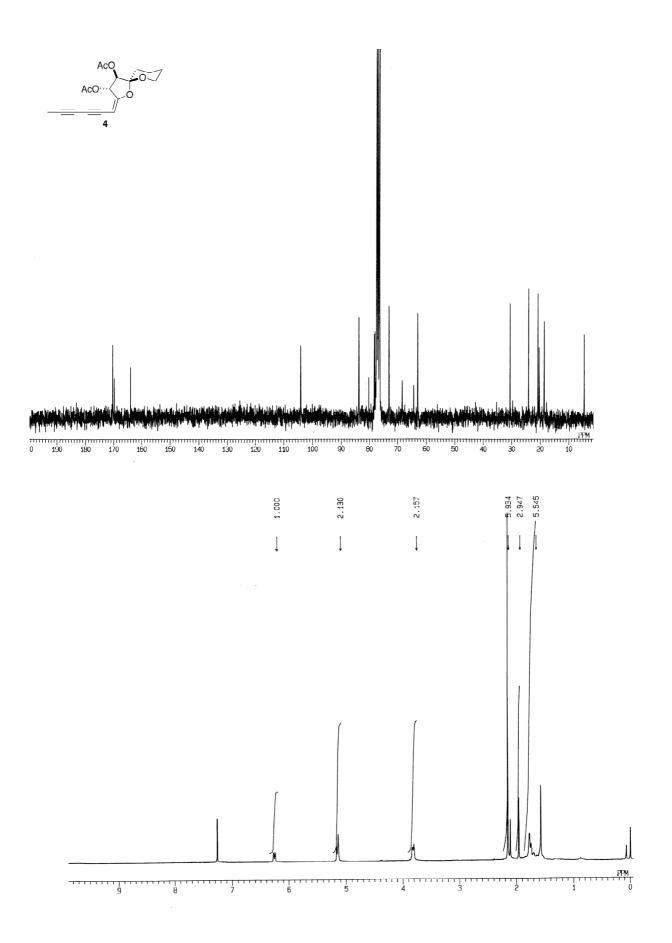
nonyn-5-one ((-)-**20**): colorless oil: $[\alpha]_{D}^{26}$ -39.8 (*c* 1.05, CHCl₃); Anal. Calcd for C₃₈H₅₂O₄Si₂: C, 72.56; H, 8.33. Found: C, 72.29, H, 8.58.

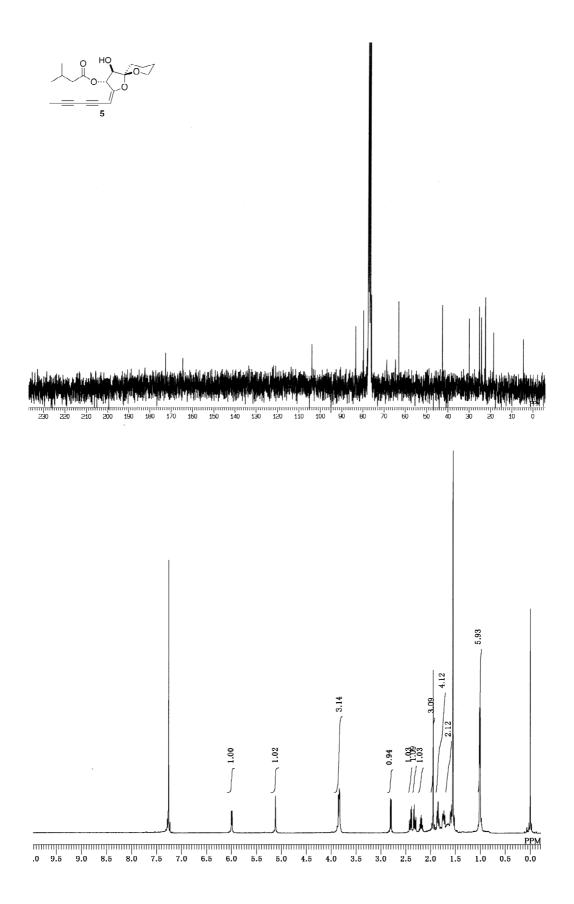
(2E,3S,4S,5S)-4-Benzyloxy-3-(tert-butyldiphenylsiloxy)-2-

