Synthesis of 4-Substituted-3-amino-piperidin-2-ones: Application to the Synthesis of a Conformationally Constrained Tetrapeptide AcSDKP

Sukeerthi Kumar, Céline Flamant-Robin, Qian Wang, Angèle Chiaroni and N. André Sasaki*

Institut de Chimie des Substances Naturelles, CNRS, 91198 Gif-sur-Yvette Cedex, France

Table of Contents

General Methods S4
General information and all spectroscopic data for compounds
6b, 6c, 8b, 9b, 10b, 11b, 12b, 13b, 14b, 15b, 16b, 18, 19, 20, 21, 28, 30 and 31 S5-S14
ORTEP drawing of 12a S15
X ray analysis for compound 12a S16-S17
${ }^{1}$ H NMR Spectra for compound 6a S18
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra for compound $\mathbf{6 b}$ S19-S20
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra for compound $\mathbf{8 a}$ S21-S22
${ }^{1}$ H NMR Spectra for compound 9a S23
${ }^{1}$ H NMR Spectra for compound $9 \mathbf{b}$ S24
${ }^{1} H$ NMR Spectra for compound 10a S25
${ }^{1}$ H NMR Spectra for compound 10b S26
${ }^{1}$ H NMR Spectra for compound 11a S27
${ }^{1}$ H NMR Spectra for compound 11b S28
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra for compound 12a S29-S30
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra for compound 12b S31-S32
${ }^{1}$ H NMR Spectra for compound $\mathbf{6 c}$ S33
${ }^{1}$ H NMR Spectra for compound 13a S34
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra for compound 13b S35-S36
${ }^{1}$ H NMR Spectra for compound 14a S37
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra for compound $\mathbf{1 4 b}$ S38-S39
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra for compound $\mathbf{1 5 b}$ S40-S41
${ }^{1} \mathrm{H}$ NMR Spectra for compound 16a S42
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra for compound $\mathbf{1 6 b}$ S43-S44
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra for Fmoc-L-Lys(Cbz)ProOBu ${ }^{t}$ S45-S46
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra for compound $\mathbf{1 7}$ S47-S48
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra for compound $\mathbf{1 8}$ S49-S50
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra for compound 19 S51-S52
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra for compound 20${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra for compound 21${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra for compound 22${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra for compound 23${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra for compound 24${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra for compound $\mathbf{2 5}$${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra for compound 26a${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra for compound 28
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra for compound 29
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra for compound $\mathbf{3 0}$
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra for compound $\mathbf{3 1}$
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra for compound 2

S55-S56

S57-S58
S59-S60

S61-S62
S63-S64

S65-S66
S67-S68
S69-S70
S71-S72
S73-S74

S75-S76

General Methods. All reagents obtained from commercial sources were used as received without further purification. THF was distilled from sodium and benzophenone as indicator. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was distilled over $\mathrm{P}_{2} \mathrm{O}_{5}$ immediately prior to use. Infrared (IR) spectra were obtained using an FTIR spectrophotometer, wavelength (v) are reported in cm^{-1}. Optical rotations were measured using concentrations (c) in $\mathrm{g} / 100 \mathrm{~mL}$ in the indicated solvents. ${ }^{1} \mathrm{H}$ NMR spectra were recorded at 300 MHz and $500 \mathrm{MHz},{ }^{13} \mathrm{C}$ NMR spectra were recorded at 75.5 MHz with chemical shifts reported in ppm (δ) downfield from TMS (internal reference) for ${ }^{1} \mathrm{H}$ and relative to the center line of the triplets of CDCl_{3} at 77.14 ppm for ${ }^{13} \mathrm{C}$, unless indicated otherwise. HRMS spectra were run on waters Micromass LCT with an electrospray source (ZQ) in positive mode ionization (ESI). Flash column chromatography was performed using Kieselgel (230-400 mesh) using indicated solvents (mixture). Analytical thin layer chromatography (TLC) was carried out on plates precoated with 0.25 mm of silca gel containing 60F-254 indicator. Melting points were determined on a B-540 and are uncorrected.
(4S,1'S)-2,2-Dimethyl-4-(3'-oxo-1'-phenylpropyl)oxazolidine-3-carboxylic acid tert-butyl ester (6b): The general procedure 1 was followed using alcohol $\mathbf{5 b}(980 \mathrm{mg}, 2.77 \mathrm{mmol})$ to give $857 \mathrm{mg}(88 \%)$ of $\mathbf{6 b}$ as a yellow oil: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.69-9.64$ ($\mathrm{m}, 1 \mathrm{H}$), 7.37-7.17 (m, 5H), 4.23-3.95 (m, 2H), $3.87(\mathrm{dd}, J=1.4,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{dd}, J=7.0,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.99-2.84(\mathrm{~m}, 2 \mathrm{H}), 1.69-$ $1.42(\mathrm{~m}, 15 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 202.2,201.5,153.2,152.6,140.0,128.9,128.6,128.4,128.1,127.2,95.0,94.6,80.7$, $63.8,62.0,61.8,42.5,41.6,40.9,40.6,28.5,26.6,26.3,23.9,22.4$; MS (ESI) $m / z: 334[\mathrm{M}+\mathrm{H}]^{+}, 356[\mathrm{M}+\mathrm{Na}]^{+}, 372[\mathrm{M}+\mathrm{K}]^{+}$.
(4S, $1^{\prime} R$)-2,2-Dimethyl-4-[1'-(2'ㅇoxoethyl)allyl]oxazolidine-3-carboxylic acid tert-butyl ester (6c): The general procedure 1 was followed using alcohol $\mathbf{5 c}(4.00 \mathrm{~g}, 14.04 \mathrm{mmol})$ to give $3.80 \mathrm{~g}(95 \%)$ of $\mathbf{6 c}$ as a yellow oil: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.69(\mathrm{bs}$, $1 \mathrm{H}), 5.83-5.64(\mathrm{~m}, 1 \mathrm{H}), 5.20-5.07(\mathrm{~m}, 2 \mathrm{H}), 4.14-3.76(\mathrm{~m}, 3 \mathrm{H}), 3.36-3.21(\mathrm{~m}, 1 \mathrm{H}), 2.67-2.38(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.42(\mathrm{~m}, 15 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 201.9,201.6,153.2,153.0,137.4,117.5,94.6,94.2,80.5,80.3,64.4,59.8,43.0,42.7,40.2,28.5,26.6,26.3,23.9$, 22.4; MS (ESI) m/z: $284[\mathrm{M}+\mathrm{H}]^{+}, 306[\mathrm{M}+\mathrm{Na}]^{+}, 322[\mathrm{M}+\mathrm{K}]^{+}$.
($4 S, 1^{\prime} S, 1^{\prime \prime} S$)-4-[3^{\prime}-($1^{\prime \prime}$-methoxycarbonyl-3"-methylbutylamino)-1'-phenylpropyl]-2,2-dimethyloxazolidine-3-carboxylic acid tert-butyl ester ($\mathbf{8 b}$): The general procedure 2 was followed using aldehyde $\mathbf{6 b}$ ($922 \mathrm{mg}, 2.77 \mathrm{mmol}$) and L-Leu-OMe 7b (442 mg , $3.05 \mathrm{mmol})$. Flash column chromatography with heptane/ethyl acetate ($4 / 1$) gave $984 \mathrm{mg}(77 \%$, two rotamers) of $\mathbf{8 b}$ as a colorless oil: $[\alpha]_{\mathrm{D}}-19\left(c 1.20, \mathrm{CHCl}_{3}\right.$); IR (neat): v 3026, 3011, 2957, 2872, 1731, 1688, 1454, 1391, 1368, 1247, $1172 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 7.33-7.14(\mathrm{~m}, 5 \mathrm{H}), 4.14-4.04(\mathrm{~m}, 0.5 \mathrm{H}), 4.02-3.91(\mathrm{~m}, 1.5 \mathrm{H}), 3.79-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.50-3.31(\mathrm{~m}, 1 \mathrm{H}), 3.18-3.06$ $(\mathrm{m}, 1 \mathrm{H}), 2.65-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.13(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.36(\mathrm{~m}, 18 \mathrm{H}), 0.89(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 176.5,152.6,152.4,141.0,128.7,128.4,128.2,126.5,94.6,93.9,79.8,64.2,63.9,62.5,62.2$,
59.9, 51.4, 46.2, 44.5, 42.7, 28.4, 27.3, 26.7, 26.0, 24.7, 24.2, 22.7, 22.1; MS (ESI) $m / z: 463[\mathrm{M}+\mathrm{H}]^{+}, 485[\mathrm{M}+\mathrm{Na}]^{+}, 501[\mathrm{M}+\mathrm{K}]^{+}$; Anal.

