Synthesis of 4-Substituted-3-amino-piperidin-2-ones: Application to the Synthesis of a Conformationally Constrained Tetrapeptide AcSDKP

Sukeerthi Kumar, Céline Flamant-Robin, Qian Wang, Angèle Chiaroni and N. André Sasaki*

Institut de Chimie des Substances Naturelles, CNRS, 91198 Gif-sur-Yvette Cedex, France

Table of Contents

General Methods	S4
General information and all spectroscopic data for compounds	
6b, 6c, 8b, 9b, 10b, 11b, 12b, 13b, 14b, 15b, 16b, 18, 19, 20, 21, 28, 30 and 31	S5-S14
ORTEP drawing of 12a	S15
X ray analysis for compound 12a	S16-S17
¹ H NMR Spectra for compound 6a	S18
¹ H and ¹³ C NMR Spectra for compound 6b	S19-S20
¹ H and ¹³ C NMR Spectra for compound 8a	S21-S22

¹ H NMR Spectra for compound 9a	S23
¹ H NMR Spectra for compound 9b	S24
¹ H NMR Spectra for compound 10a	S25
¹ H NMR Spectra for compound 10b	S26
¹ H NMR Spectra for compound 11a	S27
¹ H NMR Spectra for compound 11b	S28
¹ H and ¹³ C NMR Spectra for compound 12a	S29-S30
¹ H and ¹³ C NMR Spectra for compound 12b	S31-S32
¹ H NMR Spectra for compound 6 c	S33
¹ H NMR Spectra for compound 13a	S34
¹ H and ¹³ C NMR Spectra for compound 13b	S35-S36
¹ H NMR Spectra for compound 14a	S 37
¹ H and ¹³ C NMR Spectra for compound 14b	S38-S39
¹ H and ¹³ C NMR Spectra for compound 15b	S40-S41
¹ H NMR Spectra for compound 16a	S42
¹ H and ¹³ C NMR Spectra for compound 16b	S43-S44
¹ H and ¹³ C NMR Spectra for Fmoc-L-Lys(Cbz)ProOBu ^t	S45-S46

¹ H and ¹³ C NMR Spectra for compound 17	S47-S48
¹ H and ¹³ C NMR Spectra for compound 18	S49-S50
¹ H and ¹³ C NMR Spectra for compound 19	S51-S52
¹ H and ¹³ C NMR Spectra for compound 20	S53-S54
¹ H and ¹³ C NMR Spectra for compound 21	S55-S56
¹ H and ¹³ C NMR Spectra for compound 22	S57-S58
¹ H and ¹³ C NMR Spectra for compound 23	S59-S60
¹ H and ¹³ C NMR Spectra for compound 24	S61-S62
¹ H and ¹³ C NMR Spectra for compound 25	S63-S64
¹ H and ¹³ C NMR Spectra for compound 26a	S65-S66
¹ H and ¹³ C NMR Spectra for compound 28	S67-S68
¹ H and ¹³ C NMR Spectra for compound 29	S69-S70
¹ H and ¹³ C NMR Spectra for compound 30	S71-S72
¹ H and ¹³ C NMR Spectra for compound 31	S73-S74
¹ H and ¹³ C NMR Spectra for compound 2	S75-S76

General Methods. All reagents obtained from commercial sources were used as received without further purification. THF was distilled from sodium and benzophenone as indicator. CH_2Cl_2 was distilled over P_2O_5 immediately prior to use. Infrared (IR) spectra were obtained using an FTIR spectrophotometer, wavelength (v) are reported in cm⁻¹. Optical rotations were measured using concentrations (*c*) in g/100 mL in the indicated solvents. ¹H NMR spectra were recorded at 300 MHz and 500 MHz, ¹³C NMR spectra were recorded at 75.5 MHz with chemical shifts reported in ppm (δ) downfield from TMS (internal reference) for ¹H and relative to the center line of the triplets of CDCl₃ at 77.14 ppm for ¹³C, unless indicated otherwise. HRMS spectra were run on waters Micromass LCT with an electrospray source (ZQ) in positive mode ionization (ESI). Flash column chromatography was performed using Kieselgel (230-400 mesh) using indicated solvents (mixture). Analytical thin layer chromatography (TLC) was carried out on plates precoated with 0.25 mm of silca gel containing 60F-254 indicator. Melting points were determined on a B-540 and are uncorrected.

(**4***S*,**1***′S*)-**2**,**2**-Dimethyl-4-(3*′*-oxo-1*′*-phenylpropyl)oxazolidine-3-carboxylic acid *tert*-butyl ester (**6***b*): The general procedure 1 was followed using alcohol **5***b* (980 mg, 2.77 mmol) to give 857 mg (88%) of **6***b* as a yellow oil: ¹H NMR (300 MHz, CDCl₃): δ 9.69-9.64 (m, 1H), 7.37-7.17 (m, 5H), 4.23-3.95 (m, 2H), 3.87 (dd, *J* = 1.4, 9.6 Hz, 1H), 3.75 (dd, *J* = 7.0, 9.6 Hz, 1H), 2.99-2.84 (m, 2H), 1.69-1.42 (m, 15H); ¹³C NMR (75 MHz, CDCl₃): δ 202.2, 201.5, 153.2, 152.6, 140.0, 128.9, 128.6, 128.4, 128.1, 127.2, 95.0, 94.6, 80.7, 63.8, 62.0, 61.8, 42.5, 41.6, 40.9, 40.6, 28.5, 26.6, 26.3, 23.9, 22.4; MS (ESI) *m/z*: 334 [M+H]⁺, 356 [M+Na]⁺, 372 [M+K]⁺.