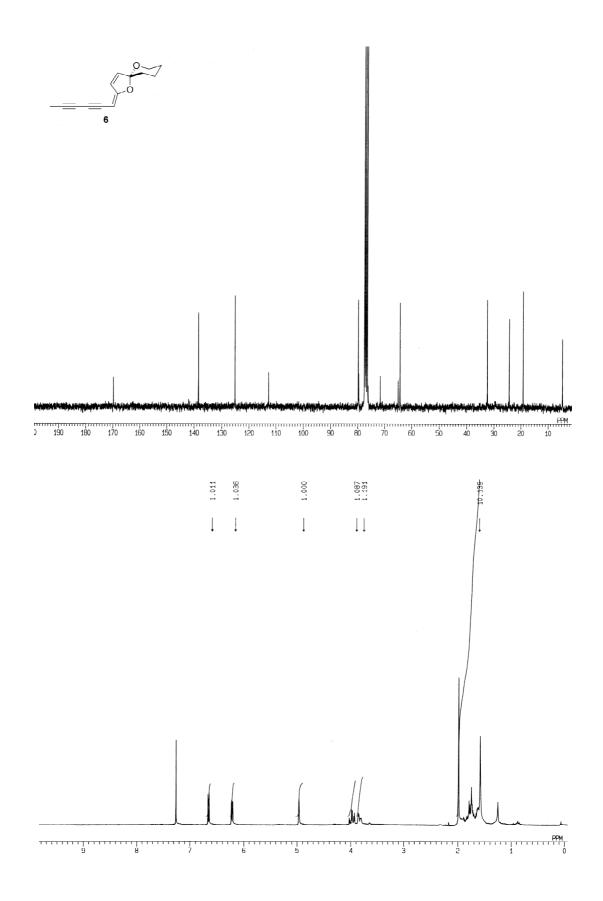
methoxycarbonylmethylidene-1,6-dioxaspiro[4.5]decane ((+)-22): $[\alpha]_{D}^{24}$ +75.6 (*c* 0.21, CHCl₃); FABMS *m*/*z* 573 (M⁺+1, 1.4). FABHRMS calcd for C₃₄H₄₁O₆Si 573.2672, found 573.2640.