Calcd for $\mathrm{C}_{26} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, 67.50; H, 9.15; N, 6.06. Found: C, 67.14; H, 9.28; N, 5.87.

(4S, $\left.1^{\prime} S, 1^{\prime \prime} S\right)-4-\left\{3^{\prime}-\left[b e n z y l o x y c a r b o n y l-\left(1^{\prime \prime}-\right.\right.\right.$ methoxycarbonyl-3"-methylbutyl)amino]-1'-phenylpropyl\}-2,2-

dimethyloxazolidine-3-carboxylic acid tert-butyl ester (9b): This compound was prepared according to the procedure described for 9a from amine $\mathbf{8 b}(796 \mathrm{mg}, 1.72 \mathrm{mmol})$. Flash column chromatography with heptane/ethyl acetate (7/1) gave 802 mg (78%, two rotamers) of 9b as an oil: $[\alpha]_{\mathrm{D}}-42\left(c 0.80, \mathrm{CHCl}_{3}\right)$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right): v 3021,2958,2874,1738,1690,1454,1391,1369,1251,1171 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7,41-7,03(\mathrm{~m}, 10 \mathrm{H}), 5.29-5.07(\mathrm{~m}, 2 \mathrm{H}), 4.72-4.58(\mathrm{~m}, 0.7 \mathrm{H}), 4.44-4.32(\mathrm{~m}, 0.3 \mathrm{H}), 4.25-3.60(\mathrm{~m}, 3 \mathrm{H})$, 3.66, $3.55(2 \mathrm{~s}, 3 \mathrm{H}), 3.26-2.92(\mathrm{~m}, 3 \mathrm{H}), 2.03-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.37(\mathrm{~m}, 18 \mathrm{H}), 0.95-0.76(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $172.5,156.7,155.9,152.8,152.4,140.5,140.2,136.5,128.7,128.5,128.3,128.0,126.9,126.7,94.8,94.1,80.1,67.7,67.3,64.2,64.0$, $62.6,62.4,57.8,52.2,45.9,45.4,45.1,44.7,38.7,38.2,28.6,27.3,26.8,26.6,26.1,24.2,23.1,23.1,22.6,21.8 ;$ MS (ESI) m/z: 619 $[\mathrm{M}+\mathrm{Na}]^{+}, 635[\mathrm{M}+\mathrm{K}]^{+}$; Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{7}: \mathrm{C}, 68.43 ; \mathrm{H}, 8.11 ; \mathrm{N}, 4.69$. Found: C, 68.51; H, 8.33; N, 4.45.

(2S,3S,1'S)-5-[benzyloxycarbonyl-(1'-methoxycarbonyl-3'-methylbutyl)amino]-2-tert-butoxycarbonylamino-3-phenyl

pentanoic acid (10b): The general procedure 3 was followed using 9b ($54 \mathrm{mg}, 0.09 \mathrm{mmol}$). Flash column chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ ethyl acetate (1/1) gave $39 \mathrm{mg}\left(76 \%\right.$, two rotamers) of $\mathbf{1 0 b}:[\alpha]_{\mathrm{D}}+11\left(c 1.10, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right): v 3434,3020,2958,2872$, $1736,1702,1455,1368,1226,1168 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.38-7.01(\mathrm{~m}, 10 \mathrm{H}), 6.24(\mathrm{bs}, 1 \mathrm{H}), 5.19-5.04(\mathrm{~m}, 2 \mathrm{H}), 4.86-$ $4.66(\mathrm{~m}, 1.5 \mathrm{H}), 4.64-4.51(\mathrm{~m}, 0.5 \mathrm{H}), 4.43-4.34(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 1.5 \mathrm{H}), 3.47(\mathrm{~s}, 1.5 \mathrm{H}), 3.33-3.14(\mathrm{~m}, 2 \mathrm{H}), 3.01-2.86(\mathrm{~m}, 1 \mathrm{H}), 2.19-1.91$ $(\mathrm{m}, 2 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}), 1.74-1.28(\mathrm{~m}, 3 \mathrm{H}), 0.93-0.75(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 175.2,172.6,172.3,156.6,155.9,138.3$,
$137.9,136.5,136.2,128.8,128.6,128.4,128.2,127.7,80.3,67.7,57.6,52.3,45.4,44.7,43.9,38.5,38.1,31.1,30.5,28.3,24.8,24.7$, 23.1, 21.8, 21.6; MS (ESI) $m / z: 593[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS Calcd for $\mathrm{C}_{31} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{8}(\mathrm{M}+\mathrm{Na})$: 593.2839. Found: 593.2828.