(**4***S*,**1***[']R*)-**2**,**2**-Dimethyl-4-[1[']-(2^{''}-oxoethyl)allyl]oxazolidine-3-carboxylic acid *tert*-butyl ester (**6**c): The general procedure 1 was followed using alcohol **5c** (4.00 g, 14.04 mmol) to give 3.80 g (95%) of **6c** as a yellow oil: ¹H NMR (300 MHz, CDCl₃): δ 9.69 (bs, 1H), 5.83-5.64 (m, 1H), 5.20- 5.07 (m, 2H), 4.14-3.76 (m, 3H), 3.36-3.21 (m, 1H), 2.67-2.38 (m, 2H), 1.65-1.42 (m, 15H); ¹³C NMR (75 MHz, CDCl₃): δ 201.9, 201.6, 153.2, 153.0, 137.4, 117.5, 94.6, 94.2, 80.5, 80.3, 64.4, 59.8, 43.0, 42.7, 40.2, 28.5, 26.6, 26.3, 23.9, 22.4; MS (ESI) *m/z*: 284 [M+H]⁺, 306 [M+Na]⁺, 322 [M+K]⁺.

(4*S*,1*'S*,1*''S*)-4-[3*'*-(1*''*-methoxycarbonyl-3*''*-methylbutylamino)-1*'*-phenylpropyl]-2,2-dimethyloxazolidine-3-carboxylic acid *tert*-butyl ester (8b): The general procedure 2 was followed using aldehyde 6b (922 mg, 2.77 mmol) and L-Leu-OMe 7b (442 mg, 3.05 mmol). Flash column chromatography with heptane/ethyl acetate (4/1) gave 984 mg (77%, two rotamers) of 8b as a colorless oil: $[\alpha]_{D}$ -19 (*c* 1.20, CHCl₃); IR (neat): v 3026, 3011, 2957, 2872, 1731, 1688, 1454, 1391, 1368, 1247, 1172 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.33-7.14 (m, 5H), 4.14-4.04 (m, 0.5H), 4.02-3.91 (m, 1.5H), 3.79-3.69 (m, 1H), 3.63 (s, 3H), 3.50-3.31 (m, 1H), 3.18-3.06 (m, 1H), 2.65-2.46 (m, 1H), 2.32-2.13 (m, 1H), 1.98-1.87 (m, 2H), 1.70-1.36 (m, 18H), 0.89 (d, *J*= 6.6 Hz, 3H), 0.84 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 176.5, 152.6, 152.4, 141.0, 128.7, 128.4, 128.2, 126.5, 94.6, 93.9, 79.8, 64.2, 63.9, 62.5, 62.2,

59.9, 51.4, 46.2, 44.5, 42.7, 28.4, 27.3, 26.7, 26.0, 24.7, 24.2, 22.7, 22.1; MS (ESI) *m/z*: 463 [M+H]⁺, 485 [M+Na]⁺, 501 [M+K]⁺; Anal. Calcd for C₂₆H₄₂N₂O₅: C, 67.50; H, 9.15; N, 6.06. Found: C, 67.14; H, 9.28; N, 5.87.

(4S,1'S,1''S)-4-{3'-[benzyloxycarbonyl-(1''-methoxycarbonyl-3''-methylbutyl)amino]-1'-phenylpropyl}-2,2-

dimethyloxazolidine-3-carboxylic acid *tert*-butyl ester (9b): This compound was prepared according to the procedure described for 9a from amine 8b (796 mg, 1.72 mmol). Flash column chromatography with heptane/ethyl acetate (7/1) gave 802 mg (78%, two rotamers) of 9b as an oil: $[\alpha]_{D}$ -42 (*c* 0.80, CHCl₃); IR (CHCl₃): v 3021, 2958, 2874, 1738, 1690, 1454, 1391, 1369, 1251, 1171 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7,41-7,03 (m, 10H), 5.29-5.07 (m, 2H), 4.72-4.58 (m, 0.7H), 4.44-4.32 (m, 0.3H), 4.25-3.60 (m, 3H), 3.66, 3.55 (2s, 3H), 3.26-2.92 (m, 3H), 2.03-1.96 (m, 2H), 1.71-1.37 (m, 18H), 0.95-0.76 (m, 6H); ¹³C NMR (75 MHz, CDCl₃): δ 172.5, 156.7, 155.9, 152.8, 152.4, 140.5, 140.2, 136.5, 128.7, 128.5, 128.3, 128.0, 126.9, 126.7, 94.8, 94.1, 80.1, 67.7, 67.3, 64.2, 64.0, 62.6, 62.4, 57.8, 52.2, 45.9, 45.4, 45.1, 44.7, 38.7, 38.2, 28.6, 27.3, 26.8, 26.6, 26.1, 24.2, 23.1, 23.1, 22.6, 21.8; MS (ESI) *m/z*: 619 [M+Na]⁺, 635 [M+K]⁺; Anal. Calcd for C₃₄H₄₈N₂O₇: C, 68.43; H, 8.11; N, 4.69. Found: C, 68.51; H, 8.33; N, 4.45.