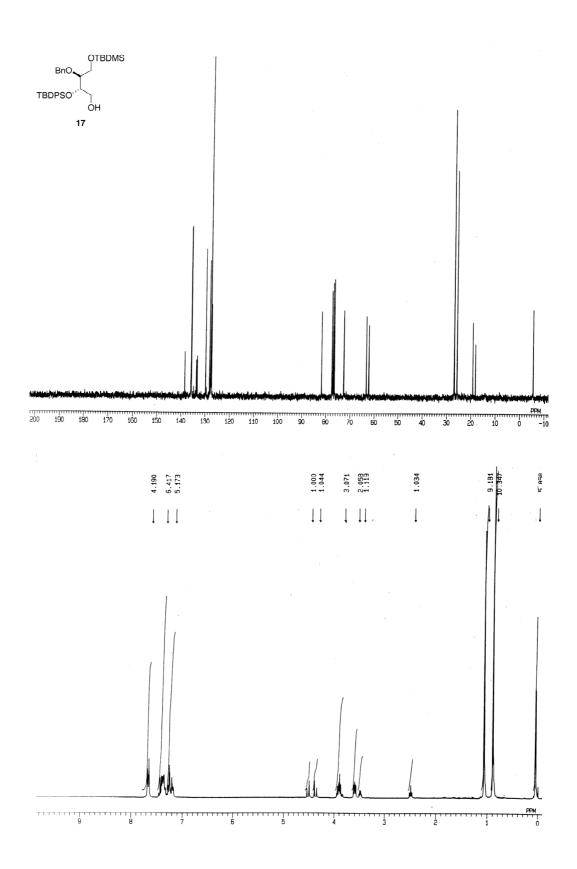

(2E,3S,4S,5S)-3-(tert-Butyldiphenylsiloxy)-2-(2-hydroxyethylidene)-1,6-

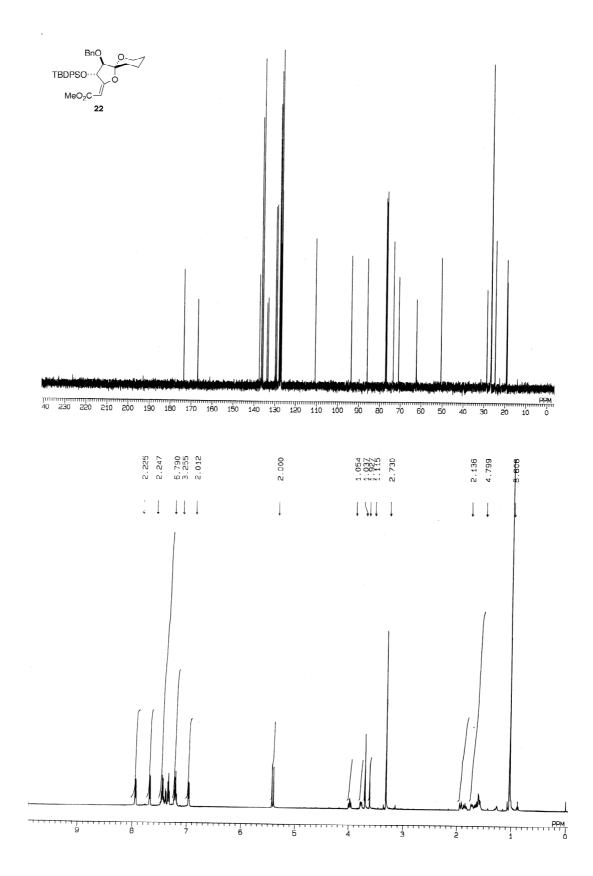

dioxaspiro[4.5]decan-4-ol ((+)-29): colorless needles: mp. 168.5-169.5 °C (hexane-AcOEt); [α]²⁵_D +70.4 (*c* 0.19, THF); Anal. Calcd for C₂₆H₃₄O₅Si: C, 68.69; H, 7.54. Found: C, 68.62, H, 7.63.