(2S,3S,1'S)-5-[Benzyloxycarbonyl-(1'-methoxycarbonyl-3'-methylbutyl)amino]-2-tert-butoxycarbonylamino-pentafluoro-

phenyl-3-phenyl pentanoate (11b): This compound was prepared according to the procedure described for 11a from acid $\mathbf{1 0 b}$ (155 $\mathrm{mg}, 0.27 \mathrm{mmol})$. The flash column chromatography with heptane/ethyl acetate ($10 / 1$) gave $111 \mathrm{mg}\left(61 \%\right.$, two rotamers) of $\mathbf{1 1 b}$: $[\alpha]_{\mathrm{D}}$ $20\left(c 0.90, \mathrm{CHCl}_{3}\right) ;$ IR $\left(\mathrm{CHCl}_{3}\right): v 3436,3028,3021,2958,2872,1788,1712,1521,1497,1472,1455,1369,1168,999 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): $\delta 7.41-7.05(\mathrm{~m}, 10 \mathrm{H}), 5.21-5.07(\mathrm{~m}, 2 \mathrm{H}), 4.98-4.76(\mathrm{~m}, 2 \mathrm{H}), 4.66-4.55(\mathrm{~m}, 0.5 \mathrm{H}), 4.41-4.31(\mathrm{~m}, 0.5 \mathrm{H}), 3.65(\mathrm{~s}$, $1.5 \mathrm{H}), 3.55(\mathrm{~s}, 1.5 \mathrm{H}), 3.46-3.16(\mathrm{~m}, 2 \mathrm{H}), 3.04-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.30-2.06(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.45(\mathrm{~m}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 0.95-0.77(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.6,167.8,156.6,155.4,137.1,136.5,129.1,128.6,128.3,128.2,128.1,80.7,67.7,67.5,58.1,57.6$, $52.2,45.5,45.0,43.8,38.8,38.2,31.3,30.5,28.3,24.9,23.1,21.8$; MS (ESI) m/z: $737[\mathrm{M}+\mathrm{H}]^{+}, 759[\mathrm{M}+\mathrm{Na}]^{+}, 775[\mathrm{M}+\mathrm{K}]^{+}$; HRMS Calcd for $\mathrm{C}_{37} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{~F}_{5} \mathrm{O}_{8}(\mathrm{M}+\mathrm{Na})$: 759.2681. Found: 759.2663.
($2 S, 3^{\prime} S, 4^{\prime} S$)-2-(3^{\prime}-tert-Butoxycarbonylamino- $\mathbf{2}^{\prime}$-oxo- $\mathbf{4}^{\prime}$-phenylpiperidin- $\mathbf{1}^{\prime}$-yl)-4-methylpentanoic acid methyl ester (12b): This compound was prepared according to the procedure described for $\mathbf{1 2 a}$ from $\mathbf{1 1 b}(99 \mathrm{mg}, 0.134 \mathrm{mmol})$. Flash column chromatography with heptane/ethyl acetate (1/1) gave $47 \mathrm{mg}\left(86 \%\right.$, two rotamers) of 12b as colorless oil; $[\alpha]_{\mathrm{D}}-51\left(c 0.70, \mathrm{CHCl}_{3}\right)$; $\operatorname{IR}\left(\mathrm{CHCl}_{3}\right): v 3444$, $3021,2957,2873,1736,1714,1655,1504,1455,1436,1392,1368,1243,1168 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.37-7.20(\mathrm{~m}$, $5 \mathrm{H}), 5.24(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.46-4.32(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.55-3.33(\mathrm{~m}, 2 \mathrm{H}), 3.07(\mathrm{dt}, J=5.4,11.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.34-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{~s}, 9 \mathrm{H}), 0.97(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=$
$7.3 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.3,171.0,156.1,141.7,128.6,127.7,127.1,79.8,54.8,52.3,45.2,42.3,37.3,30.2$, 28.2, 25.1, 23.4, 21.5; MS (CI) $m / z: 419[\mathrm{M}+\mathrm{H}]^{+}, 441[\mathrm{M}+\mathrm{Na}]^{+}, 457[\mathrm{M}+\mathrm{K}]^{+}, 837[2 \mathrm{M}+\mathrm{H}]^{+}, 859[2 \mathrm{M}+\mathrm{Na}]^{+}$; HRMS Calcd for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{M}+\mathrm{Na}): 441.2365$. Found: 441.2372 .
$\left(4 S, 1^{\prime} S, 1^{\prime \prime \prime} S\right)-4-\left\{1^{\prime}-\left[2^{\prime \prime}-\left(5^{\prime \prime \prime}-\right.\right.\right.$ Benzyloxycarbonylamino-1""-methoxycarbonylpentylamino)ethyl $]$ allyl $\}$-2,2-dimethyloxazolidine-3-carboxylic acid tert-butyl ester (13b): The general procedure 2 was followed using L-Lys($\mathrm{Cbz}^{\mathbf{~}) \mathrm{OCH}_{3} \cdot \mathrm{HCl}(\mathbf{7 d})(460 \mathrm{mg}, 1.39}$ $\mathrm{mmol})$, aldehyde $\mathbf{6 c}(300 \mathrm{mg}, 1.06 \mathrm{mmol})$ and triethylamine ($0.16 \mathrm{~mL}, 1.16 \mathrm{mmol}$). Flash column chromatography with heptane/ethyl acetate (2/1) gave $398 \mathrm{mg}\left(67 \%\right.$, two rotamers) of 13b as an oil: $[\alpha]_{D}+8\left(c 1.40, \mathrm{CHCl}_{3}\right)$; IR (neat): v 3351, 3069, 3032, 2977, 2937, $2868,1731,1697,1640,1530,1455,1390,1365,1253,1173,1089,917,848 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.39-7.30(\mathrm{~m}, 5 \mathrm{H})$, 5.71-5.53 (m, 1H), 5.38-5.28 (m, 1H), 5.07-4.99 (m, 4H), 3.88-3.76(m, 3H), 3.70($\mathrm{s}, 3 \mathrm{H}), 3.16-3.14(\mathrm{~m}, 3 \mathrm{H}), 2.71-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.38-$ $2.24(\mathrm{~m}, 1 \mathrm{H}), 2.09-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.24(\mathrm{~m}, 14 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 175.9,156.5,152.6,152.1,139.2$, $136.8,128.4,128.0,128.0,117.2,116.7,94.1,93.5,79.9,79.6,66.4,65.2,61.4,60.7,51.6,46.3,45.5,40.8,33.0,30.5,30.2,29.7$, 28.4, 27.1, 26.3, 24.4, 23.0, 22.8; MS (ESI) $m / z: 562[\mathrm{M}+\mathrm{H}]^{+}, 584[\mathrm{M}+\mathrm{Na}]^{+}, 600[\mathrm{M}+\mathrm{K}]^{+}$; HRMS Calcd for $\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{~N}_{3} \mathrm{O}_{7}(\mathrm{M}+\mathrm{H})$: 562.3492. Found: 562.3479.