(2*S*,3*S*,1*'S*)-5-[benzyloxycarbonyl-(1*'*-methoxycarbonyl-3*'*-methylbutyl)amino]-2-*tert*-butoxycarbonylamino-3-phenyl pentanoic acid (10b): The general procedure 3 was followed using 9b (54 mg, 0.09 mmol). Flash column chromatography with CH₂Cl₂/ethyl acetate (1/1) gave 39 mg (76%, two rotamers) of 10b: [α]_D+11 (*c* 1.10, CHCl₃); IR (CHCl₃): v 3434, 3020, 2958, 2872, 1736, 1702, 1455, 1368, 1226, 1168 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.38-7.01 (m, 10H), 6.24 (bs, 1H), 5.19-5.04 (m, 2H), 4.86-4.66 (m, 1.5H), 4.64-4.51 (m, 0.5H), 4.43-4.34 (m, 1H), 3.66 (s, 1.5H), 3.47 (s, 1.5H), 3.33-3.14 (m, 2H), 3.01-2.86 (m, 1H), 2.19-1.91 (m, 2H), 1.41 (s, 9H), 1.74-1.28 (m, 3H), 0.93-0.75 (m, 6H); ¹³C NMR (75 MHz, CDCl₃): δ 175.2, 172.6, 172.3, 156.6, 155.9, 138.3, 137.9, 136.5, 136.2, 128.8, 128.6, 128.4, 128.2, 127.7, 80.3, 67.7, 57.6, 52.3, 45.4, 44.7, 43.9, 38.5, 38.1, 31.1, 30.5, 28.3, 24.8, 24.7,
23.1, 21.8, 21.6; MS (ESI) *m/z*: 593 [M+Na]⁺; HRMS Calcd for C₃₁H₄₂N₂O₈ (M+Na): 593.2839. Found: 593.2828.

(2S,3S,1'S)-5-[Benzyloxycarbonyl-(1'-methoxycarbonyl-3'-methylbutyl)amino]-2-tert-butoxycarbonylamino-pentafluoro-

phenyl-3-phenyl pentanoate (11b): This compound was prepared according to the procedure described for 11a from acid 10b (155 mg, 0.27 mmol). The flash column chromatography with heptane/ethyl acetate (10/1) gave 111 mg (61%, two rotamers) of 11b: $[\alpha]_{D}$ -20 (*c* 0.90, CHCl₃); IR (CHCl₃): v 3436, 3028, 3021, 2958, 2872, 1788, 1712, 1521, 1497, 1472, 1455, 1369, 1168, 999 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.41-7.05 (m, 10H), 5.21-5.07 (m, 2H), 4.98-4.76 (m, 2H), 4.66-4.55 (m, 0.5H), 4.41-4.31 (m, 0.5H), 3.65 (s, 1.5H), 3.55 (s, 1.5H), 3.46-3.16 (m, 2H), 3.04-2.85 (m, 1H), 2.30-2.06 (m, 2H), 1.75-1.45 (m, 3H), 1.43 (s, 9H), 0.95-0.77 (m, 6H); ¹³C NMR (75 MHz, CDCl₃): δ 172.6, 167.8, 156.6, 155.4, 137.1, 136.5, 129.1, 128.6, 128.3, 128.2, 128.1, 80.7, 67.7, 67.5, 58.1, 57.6, 52.2, 45.5, 45.0, 43.8, 38.8, 38.2, 31.3, 30.5, 28.3, 24.9, 23.1, 21.8; MS (ESI) *m/z*: 737 [M+H]⁺, 759 [M+Na]⁺, 775 [M+K]⁺; HRMS Calcd for C₃₇H₄₁N₂F₅O₈ (M+Na): 759.2681. Found: 759.2663.

 $(2S,3'S,4'S)-2-(3'-tert-Butoxycarbonylamino-2'-oxo-4'-phenylpiperidin-1'-yl)-4-methylpentanoic acid methyl ester (12b): This compound was prepared according to the procedure described for 12a from 11b (99 mg, 0.134 mmol). Flash column chromatography with heptane/ethyl acetate (1/1) gave 47 mg (86%, two rotamers) of 12b as colorless oil; [<math>\alpha$]_D-51 (*c* 0.70, CHCl₃); IR (CHCl₃): v 3444, 3021, 2957, 2873, 1736, 1714, 1655, 1504, 1455, 1436, 1392, 1368, 1243, 1168 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.37-7.20 (m, 5H), 5.24 (t, *J* = 7.8 Hz, 1H), 4.87 (d, *J* = 8.3 Hz, 1H), 4.46-4.32 (m, 1H), 3.74 (s, 3H), 3.55-3.33 (m, 2H), 3.07 (dt, *J* = 5.4, 11.2 Hz, 1H), 2.34-2.20 (m, 1H), 2.19-2.04 (m, 1H), 1.80-1.70 (m, 2H), 1.64-1.45 (m, 1H), 1.28 (s, 9H), 0.97 (d, *J* = 7.3 Hz, 3H), 0.95 (d, J = 7.3 Hz, 3H), 0.95 (d, J = 7.3 Hz, 3H), 0.95 (d, J = 7.3 Hz, 3H)

7.3 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 172.3, 171.0, 156.1, 141.7, 128.6, 127.7, 127.1, 79.8, 54.8, 52.3, 45.2, 42.3, 37.3, 30.2, 28.2, 25.1, 23.4, 21.5; MS (CI) *m/z*: 419 [M+H]⁺, 441 [M+Na]⁺, 457 [M+K]⁺, 837 [2M+H]⁺, 859 [2M+Na]⁺; HRMS Calcd for C₂₃H₃₄N₂O₅ (M+Na): 441.2365. Found: 441.2372.