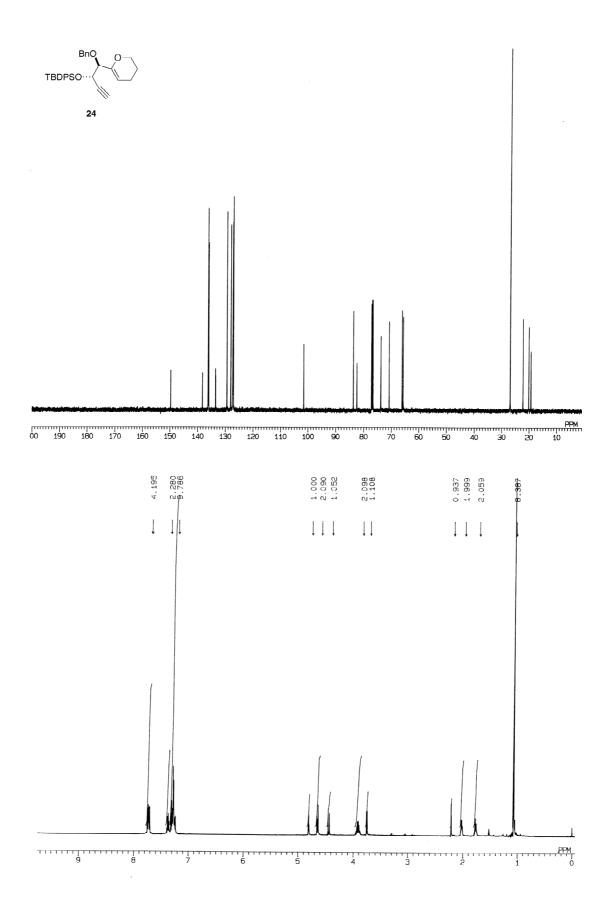

(2E,3S,4S,5S)-3-(tert-Butyldiphenylsiloxy)-2-propynylidene-1,6-

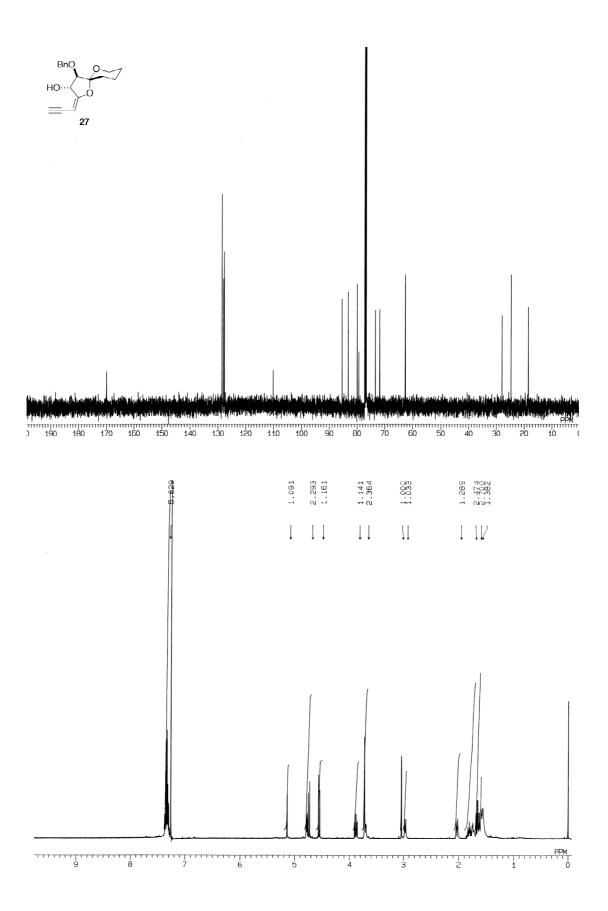

dioxaspiro[4.5]decan-4-ol ((+)-30): colorless oil: $[\alpha]_{D}^{25}$ +82.03 (c 0.27, CHCl₃); MS m/z 448 (M⁺,

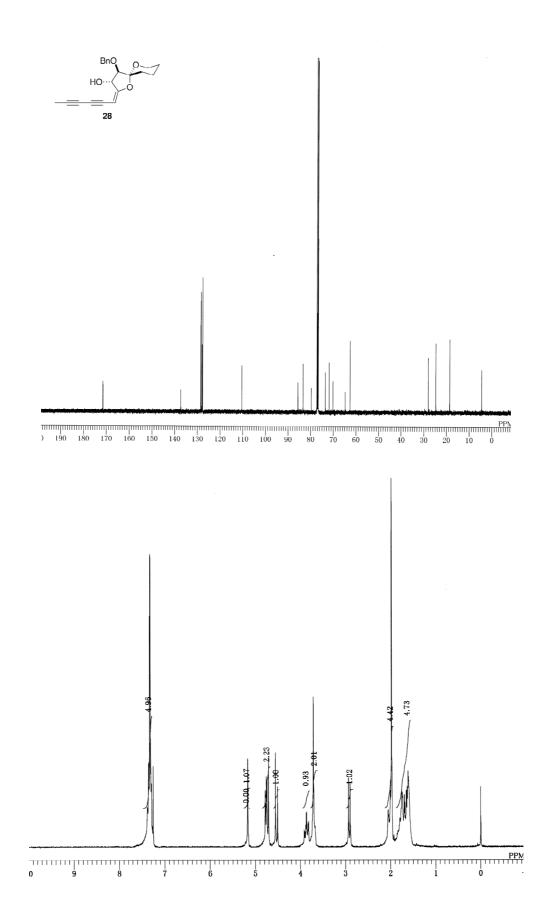

0.7). HRMS calcd for $C_{27}H_{32}O_4Si$ 448.2070, found 448.2073.