($\left.4 S, 1^{\prime} S, 1^{\prime \prime \prime} S\right)$-4-($1^{\prime \prime}-\left\{2^{\prime \prime}-\left[\left(5^{\prime \prime \prime}-\right.\right.\right.$ Benzyloxycarbonylamino-1""-methoxycarbonylpentyl)-(9H-fluoren-9-ylmethoxycarbonyl)-

 amino]ethyl $\}$ allyl)-2,2-dimethyloxazolidine-3-carboxylic acid tert-butyl ester (14b): The general procedure 4 was followed using amine $\mathbf{1 3 b}(3.48 \mathrm{~g}, 6.20 \mathrm{mmol})$. Flash column chromatography with heptane/ethyl acetate (4/1) gave 4.52 g (93%, two rotamers) of 14b as white crystals: $\mathrm{Mp} 59-61^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}-13\left(c 1.50, \mathrm{CHCl}_{3}\right) ; \mathrm{IR}\left(\mathrm{CHCl}_{3}\right): v 3423,3364,3067,3037,2951,2932,2871,1697,1526$,1477, 1451, 1420, 1390, 1365, 1297, 1252, 1174, 1145, 1103, 1088, 1054, 1031, 1002, $918,849 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.86-7.65 (m, 2H), 7.64-7.49 (m, 2H), 7.43-7.19 (m, 9H), 5.75-5.25 (m, 1H), 5.19-4.83 (m, 5H), 4.66-4.41 (m, 2H), 4.40-4.26 (m, 1H), $4.25-4.10(\mathrm{~m}, 1 \mathrm{H}), 4.02-3.73(\mathrm{~m}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{~m}, 2 \mathrm{H}), 3.25-2.83(\mathrm{~m}, 3 \mathrm{H}), 2.45-2.09(\mathrm{~m}, 1 \mathrm{H}), 2.02-0.95(\mathrm{~m}, 8 \mathrm{H}), 1.58,1.53$ (2s, 6H), 1.44, $1.42(2 \mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.8,171.4,156.4,155.8,152.7,152.1,143.9,141.3,138.6,138.5$, $136.7,128.5,128.1,127.6,127.0,124.8,124.6,120.0,117.8,117.3,94.1,93.6,80.0,79.7,67.0,66.8,66.5,65.3,60.6,59.6,52.2$, $47.4,47.3,46.0,45.8,45.4,45.1,40.7,29.7,29.4,29.3,28.9,28.4,27.1,26.3,24.4,23.5,22.8,22.7$; MS (ESI) $m / z: 806[\mathrm{M}+\mathrm{Na}]^{+} ;$ HRMS Calcd for $\mathrm{C}_{45} \mathrm{H}_{57} \mathrm{~N}_{3} \mathrm{O}_{9} \mathrm{Na}(\mathrm{M}+\mathrm{Na})$: 806.3993. Found: 806.3986.

(2S,3S,1"S)-3-\{2'-[(5"-Benzyloxycarbonylamino-1"-methoxycarbonylpentyl)-(9H-fluoren-9-ylmethoxycarbonyl)amino]ethyl\}-

2-tert-butoxycarbonylaminopent-4-enoic acid (15b): The general procedure 3 was followed using 14b (4.50 g, 5.74 mmol). Flash column chromatography with heptane/ethyl acetate (2/1) gave $2.43 \mathrm{~g}\left(81 \%\right.$, two rotamers) of $\mathbf{1 5 b}$ as white solid: $\mathrm{Mp} 52-52^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}-12$ (c 1.25, CHCl_{3}); IR $\left(\mathrm{CHCl}_{3}\right): v 3441,3019,2980,2953,1709,1510,1478,1452,1422,1393,1368,1216,1159,1046,1025,928,857$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, CD $\left.{ }_{3} \mathrm{OD}\right)$: $\delta 7.84-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.19(\mathrm{~m}, 9 \mathrm{H}), 5.76-5.29(\mathrm{~m}, 1 \mathrm{H}), 5.51-4.74(\mathrm{~m}, 6 \mathrm{H})$, 4.69-4.43 (m, 2H), 4.32-3.69 (m, 2H), 3.59 (s, 3H), 3.42 (s, 2 H$), 3.18-2.75(\mathrm{~m}, 3 \mathrm{H}), 2.63-2.22(\mathrm{~m}, 1 \mathrm{H}), 1.99-0.82(\mathrm{~m}, 8 \mathrm{H}), 1.42(\mathrm{~s}$, 9H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 174.6,173.3,172.9,158.8,158.1,157.8,145.3,142.8,138.5,137.7,137.5,129.6,129.1,128.9$, $128.3,125.8,125.6,121.2,119.1,80.7,67.9,67.4,61.6,61.3,61.1,58.3,57.8,52.8,48.8,48.3,47.2,46.6,45.3,41.7,31.1,30.8,30.6$, 30.3, 30.0, 29.8, 28.9, 24.7, 24.6; MS (ESI) $m / z: 780[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS Calcd for $\mathrm{C}_{42} \mathrm{H}_{51} \mathrm{~N}_{3} \mathrm{O}_{10} \mathrm{Na}(\mathrm{M}+\mathrm{Na}): 780.3472$. Found: 780.3473.