(4*S*,1*'S*,1*''S*)-4-{1*'*-[2*''-(5'''*-Benzyloxycarbonylamino-1*'''*-methoxycarbonylpentylamino)ethyl]allyl}-2,2-dimethyloxazolidine-3-carboxylic acid *tert*-butyl ester (13b): The general procedure 2 was followed using L-Lys(Cbz)OCH₃.HCl (7d) (460 mg, 1.39 mmol), aldehyde **6c** (300 mg, 1.06 mmol) and triethylamine (0.16 mL, 1.16 mmol). Flash column chromatography with heptane/ethyl acetate (2/1) gave 398 mg (67%, two rotamers) of **13b** as an oil: $[\alpha]_D$ +8 (*c* 1.40, CHCl₃); IR (neat): v 3351, 3069, 3032, 2977, 2937, 2868, 1731,1697, 1640, 1530, 1455, 1390, 1365, 1253, 1173, 1089, 917, 848 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.39-7.30 (m, 5H), 5.71-5.53 (m, 1H), 5.38-5.28 (m, 1H), 5.07-4.99 (m, 4H), 3.88-3.76 (m, 3H), 3.70 (s, 3H), 3.16-3.14 (m, 3H), 2.71-2.40 (m, 2H), 2.38-2.24 (m, 1H), 2.09-1.90 (m, 1H), 1.67-1.24 (m, 14H), 1.46 (s, 9H); ¹³C NMR (75 MHz, CDCl₃): δ 175.9, 156.5, 152.6, 152.1, 139.2, 136.8, 128.4, 128.0, 128.0, 117.2, 116.7, 94.1, 93.5, 79.9, 79.6, 66.4, 65.2, 61.4, 60.7, 51.6, 46.3, 45.5, 40.8, 33.0, 30.5, 30.2, 29.7, 28.4, 27.1, 26.3, 24.4, 23.0, 22.8; MS (ESI) *m/z*: 562 [M+H]⁺, 584 [M+Na]⁺, 600 [M+K]⁺; HRMS Calcd for C₃₀H₄₈N₃O₇ (M+H): 562.3492. Found: 562.3479.

(4*S*,1*'S*,1*'''S*)-4-(1*'*-{2*''*-[(5*'''*-Benzyloxycarbonylamino-1*'''*-methoxycarbonylpentyl)-(9*H*-fluoren-9-ylmethoxycarbonyl)amino]ethyl}allyl)-2,2-dimethyloxazolidine-3-carboxylic acid *tert*-butyl ester (14b): The general procedure 4 was followed using amine 13b (3.48 g, 6.20 mmol). Flash column chromatography with heptane/ethyl acetate (4/1) gave 4.52 g (93%, two rotamers) of 14b as white crystals: Mp 59-61°C; $[\alpha]_{D}$ -13 (*c* 1.50, CHCl₃); IR (CHCl₃): v 3423, 3364, 3067, 3037, 2951, 2932, 2871, 1697, 1526, 1477, 1451, 1420, 1390, 1365, 1297, 1252, 1174, 1145, 1103, 1088, 1054, 1031, 1002, 918, 849 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.86-7.65 (m, 2H), 7.64-7.49 (m, 2H), 7.43-7.19 (m, 9H), 5.75-5.25 (m, 1H), 5.19-4.83 (m, 5H), 4.66-4.41 (m, 2H), 4.40-4.26 (m, 1H), 4.25-4.10 (m, 1H), 4.02-3.73 (m, 2H), 3.65 (s, 3H), 3.50 (m, 2H), 3.25-2.83 (m, 3H), 2.45-2.09 (m, 1H), 2.02-0.95 (m, 8H), 1.58, 1.53 (2s, 6H), 1.44, 1.42 (2s, 9H); ¹³C NMR (75 MHz, CDCl₃): δ 171.8, 171.4, 156.4, 155.8, 152.7, 152.1, 143.9, 141.3, 138.6, 138.5, 136.7, 128.5, 128.1, 127.6, 127.0, 124.8, 124.6, 120.0, 117.8, 117.3, 94.1, 93.6, 80.0, 79.7, 67.0, 66.8, 66.5, 65.3, 60.6, 59.6, 52.2, 47.4, 47.3, 46.0, 45.8, 45.4, 45.1, 40.7, 29.7, 29.4, 29.3, 28.9, 28.4, 27.1, 26.3, 24.4, 23.5, 22.8, 22.7; MS (ESI) *m/z*: 806 [M+Na]⁺; HRMS Calcd for C₄₅H₅₇N₃O₉Na (M+Na): 806.3993. Found: 806.3986.