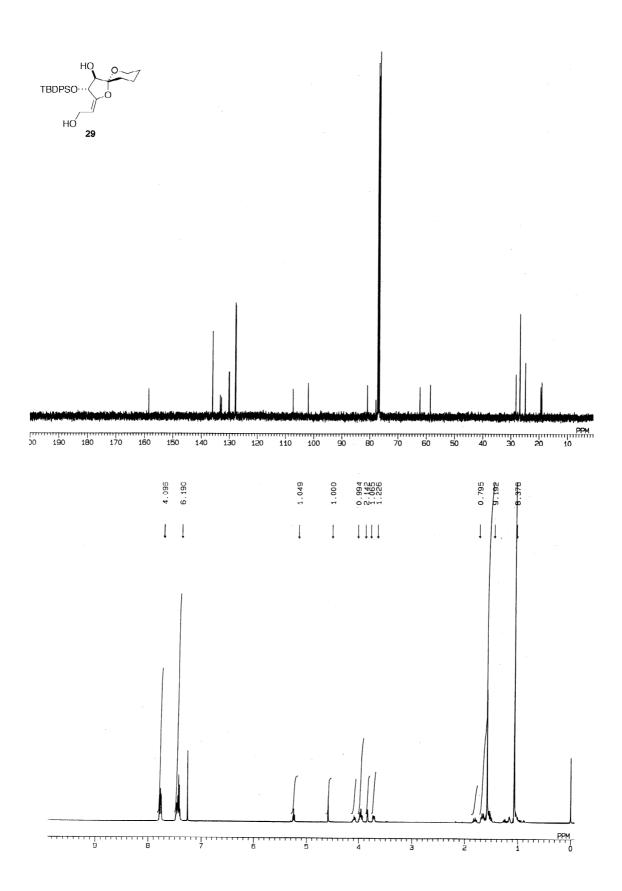


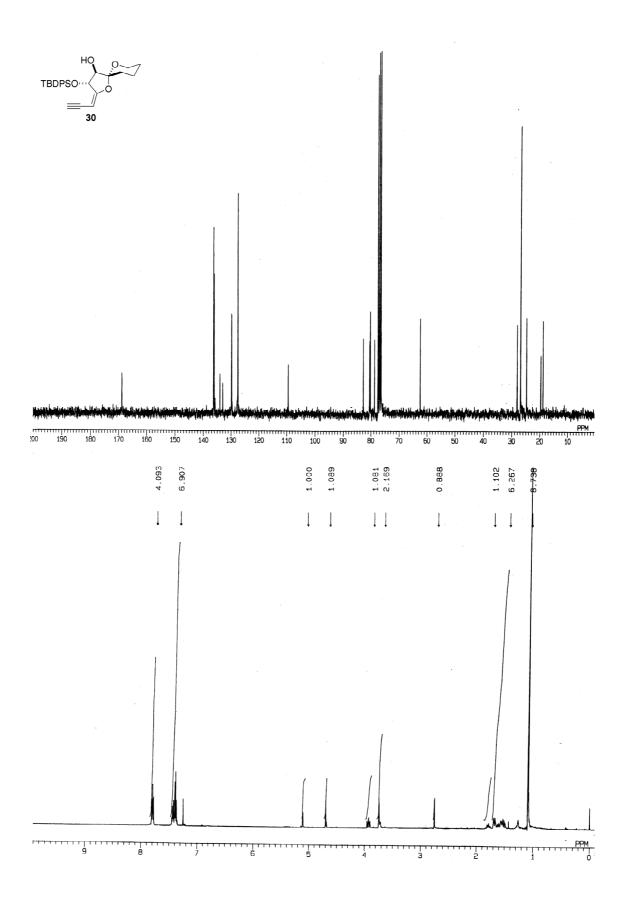


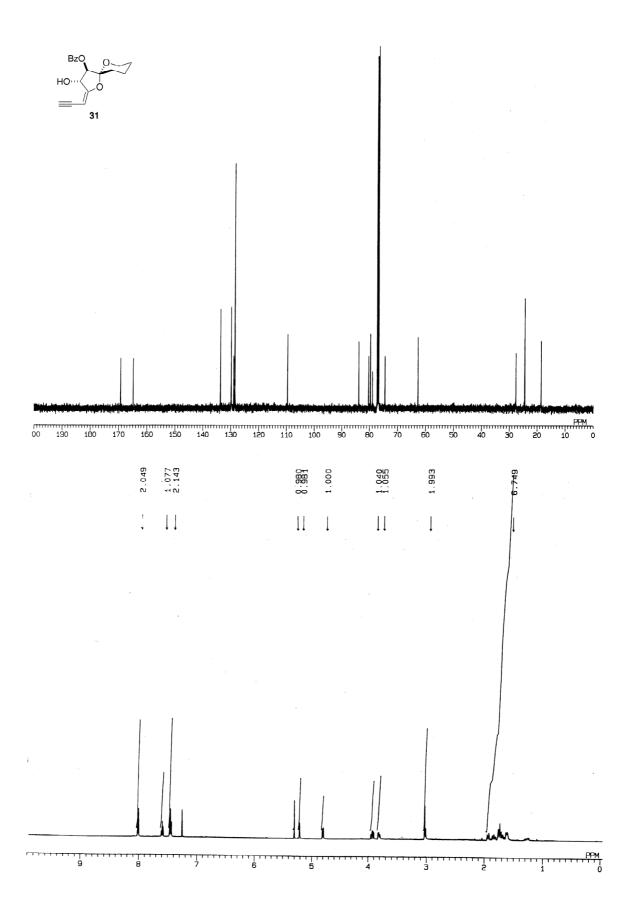