($2 S, 3^{\prime} S, 4^{\prime} S$)-6-Benzyloxycarbonylamino-2-(3'-tert-butoxycarbonylamino-2'-oxo-4'-vinylpiperidin-1'-yl)-hexanoic acid methyl

 ester (16b): The general procedure 5 was followed using $\mathbf{1 5 b}(2.10 \mathrm{~g}, 2.77 \mathrm{mmol})$. Flash column chromatography with heptane/ethyl acetate (2/1) gave $1.27 \mathrm{~g}\left(89 \%\right.$, two rotamers) of $\mathbf{1 6 b}:[\alpha]_{\mathrm{D}}-13\left(c 1.30, \mathrm{CHCl}_{3}\right)$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right): v 3337,3068,3010,2978,2952,2869$, $1710,1651,1521,1455,1437,1391,1367,1326,1247,1217,1170,1094,1049,1023,919,866 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): δ 7.41-7.22 $(\mathrm{m}, 5 \mathrm{H}), 5.86-5.70(\mathrm{~m}, 1 \mathrm{H}), 5.61-4.93(\mathrm{~m}, 7 \mathrm{H}), 4.14-3.94(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.36-3.03(\mathrm{~m}, 4 \mathrm{H}), 2.55-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.12-$ $1.19(\mathrm{~m}, 8 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.7,171.5,170.5,169.9,156.6,156.2,155.9,138.9,138.7,136.9,136.8$, $128.5,128.0,115.9,79.4,66.5,56.4,56.1,56.0,55.3,52.2,43.5,42.7,41.8,40.7,40.5,29.3,28.9,28.3,27.8,27.7,23.2,22.8$; MS (ESI) $m / z: 540[\mathrm{M}+\mathrm{Na}]^{+} ;$HRMS Calcd for $\mathrm{C}_{27} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{Na}(\mathrm{M}+\mathrm{Na}): 540.2686$. Found: 540.2692.$\left(4 S, 1^{\prime} S, 1^{\prime \prime} S, 2^{\prime \prime \prime} S\right)-4-\left(1^{\prime}-\left\{2^{\prime \prime}-\left[5^{\prime \prime \prime}-\right.\right.\right.$ Benzyloxycarbonylamino-1""-(2""-tert-butoxycarbonyl-pyrrolidine-1""-carbonyl) pentylamino]-ethyl\}-allyl)-2,2-dimethyl-oxazolidine-3-carboxylic acid tert-butyl ester (18): The general procedure 2 was followed using amine $\mathbf{1 7}(3.00 \mathrm{~g}, 6.90 \mathrm{mmol})$ and aldehyde $\mathbf{6 c}(1.96 \mathrm{~g}, 6.90 \mathrm{mmol})$. Flash column chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ ethyl acetate $(4 / 1$, then $2 / 1)$ gave $3.53 \mathrm{~g}\left(74 \%\right.$, two rotamers) of 18 as a yellow oil: $[\alpha]_{\mathrm{D}}-28\left(c 1.00, \mathrm{CHCl}_{3}\right)$; IR (neat) $v 3335,3069,2977,2875$, $1694,1643,1531,1366,1253,1153,1090,1055,915,848,807 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.25(\mathrm{~m}, 5 \mathrm{H}), 5.71-5.50(\mathrm{~m}$, $2 \mathrm{H}), 5.16-4.93(\mathrm{~m}, 4 \mathrm{H}), 4.45-4.34(\mathrm{~m}, 1 \mathrm{H}), 3.95-3.07(\mathrm{~m}, 9 \mathrm{H}), 2.66-1.25(\mathrm{~m}, 15 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.40(\mathrm{~s}$, 9H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.5,171.4,156.5,152.7,152.1,139.4,136.9,128.1,127.9,117.0,116.6,94.3,93.2,81.3,79.8$, $79.6,66.3,65.4,65.2,60.8,59.6,59.5,59.3,46.7,46.5,46.4,45.6,40.5,32.8,32.6,31.4,30.8,30.7,30.529 .8,29.5,28.8,28.4,27.9$,
27.1, 26.4, 26.3, 24.8, 24.9, 24.4, 23.1, 22.9, 22.4; MS (ESI) $m / z: 701[\mathrm{M}+\mathrm{H}]^{+}, 723[\mathrm{M}+\mathrm{Na}]^{+} ;$HRMS Calcd for $\mathrm{C}_{38} \mathrm{H}_{61} \mathrm{~N}_{4} \mathrm{O}_{8}(\mathrm{M}+\mathrm{H})$: 701.4489. Found: 701.4479.
$\left(4 S, 1^{\prime} S, 1^{\prime \prime} S, 2^{\prime \prime \prime} S\right)-4-\left(1^{\prime}-\left\{2^{\prime \prime}-\left[5^{\prime \prime \prime}-\right.\right.\right.$ Benzyloxycarbonylamino-1""-(2"" -tert-butoxycarbonyl-pyrrolidine-1""-carbonyl)-pentyl]-(9H-fluoren-9-ylmethoxycarbonyl)-amino]-ethyl\}-allyl)-2,2-dimethyl oxazolidine 3-carboxylic acid tert-butyl ester (19): The general procedure 4 was followed using amine $\mathbf{1 8}$ ($3.18 \mathrm{~g}, 4.50 \mathrm{mmol}$). Flash column chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ ethyl acetate (4/1 then 2/1) gave 3.90 g (92%, two rotamers) of $\mathbf{1 9}$ as white crystrals: $\mathrm{Mp} 61-62^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}-62\left(c 1.20, \mathrm{CHCl}_{3}\right) ; \operatorname{IR}\left(\mathrm{CHCl}_{3}\right): v 3449$, $3021,2986,2938,2878,1718,1683,1654,1648,1603,1560,1522,1508,1477,1451,1393,1367,1225,1211,1208,1153,1089$, 996, $917,851 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.79-7.20(\mathrm{~m}, 13 \mathrm{H}), 5.67-3.29(\mathrm{~m}, 18 