(2*S*,3*S*,1*''S*)-3-{2*'*-[(5*''*-Benzyloxycarbonylamino-1*''*-methoxycarbonylpentyl)-(9*H*-fluoren-9-ylmethoxycarbonyl)amino]ethyl}-2-*tert*-butoxycarbonylaminopent-4-enoic acid (15b): The general procedure 3 was followed using 14b (4.50 g, 5.74 mmol). Flash column chromatography with heptane/ethyl acetate (2/1) gave 2.43 g (81%, two rotamers) of 15b as white solid: Mp 52-52°C; $[\alpha]_D$ -12 (*c* 1.25, CHCl₃); IR (CHCl₃): v 3441, 3019, 2980, 2953, 1709, 1510, 1478, 1452, 1422, 1393, 1368, 1216, 1159, 1046, 1025, 928, 857 cm⁻¹; ¹H NMR (300 MHz, CD₃OD): δ 7.84-7.68 (m, 2H), 7.62-7.47 (m, 2H), 7.43-7.19 (m, 9H), 5.76-5.29 (m, 1H), 5.51-4.74 (m, 6H), 4.69-4.43 (m, 2H), 4.32-3.69 (m, 2H), 3.59 (s, 3H), 3.42 (s, 2H), 3.18-2.75 (m, 3H), 2.63-2.22 (m, 1H), 1.99-0.82 (m, 8H), 1.42 (s, 9H); ¹³C NMR (75 MHz, CD₃OD): δ 174.6, 173.3, 172.9, 158.8, 158.1, 157.8, 145.3, 142.8, 138.5, 137.7, 137.5, 129.6, 129.1, 128.9, 128.3, 125.8, 125.6, 121.2, 119.1, 80.7, 67.9, 67.4, 61.6, 61.3, 61.1, 58.3, 57.8, 52.8, 48.8, 48.3, 47.2, 46.6, 45.3, 41.7, 31.1, 30.8, 30.6, 30.3, 30.0, 29.8, 28.9, 24.7, 24.6; MS (ESI) *m/z*: 780 [M+Na]⁺; HRMS Calcd for C₄₂H₅₁N₃O₁₀Na (M+Na): 780.3472. Found: 780.3473. (2*S*,3´*S*,4´*S*)-6-Benzyloxycarbonylamino-2-(3´-*tert*-butoxycarbonylamino-2´-oxo-4´-vinylpiperidin-1´-yl)-hexanoic acid methyl ester (16b): The general procedure 5 was followed using 15b (2.10 g, 2.77 mmol). Flash column chromatography with heptane/ethyl acetate (2/1) gave 1.27 g (89%, two rotamers) of 16b: $[\alpha]_{D}$ -13 (*c* 1.30, CHCl₃); IR (CHCl₃): v 3337, 3068, 3010, 2978, 2952, 2869, 1710, 1651, 1521, 1455, 1437, 1391, 1367, 1326, 1247, 1217, 1170, 1094, 1049, 1023, 919, 866 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.41-7.22 (m, 5H), 5.86-5.70 (m, 1H), 5.61-4.93 (m, 7H), 4.14-3.94 (m, 1H), 3.68 (s, 3H), 3.36-3.03 (m, 4H), 2.55-2.30 (m, 1H), 2.12-1.19 (m, 8H), 1.41 (s, 9H); ¹³C NMR (75 MHz, CDCl₃): δ 171.7, 171.5, 170.5, 169.9, 156.6, 156.2, 155.9, 138.9, 138.7, 136.9, 136.8, 128.5, 128.0, 115.9, 79.4, 66.5, 56.4, 56.1, 56.0, 55.3, 52.2, 43.5, 42.7, 41.8, 40.7, 40.5, 29.3, 28.9, 28.3, 27.8, 27.7, 23.2, 22.8; MS (ESI) *m/z*: 540 [M+Na]⁺; HRMS Calcd for C₂₇H₃₉N₃O₇Na (M+Na): 540.2686. Found: 540.2692.

(*4S*,1*'S*,1*'''S*,2*''''S*)-4-(1*'*-{2*''*-[5*'''*-Benzyloxycarbonylamino-1*'''*-(2*''''-tert*-butoxycarbonyl-pyrrolidine-1*''''*-carbonyl) pentylamino]-ethyl}-allyl)-2,2-dimethyl-oxazolidine-3-carboxylic acid *tert*-butyl ester (18): The general procedure 2 was followed using amine 17 (3.00 g, 6.90 mmol) and aldehyde 6c (1.96 g, 6.90 mmol). Flash column chromatography with CH₂Cl₂/ethyl acetate (4/1, then 2/1) gave 3.53 g (74%, two rotamers) of 18 as a yellow oil: [α]_D-28 (*c* 1.00, CHCl₃); IR (neat) v 3335, 3069, 2977, 2875, 1694, 1643, 1531, 1366, 1253, 1153, 1090, 1055, 915, 848, 807 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.37-7.25 (m, 5H), 5.71-5.50 (m, 2H), 5.16-4.93 (m, 4H), 4.45-4.34 (m, 1H), 3.95-3.07 (m, 9H), 2.66-1.25 (m, 15H), 1.60 (s, 3H), 1.55 (s, 3H), 1.45 (s, 9H), 1.40 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 173.5, 171.4, 156.5, 152.7, 152.1, 139.4, 136.9, 128.1, 127.9, 117.0, 116.6, 94.3, 93.2, 81.3, 79.8, 79.6, 66.3, 65.4, 65.2, 60.8, 59.6, 59.5, 59.3, 46.7, 46.5, 46.4, 45.6, 40.5, 32.8, 32.6, 31.4, 30.8, 30.7, 30.5 29.8, 29.5, 28.8, 28.4, 27.9, 27.1, 26.4, 26.3, 24.8, 24.9, 24.4, 23.1, 22.9, 22.4; MS (ESI) *m*/*z*: 701 [M+H]⁺, 723 [M+Na]⁺; HRMS Calcd for C₃₈H₆₁N₄O₈ (M+H): 701.4489. Found: 701.4479.