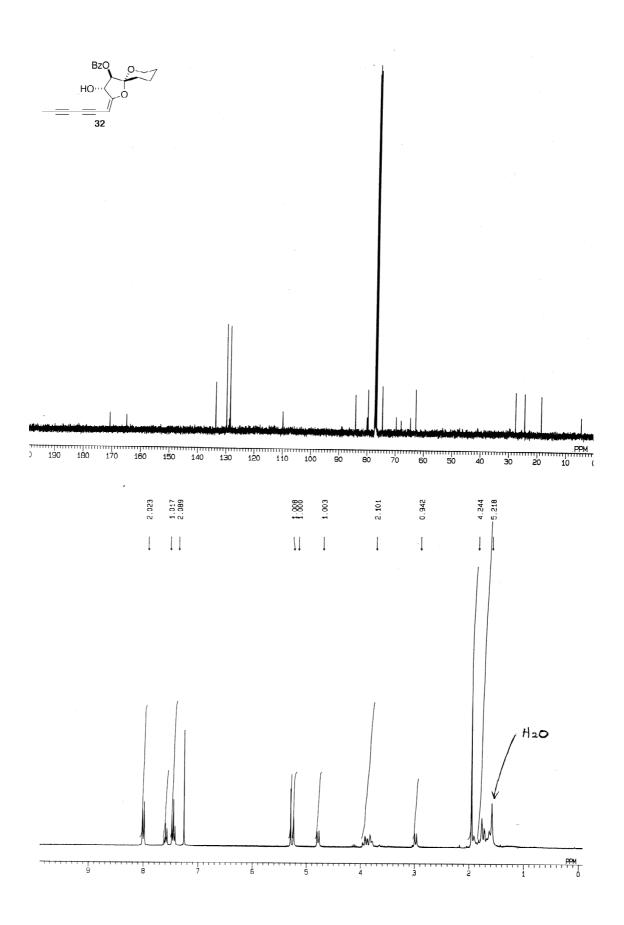


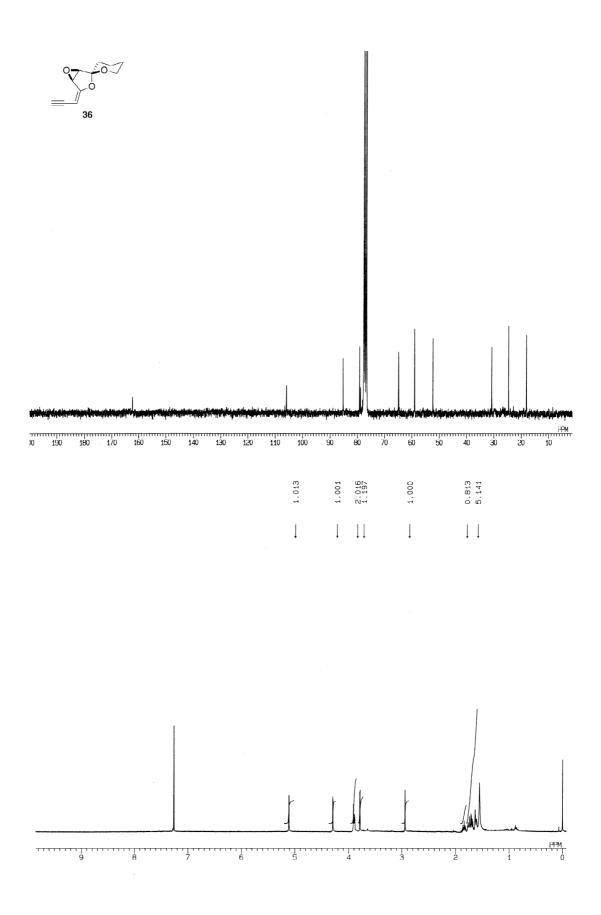











S17