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H})$, $1.36(\mathrm{~s}, 9 \mathrm{H}), 3.23-0.95(\mathrm{~m}, 15 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.2,169.0,168.9,168.1,156.6,156.5,155.0,152.6,152.1,144.0$, $143.8,141.6,141.4,141.3,138.5,138.4,136.8,128.8,128.4,128.0,128.0,127.9,127.7,127.3,127.1,127.0,124.7,124.7,124.0$, $120.0,117.7,117.6,117.3,117.0,94.0,93.5,81.2,79.8,66.7,66.4,65.6,65.2,65.0,60.6,59.6,55.7,47.5,47.4,47.3,46.8,46.2$, 46.0, 45.3, 45.1, 42.1, 41.9, 41.8, 40.8, 29.6, 29.1, 28.9, 28.7, 28.3, 27.0, 26.6, 26.0, 24.7, 24.3, 23.8, 22.6, 22.5, 22.4; MS (ESI) m/z: $945[\mathrm{M}+\mathrm{Na}]^{+} ;$HRMS Calcd for $\mathrm{C}_{53} \mathrm{H}_{70} \mathrm{~N}_{4} \mathrm{NaO}_{10}(\mathrm{M}+\mathrm{Na})$: 945.4966. Found 945.4963.
($2 \mathrm{~S}, 2^{\prime} \mathrm{S}, 3^{\prime \prime} S, 2^{\prime \prime \prime} S$)-1-\{ 6^{\prime}-Benzyloxycarbonylamino-2 2^{\prime}-[$3^{\prime \prime \prime}$-(tert-butoxycarbonylamino-carboxy-methyl)-pent-4""-enyl]-(9H-
fluoren-9-ylmethoxycarbonyl)-amino]-hexanoyl\}-pyrrolidine-2-carboxylic acid tert-butyl ester (20): The general procedure 3 was followed using 19 ($3.40 \mathrm{~g}, 3.60 \mathrm{mmol}$). Flash column chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ ethyl acetate ($4 / 1$, then $2 / 1$) gave $1.88 \mathrm{~g}(57 \%$, two rotamers) of 20 as white crystals: $\mathrm{Mp} 86-88^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}-51\left(c 1.00, \mathrm{CHCl}_{3}\right)$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right): v 3449,3021,2983,2938,2878,1718,1686$,
$1654,1648,1618,1603,1542,1508,1477,1451,1393,1367,1225,1211,1208,1153,1089,996,917,851 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 8.56(\mathrm{bs}, 1 \mathrm{H}), 7.79-7.28(\mathrm{~m}, 13 \mathrm{H}), 5.56-2.43(\mathrm{~m}, 20 \mathrm{H}), 2.42-0.70(\mathrm{~m}, 12 \mathrm{H}), 1.43,1.42(2 \mathrm{~s}, 9 \mathrm{H}), 1.40,1.38(2 \mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.6,173.4,171.3,171.1,168.9,168.0,156.6,156.5,155.7,155.5,143.9,143.8,143.7,143.6,141.6$, $141.4,141.4,141.2,136.7,135.4,128.4,128.1,128.0,127.7,127.6,127.3,127.1,127.0,127.0,124.7,124.6,124.5,124.1,123.9$, $120.0,118.9,118.7,81.3,79.7,79.6,66.5,65.9,59.9,59.8,57.3,56.8,55.8,47.6,47.2,46.8,45.8,44.4,44.1,41.4,40.7,30.0,29.6$, 29.3, 29.0, 28.9, 28.3, 27.9, 24.7, 22.6, 22.6, 22.5, 22.3; MS (ESI) $m / z: 919[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS Calcd for $\mathrm{C}_{50} \mathrm{H}_{64} \mathrm{~N}_{4} \mathrm{NaO}_{11}(\mathrm{M}+\mathrm{Na})$: 919.4469. Found 919.4486.
($\left.2 S, 2^{\prime} S, 3^{\prime \prime} S, 4^{\prime \prime} S\right)$-1-[6'-Benzyloxycarbonylamino- $2^{\prime}-\left(3^{\prime \prime}\right.$-tert-butoxycarbonylamino-2"-oxo-4"-vinyl-piperidin-1"-yl)-hexanoyl]-pyrrolidine-2-carboxylic acid tert-butyl ester (21): The general procedure 5 was followed using acid 20 (1.60 g, 17.80 mmol). Flash column chromatography with heptane/ethyl acetate (4/1, then 2/1) gave $840 \mathrm{mg}(71 \%)$ of $\mathbf{2 1}$ as white crystals: Mp 54$55^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}-96\left(c 1.00, \mathrm{CHCl}_{3}\right) ; \operatorname{IR}\left(\mathrm{CHCl}_{3}\right): v 3445,3066,3015,2929,2854,1714,1644,1602,1574,1538,1505,1455,1393,1368$, $1242,1156,1013,923,843 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.38-7.25(\mathrm{~m}, 5 \mathrm{H}), 5.81-5.69(\mathrm{~m}, 1 \mathrm{H}), 5.42-5.21(\mathrm{~m}, 3 \mathrm{H}), 5.07-5.03$ $(\mathrm{m}, 4 \mathrm{H}), 4.35-4.31(\mathrm{~m}, 1 \mathrm{H}), 3.80-3.18(\mathrm{~m}, 7 \mathrm{H}), 2.62-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.47-1.20(\mathrm{~m}, 12 \mathrm{H}), 1.41,1.42(2 \mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 171.2,169.7,168.9,156.5,156.0,138.9,136.8,128.5,128.1,128.0,115.9,81.2,79.5,66.4,59.8,56.0,53.8,47.1,42.8$, 41.2, 40.6, 29.2, 29.1, 28.3, 27.7, 24.8, 22.7; MS (ESI) $m / z 679[\mathrm{M}+\mathrm{Na}]^{+}$; Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{52} \mathrm{~N}_{4} \mathrm{O}_{8}$: C, 64.00; H, 7.98; N, 8.53. Found: C, 64.01; H, 7.86; N, 8.39; HRMS Calcd for $\mathrm{C}_{35} \mathrm{H}_{52} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{Na}(\mathrm{M}+\mathrm{Na})$: 679.3683. Found 679.3666.