(4*S*,1*''S*,1*'''S*,2*''''S*)-4-(1'-{2''-[5'''-Benzyloxycarbonylamino-1'''-(2'''-*tert*-butoxycarbonyl-pyrrolidine-1''''-carbonyl)pentyl]-(*9H*-fluoren-9-ylmethoxycarbonyl)-amino]-ethyl}-allyl)-2,2-dimethyl oxazolidine 3-carboxylic acid *tert*-butyl ester (19): The general procedure 4 was followed using amine 18 (3.18 g, 4.50 mmol). Flash column chromatography with CH_2Cl_2 /ethyl acetate (4/1 then 2/1) gave 3.90 g (92%, two rotamers) of 19 as white crystrals: Mp 61-62 °C; [α]₀-62 (*c* 1.20, CHCl₃); IR (CHCl₃): v 3449, 3021, 2986, 2938, 2878, 1718, 1683, 1654, 1648, 1603, 1560, 1522, 1508, 1477, 1451, 1393, 1367, 1225, 1211, 1208, 1153, 1089, 996, 917, 851 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.79-7.20 (m, 13H), 5.67-3.29 (m, 18H), 1.44 (s, 3H), 1.41 (s, 3H), 1.39 (s, 9H), 1.36 (s, 9H), 3.23-0.95 (m, 15H); ¹³C NMR (75 MHz, CDCl₃): δ 171.2, 169.0, 168.9, 168.1, 156.6, 156.5, 155.0, 152.6, 152.1, 144.0, 143.8, 141.6, 141.4, 141.3, 138.5, 138.4, 136.8, 128.8, 128.4, 128.0, 128.0, 127.9, 127.7, 127.3, 127.1, 127.0, 124.7, 124.7, 124.0, 120.0, 117.7, 117.6, 117.3, 117.0, 94.0, 93.5, 81.2, 79.8, 66.7, 66.4, 65.6, 65.2, 65.0, 60.6, 59.6, 55.7, 47.5, 47.4, 47.3, 46.8, 46.2, 46.0, 45.3, 45.1, 42.1, 41.9, 41.8, 40.8, 29.6, 29.1, 28.9, 28.7, 28.3, 27.0, 26.6, 26.0, 24.7, 24.3, 23.8, 22.6, 22.5, 22.4; MS (ESI) *m*/*z*: 945 [M+Na]⁺; HRMS Calcd for $C_{53}H_{-0}N_4NaO_{10}$ (M+Na): 945.4966. Found 945.4963.

(2*S*,2*'S*,3*''S*,2*'''S*)-1-{6'-Benzyloxycarbonylamino-2'-[3*'''-(tert*-butoxycarbonylamino-carboxy-methyl)-pent-4*'''-*enyl]-(9*H*-fluoren-9-ylmethoxycarbonyl)-amino]-hexanoyl}-pyrrolidine-2-carboxylic acid *tert*-butyl ester (20): The general procedure 3 was followed using 19 (3.40 g, 3.60 mmol). Flash column chromatography with CH_2Cl_2 /ethyl acetate (4/1, then 2/1) gave 1.88 g (57%, two rotamers) of 20 as white crystals: Mp 86-88°C; $[\alpha]_D$ -51 (*c* 1.00, CHCl₃); IR (CHCl₃): v 3449, 3021, 2983, 2938, 2878, 1718, 1686,

1654, 1648, 1618, 1603, 1542, 1508, 1477, 1451, 1393, 1367, 1225, 1211, 1208, 1153, 1089, 996, 917, 851 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 8.56 (bs, 1H), 7.79-7.28 (m, 13H), 5.56-2.43 (m, 20H), 2.42-0.70 (m, 12H), 1.43, 1.42 (2s, 9H), 1.40, 1.38 (2s, 9H); ¹³C NMR (75 MHz, CDCl₃): δ 173.6, 173.4, 171.3, 171.1, 168.9, 168.0, 156.6, 156.5, 155.7, 155.5, 143.9, 143.8, 143.7, 143.6, 141.6, 141.4, 141.2, 136.7, 135.4, 128.4, 128.1, 128.0, 127.7, 127.6, 127.3, 127.1, 127.0, 127.0, 124.7, 124.6, 124.5, 124.1, 123.9, 120.0, 118.9, 118.7, 81.3, 79.7, 79.6, 66.5, 65.9, 59.9, 59.8, 57.3, 56.8, 55.8, 47.6, 47.2, 46.8, 45.8, 44.4, 44.1, 41.4, 40.7, 30.0, 29.6, 29.3, 29.0, 28.9, 28.3, 27.9, 24.7, 22.6, 22.6, 22.5, 22.3; MS (ESI) *m/z*: 919 [M+Na]⁺; HRMS Calcd for C₅₀H₆₄N₄NaO₁₁ (M+Na): 919.4469. Found 919.4486.

(2*S*,2*'S*,3*''S*,4*''S*)-1-[6*'*-Benzyloxycarbonylamino-2*'*-(3*''*-*tert*-butoxycarbonylamino-2*''*-oxo-4*''*-vinyl-piperidin-1*''*-yl)hexanoyl]-pyrrolidine-2-carboxylic acid *tert*-butyl ester (21): The general procedure 5 was followed using acid 20 (1.60 g, 17.80 mmol). Flash column chromatography with heptane/ethyl acetate (4/1, then 2/1) gave 840 mg (71%) of 21 as white crystals: Mp 54-55°C; $[\alpha]_{D}$ -96 (*c* 1.00, CHCl₃); IR (CHCl₃): v 3445, 3066, 3015, 2929, 2854, 1714, 1644, 1602, 1574, 1538, 1505, 1455, 1393, 1368, 1242, 1156, 1013, 923, 843 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.38-7.25 (m, 5H), 5.81-5.69 (m, 1H), 5.42-5.21 (m, 3H), 5.07-5.03 (m, 4H), 4.35-4.31 (m, 1H), 3.80-3.18 (m, 7H), 2.62-2.50 (m, 1H), 2.47-1.20 (m, 12H), 1.41, 1.42 (2s, 18H); ¹³C NMR (75 MHz, CDCl₃): δ 171.2, 169.7, 168.9, 156.5, 156.0, 138.9, 136.8, 128.5, 128.1, 128.0, 115.9, 81.2, 79.5, 66.4, 59.8, 56.0, 53.8, 47.1, 42.8, 41.2, 40.6, 29.2, 29.1, 28.3, 27.7, 24.8, 22.7; MS (ESI) *m/z* 679 [M+Na]⁺; Anal. Calcd for C₃₅H₅₂N₄O₈: C, 64.00; H, 7.98; N, 8.53. Found: C, 64.01; H, 7.86; N, 8.39; HRMS Calcd for C₃₅H₅₂N₄O₈Na (M+Na): 679.3683. Found 679.3666. (2S,2'S,3''S,4''S,2'''S)-1-(6'-Benzyloxycarbonylamino-2'-{3''-[3'''-tert-butoxy-2'''-(9H-fluoren-9''''-