$\left(2 S, 2^{\prime} S, 3^{\prime \prime} S, 4^{\prime \prime} S, 2^{\prime \prime \prime} S\right)-1-\left(6^{\prime}-\right.$ Benzyloxycarbonylamino-2 $2^{\prime}-\left\{3^{\prime \prime}-\left[3^{\prime \prime \prime}-\right.\right.$ tert-butoxy-2""-(9H-fluoren-9"""-

ylmethoxycarbonylamino)-propionylamino $]-2^{\prime \prime}-0 \times 0-4 "$-vinyl-piperidin- $1^{\prime \prime}$-yl\}-hexanoyl)-pyrrolidine-2-carboxylic acid tertbutyl ester (28): This compound was prepared according to the procedure described for $\mathbf{2 3}$ starting from amine $\mathbf{2 2}$ ($200 \mathrm{mg}, 0.36$ mmol) and Fmoc-L-Ser $\left.{ }^{(}{ }^{\prime} \mathrm{Bu}\right) \mathrm{OH}(151 \mathrm{mg}, 0.40 \mathrm{mmol})$. Flash column chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ ethyl acetate (1/1) gave 280 mg (85%) of 28 as white crystals: $\mathrm{Mp} 67-68^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}-47\left(c 0.50, \mathrm{CHCl}_{3}\right.$); IR (neat): v 2944, 1715, 1633, 1519, 1446, 1363, 1236, 1150, $1104,1076,1022,915,844 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 7.75(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=7.24 \mathrm{~Hz}, 2 \mathrm{H}), 7.51-7.14(\mathrm{~m}$, $10 \mathrm{H}), 5.86-5.61(\mathrm{~m}, 2 \mathrm{H}), 5.34-4.91(\mathrm{~m}, 6 \mathrm{H}), 4.48-4.01(\mathrm{~m}, 6 \mathrm{H}), 3.91-3.68(\mathrm{~m}, 2 \mathrm{H}), 3.65-3.28(\mathrm{~m}, 4 \mathrm{H}), 3.25-3.01(\mathrm{~m}, 2 \mathrm{H}), 2.64-2.44$ $(\mathrm{m}, 1 \mathrm{H}), 2.21-1.25(\mathrm{~m}, 12 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}), 1.19(\mathrm{~s}, 9 \mathrm{H}){ }^{13}{ }^{\mathrm{C}} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 171.2,170.6,169.2,168.6,156.5,156.0,143.9$, $143.8,141.3,138.4,136.8,128.4,128.1,128.0,127.7,127.0,125.1,120.0,116.2,81.3,74.2,67.0,66.4,61.7,59.7,54.8,54.2,53.9$, 47.1, 42.9, 41.3, 40.6, 29.3, 29.1, 28.4, 28.1, 27.9, 27.4, 24.8, 22.8; MS (ESI) m/z $944[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS Calcd for $\mathrm{C}_{52} \mathrm{H}_{67} \mathrm{~N}_{5} \mathrm{O}_{10} \mathrm{Na}$ $(\mathrm{M}+\mathrm{Na}): 944.4786$. Found 944.4798.

$\left(2 S, 2^{\prime} S, 3^{\prime \prime} S, 4^{\prime \prime} S, 2^{\prime \prime \prime} S\right)-1-\left\{2^{\prime}-\left[3^{\prime \prime}-\left(2^{\prime \prime \prime}-A c e t y l a m i n o-3^{\prime \prime \prime}\right.\right.\right.$-tert-butoxy-propionylamino $)-2^{\prime \prime}-$ oxo-4"-vinyl-piperidin-1"-yl]-6'-

benzyloxycarbonylamino-hexanoyl\}-pyrrolidine-2-carboxylic acid tert-butyl ester (30): This compound was prepared according to the procedure described for $\mathbf{2 5}$ starting from amine $\mathbf{2 9}(186 \mathrm{mg}, 0.27 \mathrm{mmol})$. Flash column chromatography with heptane/ethyl acetate (1/1), then $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(20 / 1)$ gave $169 \mathrm{mg}(86 \%)$ of 30 as white crystals: $\mathrm{Mp} 63-64^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}-54\left(c 0.50, \mathrm{CHCl}_{3}\right) ; \mathrm{IR}(\mathrm{neat}): v 3310$, $2972,1715,1633,1521,1435,1391,1364,1245,1193,1150,1091,1023,914,876,843 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.41(\mathrm{~d}$, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.27(\mathrm{~m}, 5 \mathrm{H}), 6.57(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.80-5.61(\mathrm{~m}, 1 \mathrm{H}), 5.41-5.29(\mathrm{~m}, 1 \mathrm{H}), 5.24(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.17-4.96$
$(\mathrm{m}, 4 \mathrm{H}), 4.53-4.39(\mathrm{~m}, 1 \mathrm{H}), 4.37-4.24(\mathrm{~m}, 1 \mathrm{H}), 4.20-4.07(\mathrm{~m}, 1 \mathrm{H}), 3.89-3.68(\mathrm{~m}, 2 \mathrm{H}), 3.65-3.49(\mathrm{~m}, 2 \mathrm{H}), 3.45-3.29(\mathrm{~m}, 2 \mathrm{H}), 3.26-3.12$ $(\mathrm{m}, 2 \mathrm{H}), 2.61-2.41(\mathrm{~m}, 1 \mathrm{H}), 2.26-1.26(\mathrm{~m}, 12 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}), 1.19(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 171.2,170.9$, $170.1,169.2,168.7,156.6,138.4,136.8,128.4,128.1,128.0,116.2,81.3,74.2,66.4,61.2,59.7,54.6,54.0,52.8,47.1,43.0,41.3$, 40.6, 29.3, 29.1, 28.4, 28.2, 27.9, 27.4, 24.8, 23.2, 22.8; MS (ESI) m/z: $764[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS Calcd for $\mathrm{C}_{39} \mathrm{H}_{59} \mathrm{~N}_{5} \mathrm{O}_{9} \mathrm{Na}(\mathrm{M}+\mathrm{Na})$: 764.4210. Found 764.4232.
(3S,4R,2'S, $\left.1^{\prime \prime} S, 2^{\prime \prime \prime} S\right)$-3-(2^{\prime}-Acetylamino- 3^{\prime}-tert-butoxy-propionylamino)-1-[5"-benzyloxycarbonylamino-1"-($2^{\prime \prime \prime}$-tert-
butoxycarbonyl-pyrrolidine-1"e-carbonyl)-pentyl]-2-oxo-piperidine-4-carboxylic acid (31): This compound was prepared according to the same procedure as described for $\mathbf{2 6 a}$ starting from $\mathbf{3 0}(250 \mathrm{mg}, 0.35 \mathrm{mmol})$. Flash column chromatography with heptane/ethyl acetate (1/1), then $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ methanol (20/1) gave $205 \mathrm{mg}(75 \%)$ of 31 as white solid: $\mathrm{Mp} 85-86^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}-76$ ($c 0.50$, $\left.\mathrm{CHCl}_{3}\right) ; \mathrm{IR}\left(\mathrm{CHCl}_{3}\right) v 3313,2929,1713,1632,1530,1434,1392,1365,1248,1192,1151,1091,1025,982,916,874,844 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 7.42-7.25(\mathrm{~m}, 5 \mathrm{H}), 5.30(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 2 \mathrm{H}), 4.50(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.33-4.24(\mathrm{~m}, 2 \mathrm{H})$, 3.64-3.50 (m, 3 H$), 3.39-3.34(\mathrm{~m}, 2 \mathrm{H}), 3.14-3.04(\mathrm{~m}, 3 \mathrm{H}), 2.26-2.18(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.10(\mathrm{~m}, 10 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.17(\mathrm{~s}$, 9H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 175.9,173.0,172.2,170.3,170.0,158.9,138.5,129.5,129.0,128.9,82.7,74.7,67.4,63.0,61.6$, 55.7, 55.0, 53.8, 48.5, 44.8, 43.1, 41.5, 30.5, 30.2, 29.1, 28.3, 27.8, 27.0, 25.8, 24.0, 22.7; MS (ESI) m/z: $782[\mathrm{M}+\mathrm{Na}]^{+} ;$HRMS Calcd for $\mathrm{C}_{38} \mathrm{H}_{57} \mathrm{~N}_{5} \mathrm{O}_{11} \mathrm{Na}(\mathrm{M}+\mathrm{Na})$: 782.3952. Found 782.3939.