ylmethoxycarbonylamino)-propionylamino]-2⁻⁻⁻-oxo-4⁻⁻⁻-vinyl-piperidin-1⁻⁻⁻-yl}-hexanoyl)-pyrrolidine-2-carboxylic acid *tert*butyl ester (28): This compound was prepared according to the procedure described for 23 starting from amine 22 (200 mg, 0.36 mmol) and Fmoc-L-Ser(⁻Bu)OH (151 mg, 0.40 mmol). Flash column chromatography with CH₂Cl₂/ethyl acetate (1/1) gave 280 mg (85%) of 28 as white crystals: Mp 67-68°C; $[\alpha]_{D}$ -47 (*c* 0.50, CHCl₃); IR (neat): v 2944, 1715, 1633, 1519, 1446, 1363, 1236, 1150, 1104, 1076, 1022, 915, 844 cm⁻¹; ¹H NMR (300 MHz, CDCl₃.): δ 7.75 (d, *J* = 7.4 Hz, 2H), 7.59 (d, *J* = 7.24 Hz, 2H), 7.51-7.14 (m, 10H), 5.86-5.61 (m, 2H), 5.34-4.91 (m, 6H), 4.48-4.01 (m, 6H), 3.91-3.68 (m, 2H), 3.65-3.28 (m, 4H), 3.25-3.01 (m, 2H), 2.64-2.44 (m, 1H), 2.21-1.25 (m, 12H), 1.42 (s, 9H), 1.19 (s, 9H); ¹³C NMR (75 MHz, CDCl₃): δ 171.2, 170.6, 169.2, 168.6, 156.5, 156.0, 143.9, 143.8, 141.3, 138.4, 136.8, 128.4, 128.1, 128.0, 127.7, 127.0, 125.1, 120.0, 116.2, 81.3, 74.2, 67.0, 66.4, 61.7, 59.7, 54.8, 54.2, 53.9, 47.1, 42.9, 41.3, 40.6, 29.3, 29.1, 28.4, 28.1, 27.9, 27.4, 24.8, 22.8; MS (ESI) *m*/*z* 944 [M+Na]⁺; HRMS Calcd for C₅₂H₆₇N₅O₁₀Na (M+Na): 944.4786. Found 944.4798.

(2S,2'S,3''S,4''S,2'''S)-1-{2'-[3''-(2'''-Acetylamino-3'''-*tert*-butoxy-propionylamino)-2''-oxo-4''-vinyl-piperidin-1''-yl]-6'benzyloxycarbonylamino-hexanoyl}-pyrrolidine-2-carboxylic acid *tert*-butyl ester (30): This compound was prepared according to the procedure described for 25 starting from amine 29 (186 mg, 0.27 mmol). Flash column chromatography with heptane/ethyl acetate (1/1), then CH₂Cl₂/MeOH (20/1) gave 169 mg (86%) of 30 as white crystals: Mp 63-64°C; [α]_D-54 (*c* 0.50, CHCl₃); IR (neat): v 3310, 2972, 1715, 1633, 1521, 1435, 1391, 1364, 1245, 1193, 1150, 1091, 1023, 914, 876, 843 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.41 (d, *J* = 7.7 Hz, 1H), 7.38-7.27 (m, 5H), 6.57 (d, *J* = 5.8 Hz, 1H), 5.80-5.61 (m, 1H), 5.41- 5.29 (m, 1H), 5.24 (t, *J* = 5.2 Hz, 1H), 5.17-4.96 (m, 4H), 4.53-4.39 (m, 1H), 4.37-4.24 (m, 1H), 4.20-4.07 (m, 1H), 3.89-3.68 (m, 2H), 3.65-3.49 (m, 2H), 3.45-3.29 (m, 2H), 3.26-3.12 (m, 2H), 2.61-2.41 (m, 1H), 2.26-1.26 (m, 12H), 2.00 (s, 3H), 1.42 (s, 9H), 1.19 (s, 9H); ¹³C NMR (75 MHz, CDCl₃,): δ 171.2, 170.9, 170.1, 169.2, 168.7, 156.6, 138.4, 136.8, 128.4, 128.1, 128.0, 116.2, 81.3, 74.2, 66.4, 61.2, 59.7, 54.6, 54.0, 52.8, 47.1, 43.0, 41.3, 40.6, 29.3, 29.1, 28.4, 28.2, 27.9, 27.4, 24.8, 23.2, 22.8; MS (ESI) *m*/*z* : 764 [M+Na]⁺; HRMS Calcd for C₃₉H₅₉N₅O₉Na (M+Na): 764.4210. Found 764.4232.

(3S,4R,2'S,1''S,2'''S)-3-(2'-Acetylamino-3'-tert-butoxy-propionylamino)-1-[5''-benzyloxycarbonylamino-1''-(2'''-tert-

butoxycarbonyl-pyrrolidine-1⁻⁻⁻**carbonyl)-pentyl]-2-oxo-piperidine-4-carboxylic acid (31):** This compound was prepared according to the same procedure as described for **26a** starting from **30** (250 mg, 0.35 mmol). Flash column chromatography with heptane/ethyl acetate (1/1), then CH₂Cl₂/methanol (20/1) gave 205 mg (75%) of **31** as white solid: Mp 85-86°C; $[\alpha]_D$ -76 (*c* 0.50, CHCl₃); IR (CHCl₃) v 3313, 2929, 1713, 1632, 1530, 1434, 1392, 1365, 1248, 1192, 1151, 1091, 1025, 982, 916, 874, 844 cm⁻¹; ¹H NMR (300 MHz, CD₃OD): δ 7.42-7.25 (m, 5H), 5.30 (t, *J* = 7.4 Hz, 1H), 5.05 (s, 2H), 4.50 (t, *J* = 5.1 Hz, 1H), 4.33-4.24 (m, 2H), 3.64-3.50 (m, 3H), 3.39-3.34 (m, 2H), 3.14-3.04 (m, 3H), 2.26-2.18 (m, 2H), 1.98-1.10 (m, 10H), 1.98 (s, 3H), 1.44 (s, 9H), 1.17(s, 9H); ¹³C NMR (75MHz, CD₃OD): δ 175.9, 173.0, 172.2, 170.3, 170.0, 158.9, 138.5, 129.5, 129.0, 128.9, 82.7, 74.7, 67.4, 63.0, 61.6, 55.7, 55.0, 53.8, 48.5, 44.8, 43.1, 41.5, 30.5, 30.2, 29.1, 28.3, 27.8, 27.0, 25.8, 24.0, 22.7; MS (ESI) *m/z*: 782 [M+Na]⁺; HRMS Calcd for C₄₈H₄₇N₄O₁₁Na (M+Na): 782.3952. Found 782.3939.

Figure 1. ORTEP drawing of 12a. Displacement ellipsoids are shown at the 30% probability level.

X-ray structure analysis of (*2S*,3'*S*,4'*R*)-2-(3'-*tert*-butoxycarbonylamino-4'-methyl-2'-oxopiperidin-1'-yl)-3-phenylpropionic acid methyl ester (12a). The molecule appears in Figure 1, with the absolute configuration deduced from the known C3'(*S*) stereochemistry of the starting material. This study established the whole stereochemistry of the molecule (2*S*, 3'*S*, 4'*R*), showing unambiguously the *trans* position of the hydrogen atoms linked to carbon atoms C3' and C4'. Furthermore, the piperidin-2-one ring was found exhibiting two possible conformations, of respective weight (2/3-1/3), the carbon atoms C5' and C6' being disordered, splitted in positions C5* and C6* as results of a twist motion around the pivot atoms C4' and N1'. The major conformation, shown in the Figure 1, consists in an envelope form, with the atom C4' deviated by +0.751(3) Å from the mean plane of the other five atoms [N1', C2', C3', C5', C6']. The minor one, is quite a boat, with the atoms C3' and C6* deviated by respectively -0.401(3) and -0.767(3) Å from the mean plane of the four other atoms [N1', C2', C4', C5*]. The short distance N13...O7' of 2.681(4) Å could suggests an intramolecular hydrogen bond between the N13-H atoms and the oxygen O7' with the following characteristics: distance HN13...O7' = 2.53 Å, angle N-H-O' = 99.2°. This suggests that no intermolecular hydrogen bonding was found in the packing of the molecule.

A colorless crystal of 0.40 x 0.50 x 0.50 mm, crystallized from a mixture dichlorometane/heptane was used. This study confirmed the chemical formula: $C_{21}H_{23}NO_4$. The compound crystallizes in the orthorhombic system, space group P $2_12_12_1$; Z = 4

(four molecules in the unit cell), MW = 390.47; a = 9.792 (4), b = 10.144 (5), c = 22.818 (14) Å, V = 2266 Å³, d_c = 1.144 gcm⁻³, F (000) = 840, λ (Mo K α) = 0.71073 Å, μ = 0.080 mm⁻¹. Data were measured with a Nonius Kappa-CCD area-detector diffractometer, using graphite monochromated Mo K α radiation, in phi scans, up to θ = 30.2°. 10886 data were collected leading to 4289 unique

reflections (Rint = 0.039), of which 3041 were considered as observed, having I ≥ 2 sigma (I).¹ The structure was solved with program *SHELXS86*,² and refined by full-matrix least-squares using unique F^2 with program *SHELXL93*.³ The hydrogen atoms, located in difference Fourier maps, were fitted at theoretical positions and treated as riding, except the H atom linked to the nitrogen atom N13, kept experimental. These atoms were assigned an isotropic displacement parameter equivalent to 1.2 that one of the bonded atom (1.25 in the methyl groups). Thus, with the observed disorder of atoms C5^{-/} and C6^{-/}, refinement of 203 parameters converged to $R_1(F) = 0.0621$ for the 3041 observed reflections and $wR_2(F^2) = 0.1199$ for all the 4289 data with a goodness-of-fit S factor of 1.042. The residual electron density was found between -0.11 and 0.13 eÅ⁻³. In the crystal packing, only van der Waals contacts were observed.

CCDC-267642 contains the Supplementary Crystallographic data for this paper (CIF file). These data can be obtained free of charge at www.ccdc.cam.ac.uk /conts/retrieving.html [or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB 1EZ, UK; fax / (internet.) +44-1223/336-033; E-mail: deposit@ccdc.cam. ac.uk].

Referenceses:

- 1) Enraf-Nonius, Kappa-CCD Software, Enraf-Nonius, Delft, The Netherlands, 1997-2000.
- 2) Sheldrick. G. M. Acta Cryst. 1990, A 46, 467-473.
- 3) Sheldrick. G. M. SHELXL-93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany, 1993.

S18

S21

S29

S35

S71