Figure 1. ORTEP drawing of 12a. Displacement ellipsoids are shown at the 30% probability level.

X-ray structure analysis of ($2 S, 3^{\prime} S, 4^{\prime} R$)-2-(3^{\prime}-tert-butoxycarbonylamino-4'-methyl-2'-oxopiperidin- $\mathbf{1}^{\prime}$-yl)-3-phenylpropionic
acid methyl ester (12a). The molecule appears in Figure 1, with the absolute configuration deduced from the known $\mathrm{C}^{\circ}(S)$ stereochemistry of the starting material. This study established the whole stereochemistry of the molecule ($2 S, 3^{\prime} S, 4^{\prime} R$), showing unambiguously the trans position of the hydrogen atoms linked to carbon atoms $\mathrm{C} 3^{\prime}$ and C^{\prime}. Furthermore, the piperidin-2-one ring was found exhibiting two possible conformations, of respective weight (2/3-1/3), the carbon atoms C^{\prime} and $\mathrm{C}^{\prime}{ }^{\prime}$ being disordered, splitted in positions $\mathrm{C} 5^{*}$ and $\mathrm{C} 6^{*}$ as results of a twist motion around the pivot atoms $\mathrm{C} 4^{\prime}$ and Nl^{\prime}. The major conformation, shown in the Figure 1, consists in an envelope form, with the atom $\mathrm{C} 4^{\prime}$ deviated by $+0.751(3) \AA$ from the mean plane of the other five atoms [$\mathrm{N} 1^{\prime}, \mathrm{C} 2^{\prime}, \mathrm{C}^{\prime}, \mathrm{C} 5^{\prime}, \mathrm{C}^{\prime}$]. The minor one, is quite a boat, with the atoms $\mathrm{C} 3^{\prime}$ and $\mathrm{C} 6^{*}$ deviated by respectively $-0.401(3)$ and $-0.767(3)$ \AA from the mean plane of the four other atoms [$\mathrm{N} 1^{\prime}, \mathrm{C} 2^{\prime}, \mathrm{C} 4^{\prime}, \mathrm{C} 5^{*}$]. The short distance $\mathrm{N} 13 \ldots \mathrm{O} 7^{\prime}$ of 2.681 (4) \AA could suggests an intramolecular hydrogen bond between the N13-H atoms and the oxygen O7́ with the following characteristics: distance HN13...O7́ = $2.53 \AA$, angle $\mathrm{N}-\mathrm{H}-\mathrm{O}^{\prime}=99.2^{\circ}$. This suggests that no intermolecular hydrogen bonding was found in the packing of the molecule.

A colorless crystal of $0.40 \times 0.50 \times 0.50 \mathrm{~mm}$, crystallized from a mixture dichlorometane/heptane was used. This study confirmed the chemical formula: $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{4}$. The compound crystallizes in the orthorhombic system, space group $\mathrm{P} 2_{1} 2_{1} 2_{1} ; \mathrm{Z}=4$ (four molecules in the unit cell), $\mathrm{MW}=390.47 ; \mathrm{a}=9.792(4), \mathrm{b}=10.144(5), \mathrm{c}=22.818(14) \AA, \mathrm{V}=2266 \AA^{3}, \mathrm{~d}_{\mathrm{c}}=1.144 \mathrm{gcm}^{-3}, \mathrm{~F}$ $(000)=840, \lambda(M o K \alpha)=0.71073 \AA, \mu=0.080 \mathrm{~mm}^{-1}$. Data were measured with a Nonius Kappa-CCD area-detector diffractometer, using graphite monochromated Mo K α radiation, in phi scans, up to $\theta=30.2^{\circ}$. 10886 data were collected leading to 4289 unique
reflections ($\mathrm{Rint}=0.039$), of which 3041 were considered as observed, having $\mathrm{I} \geq 2$ sigma (I). ${ }^{1}$ The structure was solved with program $S H E L X S 86,{ }^{2}$ and refined by full-matrix least-squares using unique F^{2} with program SHELXL93. ${ }^{3}$ The hydrogen atoms, located in difference Fourier maps, were fitted at theoretical positions and treated as riding, except the H atom linked to the nitrogen atom N13, kept experimental. These atoms were assigned an isotropic displacement parameter equivalent to 1.2 that one of the bonded atom (1.25 in the methyl groups). Thus, with the observed disorder of atoms C5 ${ }^{\prime}$ and C^{\prime}, refinement of 203 parameters converged to $R 1(F)=$ 0.0621 for the 3041 observed reflections and $w R 2\left(F^{2}\right)=0.1199$ for all the 4289 data with a goodness-of-fit S factor of 1.042. The residual electron density was found between -0.11 and $0.13 \mathrm{e}^{-3}$. In the crystal packing, only van der Waals contacts were observed.

CCDC-267642 contains the Supplementary Crystallographic data for this paper (CIF file). These data can be obtained free of charge at www.ccdc.cam.ac.uk /conts/retrieving.html [or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB 1EZ, UK; fax / (internet.) +44-1223/336-033; E-mail: deposit@ccdc.cam. ac.uk].

Referenceses:

1) Enraf-Nonius, Kappa-CCD Software, Enraf-Nonius, Delft, The Netherlands, 1997-2000.
2) Sheldrick. G. M. Acta Cryst. 1990, A 46, 467-473.
3) Sheldrick. G. M. SHELXL-93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany, 1993.

BoCHN
 12b

CHO

Fmoc-L-Lys(Cbz)-ProBud

19

[^0]

29

$\cdots \mathrm{Cl}$ mand $\sim N \sqrt{N}$

[^0]:

