Supporting Information for the Paper (Note)

Solution-phase and Solid-phase Syntheses of Enzyme Inhibitor RK-682 and Antibiotic Agglomerins

Rainer Schobert* and Carsten Jagusch
Chemisches Laboratorium der Universität, Universitätsstraße 30, NW I, 95440 Bayreuth, Germany

Rainer.Schobert@uni-bayreuth.de

TOC

General remarks S1
Spectroscopic data of (5R)-1 S2
Synthesis and characterization of 4 S2
Synthesis of crude 5 S2
Synthesis and characterization of 6 S3
Spectroscopic data of 9 S3
Synthesis and characterization of $\mathbf{1 0}$ S3
Synthesis and characterization of $\mathbf{1 1}$ S4
Spectroscopic and analytical data of agglomerins A (2a) and B (2b) S5
Synthesis and characterization of $\mathbf{1 3}$ S6
Synthesis of crude 14 S6

General remarks: Microwave irradiations were carried out in sealed vials ($\mathrm{W}_{\max } 1200$, temperature messured with fiber-optical sensor). Melting points are uncorrected. Optical rotations were recorded at 589 nm . IR spectra were recorded on an FT-IR spectrophotometer equipped with an ATR sampling unit. NMR spectra were recorded under conditions as indicated and chemical shifts are given in ppm downfield from tetramethylsilane as internal standard. Mass spectra were recorded under EI (70 eV) conditions. The trityl resin (FLUKA) was 100-200 mesh, cross-linked with 1% DVB, loading $1.7 \mathrm{mmol} / \mathrm{g}$.
(5R)-RK-682 (1). $v_{\max }$ (ATR)/cm ${ }^{-1} 3329$ (br), 2916, 2847, 1750, 1663, 1604, 1047; ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d $\left.{ }_{3}\right) \delta 0.85(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.10-1.35(\mathrm{~m}, 24 \mathrm{H}), 1.40-1.58(\mathrm{~m}, 2 \mathrm{H}), 2.73(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, $3.65(\mathrm{dd}, J=12.3,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{dd}, J=12.3,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.60-4.68(\mathrm{~m}, 1 \mathrm{H}), 6.08(\mathrm{br}, 2 \mathrm{H}) ; \mathrm{m} / \mathrm{z}$ (EI) 368 (7) $\left[\mathrm{M}^{+}\right], 350$ (5), 337 (5), 319 (5), 185 (15), 172 (45), 154 (10), 43 (100); HR-MS: Found 368.25630. Calcd for $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{O}_{5} 368.25627$.
(4R)-4-Benzoxycarbonyl-2,2-dimethyl-1,3-dioxolane (4). A solution of $\mathbf{3}$ ($0.73 \mathrm{~mL}, 5.0 \mathrm{mmol}$) in dry benzyl alcohol $(7 \mathrm{~mL})$ was treated with dibutyltin oxide $(124 \mathrm{mg}, 0.5 \mathrm{mmol})$ and the mixture was placed in the microwave cavity. With an irradiation of initially 600 W a T-ramp from room temperature to $120{ }^{\circ} \mathrm{C}$ was passed through within 2 min and the end temperature was maintained for a further 30 min . After cooling to room temperature, sat. aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ was added and the resulting mixture was extracted with ethyl acetate $(3 \times 50 \mathrm{~mL})$. The combined organic phases were filtered over celite and the filtrate was dried and concentrated. After removal of the excess benzyl alcohol in a kugelrohr apparatus, the remainder was purified by column chromatography (CC) on silica gel 60 to leave 980 mg (83%) of $\mathbf{4}$ as a colorless oil; $R_{f} 0.38$ (hexane/ethyl acetate 4:1); $[\alpha]_{\mathrm{D}}{ }^{25} 14.3$ (c 1.0, dioxane) [lit ${ }^{1} 14.1$ (c 1.2, dioxane)]; $v_{\max }$ (ATR)/cm ${ }^{-1} 1756,1733,1382,1372,1187,1098 ;{ }^{1}{ }^{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 3$ H), 4.08 (dd, $J=8.6,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{dd}, J=8.6,7.1 \mathrm{~Hz}, 1 \mathrm{H}) 4.60(\mathrm{dd}, J=7.1,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~d}, J$ $=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.36(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 25.5,25.9,66.9,67.3,74.1,111.4$, 128.3, 128.5, 128.6, 135.4, 171.0.
(2R)-Benzyl 2,3-dihydroxypropanoate (5). A solution of $4(1.9 \mathrm{~g}, 8.0 \mathrm{mmol})$ in THF (20 mL) was treated with aqueous 1 M HCl ($32 \mathrm{~mL}, 4$ equiv.) and the mixture was left stirring overnight. The THF was distilled off, the residue was neutralized with sat. NaHCO_{3} and the resulting aqueous phase was then extracted with ethyl acetate / 10% isopropanol $(3 \times 50 \mathrm{~mL})$. The combined organic phases were washed with brine (20 mL), dried and evaporated to leave crude $5(1.34 \mathrm{~g}, 85 \%$) which was used as such for the next step.

Benzyl (2R)-2-hydroxy-3-triphenylmethoxypropanoate (6). A stirred solution of crude $\mathbf{5}$ (1.25 g, 6.4 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was kept at $0{ }^{\circ} \mathrm{C}$ and treated with $\mathrm{NEt}_{3}(1.2 \mathrm{~mL}, 9.2 \mathrm{mmol}$), 4-(dimethylamino)pyridine (DMAP, $40 \mathrm{mg}, 0.32 \mathrm{mmol})$ and $\mathrm{Ph}_{3} \mathrm{CCl}(2.55 \mathrm{~g}, 9.2 \mathrm{mmol})$. After having stirred for a further 8 h at room temperature the reaction was quenched with water. The organic phase was separated and the aqueous one
was extracted with diethyl ether $(3 \times 30 \mathrm{~mL})$. The combined organic phases were dried and concentrated in vacuo, the remainder was purified by CC. Yield: $2.3 \mathrm{~g}(80 \%)$ of white solid 6 (Found: C, 79.26; H, 6.06. $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{O}_{4}$ requires C, $79.43 ; \mathrm{H}, 5.98 \%$); mp $95-97^{\circ} \mathrm{C} ; R_{f} 0.28$ (hexane/ethyl acetate 4:1); $[\alpha]_{\mathrm{D}}{ }^{25} 9.9$ (c 0.5, CHCl_{3}); $v_{\text {max }}(\mathrm{ATR}) / \mathrm{cm}^{-1} 3516$ (br), 1735, 1117, 1095; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.41$ (dd, $J=10.4$, $2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=9.5,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{dt}, J=7.7,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=12.4,1 \mathrm{H}), 5.33(\mathrm{~d}$, $J=12.4,1 \mathrm{H}), 7.23-7.47(\mathrm{~m}, 20 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 65.2,67.3,70.7,86.3,126.9,127.7$, $128.3,128.4,128.5,134.9,143.5,173.0 ; \mathrm{m} / \mathrm{z}$ (EI) 438 (10) [$\left.\mathrm{M}^{+}\right], 347$ (10), 243 (100), 183 (10), 165 (60), 105 (50), 91 (100).
(5R)-3-Hexadecanoyl-5-(triphenylmethoxy)methyl-[5H]furan-2,4-dione (9). $v_{\max }$ (ATR)/cm ${ }^{-1} 3326$ (br), 2923, 2851, 1770, 1695, 1605; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 0.83(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}$), 1.10-1.35 (m, 24 H), 1.41-1.58 (m, 2 H), 2.73-2.89 (m, 2 H), $3.25(\mathrm{dd}, J=10.3,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{dd}, J=10.3,2.4$ Hz, 1 H), 4.72-4.89 (m, 1 H), 7.15-7.35 (m, 15 H), 8.30 (br, 1 H); m/z (EI) 610 (10) [M+], 533 (10), 243 (100).

3-Decanoyl-5-(triphenylmethoxy)methyl-[5H]furan-2,4-dione (10a). 230 mg (88%) from rac- $\mathbf{8}$ ($185 \mathrm{mg}, 0.5 \mathrm{mmol}$), decanoic acid ($95 \mathrm{mg}, 0.55 \mathrm{mmol}$), DCC ($125 \mathrm{mg}, 0.60 \mathrm{mmol}$), DMAP (20 mg) and $\mathrm{NEt}_{3}(76 \mu \mathrm{~L}, 0.55 \mathrm{mmol})$ as a yellow oil by the method described for the synthesis of $\mathbf{9}$ from $\mathbf{8}$; (Found: C, 77.58; $\mathrm{H}, 7.36 . \mathrm{C}_{34} \mathrm{H}_{38} \mathrm{O}_{5}$ requires C, 77.54; H, 7.27\%); $v_{\text {max }}$ (ATR) $/ \mathrm{cm}^{-1} 3326$ (br), 2925, 1770, 1698, 1600; ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d $_{6}$) $\delta 0.86(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$), 1.10-1.35 (m, 12 H), 1.52-1.68 (m, 2 H), 2.82-2.93 (m, 2 H), 3.33-3.42 (m, 1 H), 3.47-3.55 (m, 1 H$), 4.65-4.84(\mathrm{~m}, 1 \mathrm{H}), 7.11-7.36(\mathrm{~m}, 15 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 14.6,23.8,26.1,27.2,30.3,30.5,30.7,33.1,35.0,63.0,82.6,87.9,101.1$, 128.4, 129.0, 129.8, 144.7, 173.7, 194.8, 196.5; m/z (EI) 526 (10) [$\left.{ }^{+}\right], 449$ (20), 267 (5), 259 (50), 243 (100).

3-[(5'Z)-Dodecenoyl]-5-(triphenylmethoxy)methyl-[5H]furan-2,4-dione (10b). 135 mg (56\%) from rac-8 (160 mg, 0.43 mmol$)$, (5Z)-dodecenoic acid ($109 \mu \mathrm{~L}, 0.50 \mathrm{mmol}$), DCC ($114 \mathrm{mg}, 0.55 \mathrm{mmol}$), DMAP (20 mg) and $\mathrm{NEt}_{3}\left(69 \mu \mathrm{~L}, 0.50 \mathrm{mmol}\right.$) as a yellow oil (Found: C, 78.18; H, 7.36. $\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{O}_{5}$ requires $\mathrm{C}, 78.23 ; \mathrm{H}, 7.29 \%$); $v_{\max }(\mathrm{ATR}) / \mathrm{cm}^{-1} 3324$ (br), 2926, 1770, 1695, $1601 ;{ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, DMSO-d $\left._{6}\right) \delta 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.20-1.35(\mathrm{~m}, 10 \mathrm{H}), 1.52-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.87-2.15(\mathrm{~m}, 4 \mathrm{H})$, 2.85-2.96 (m, 2 H), 3.42-3.46 (m, 1 H), 3.48-3.62 (m, 1 H), 4.71-4.84 (m, 1 H), 5.25-5.43 (m, 2 H),
$7.11-7.36(\mathrm{~m}, 15 \mathrm{H}) ; m / z(\mathrm{EI}) 552(5)\left[\mathrm{M}^{+}\right], 475(5), 243$ (100), 165(75), 55 (45), 41 (70); HR-MS: Found 552.28746. Calcd for $\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{O}_{5} 552.28755$.

3-Dodecanoyl-5-(triphenylmethoxy)methyl-[5H]furan-2,4-dione (10c). 250 mg (91%) from rac-8 ($185 \mathrm{mg}, 0.5 \mathrm{mmol}$), dodecanoic acid ($111 \mathrm{mg}, 0.55 \mathrm{mmol}$), DCC ($125 \mathrm{mg}, 0.60 \mathrm{mmol}$), DMAP (20 mg) and $\mathrm{NEt}_{3}\left(76 \mu \mathrm{~L}, 0.55 \mathrm{mmol}\right.$) as a yellow oil (Found: C, 78.08; H, 7.76. $\mathrm{C}_{36} \mathrm{H}_{42} \mathrm{O}_{5}$ requires C, 77.95; H, 7.63%); $v_{\text {max }}(\mathrm{ATR}) / \mathrm{cm}^{-1} 3328$ (br), 2923, 1769, 1693, 1602; ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 0.87(\mathrm{t}, J=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.10-1.35(\mathrm{~m}, 16 \mathrm{H}), 1.52-1.68(\mathrm{~m}, 2 \mathrm{H}), 2.78-2.93(\mathrm{~m}, 2 \mathrm{H}), 3.31-3.42(\mathrm{~m}, 1 \mathrm{H}), 3.44-3.58$ (m, 1 H), 4.65-4.89 (m, 1 H), 7.15-7.35 (m, 15 H).

3-Decanoyl-5-hydroxymethyl-[5H]furan-2,4-dione (11a). 70 mg (56\%) as a yellowish oil from 10a ($230 \mathrm{mg}, 0.44 \mathrm{mmol}$) (Found: C, 63.49; H, 8.58. $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{5}$ requires C, 63.36; H, 8.51%); $v_{\max }(\mathrm{ATR}) / \mathrm{cm}^{-1}$ 3323 (br), 3228 (br), 2915, 2847, 1754, 1662, 1603; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 0.88$ (t, $J=7.0 \mathrm{~Hz}, 3$ H), 1.21-1.35 (m, 12 H$), 1.59-1.73(\mathrm{~m}, 2 \mathrm{H}), 2.88(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{dd}, J=12.6,2.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.95(\mathrm{dd}, J=12.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.66-4.76(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 14.6,23.8,26.5,30.5$, 30.6, 30.7, 33.1, 61.4, 82.5, 101.2, 173.9, 195.9, 196.2; m/z (EI) 284 (5) [$\left.\mathrm{M}^{+}\right], 266$ (5), 253 (10), 235 (10), 185 (30), 172 (100); HR-MS: Found 284.16240. Calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{5} 284.16237$.

3-[(5'Z)-Dodecenoyl]-5-hydroxymethyl-[5H]furan-2,4-dione (11b). $47 \mathrm{mg}(62 \%)$ as a colorless viscous oil from $10 b$ ($135 \mathrm{mg}, 0.24 \mathrm{mmol}$) (Found: $\mathrm{C}, 65.61 ; \mathrm{H}, 8.46 . \mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{5}$ requires C, 65.78; H, 8.44%); $v_{\max }(\mathrm{ATR}) / \mathrm{cm}^{-1} 3346$ (br), 3255 (br), 2922, 2852, 1743, 1660, 1605; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 0.90(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.25-1.39(\mathrm{~m}, 8 \mathrm{H}), 1.65-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.98-2.20(\mathrm{~m}, 4 \mathrm{H}), 2.89(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{dd}, J=12.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{dd}, J=12.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.65-4.82(\mathrm{~m}, 1 \mathrm{H}) 5.31-$ $5.48(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 14.6,23.8,26.4,27.9,28.3,30.1,30.9,33.1,61.2,85.2$, 101.6, 130.0, 132.2, 173.4, 195.6, 195.8; m/z (EI) 310 (5) [$\left.\mathrm{M}^{+}\right], 292$ (10), 274 (5), 185 (10), 172 (65), 154 (25), 142 (15), 67 (30), 55 (35), 41 (100); HR-MS: Found 310.17800. Calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{5} 310.17802$.

3-Dodecanoyl-5-hydroxymethyl-[5H]furan-2,4-dione (11c). 95 mg (75%) as a yellowish oil from $\mathbf{1 0 c}$ $(250 \mathrm{mg}, 0.45 \mathrm{mmol})$ (Found: C, $65.25 ; \mathrm{H}, 9.11 . \mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{5}$ requires C, $\left.65.36 ; \mathrm{H}, 9.03 \%\right) ; v_{\max }(\mathrm{ATR}) / \mathrm{cm}^{-1}$ 3327 (br), 3231 (br), 2914, 2847, 1748, 1661, 1602; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 0.88$ (t, $J=6.9 \mathrm{~Hz}, 3$ H), 1.21-1.35 (m, 16 H$), 1.60-1.71(\mathrm{~m}, 2 \mathrm{H}), 2.88(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{dd}, J=12.7,1.8 \mathrm{~Hz}, 1 \mathrm{H})$,
3.97 (dd, $J=12.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.68-4.79(\mathrm{~m}, 1 \mathrm{H}) ; \mathrm{m} / z$ (EI) 312 (10) [$\left.\mathrm{M}^{+}\right], 281$ (5), 264 (5), 247 (5), 185 (25), 173 (35), 43 (95), 41 (100); HR-MS: Found 312.19370. Calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{5}$ 312.19367.

Agglomerin A (2a). ${ }^{2} 46 \mathrm{mg}(60 \%)$ as a white solid from 11a ($90 \mathrm{mg}, 0.3 \mathrm{mmol}$), DMAP (15 mg), methanesulfonyl chloride ($48 \mu \mathrm{~L}, 0.6 \mathrm{mmol}$), and $\mathrm{NEt}_{3}(0.16 \mathrm{~mL}, 1.2 \mathrm{mmol}) ; \mathrm{mp} 112-114{ }^{\circ} \mathrm{C}\left(\mathrm{lit}^{2 \mathrm{c}}\right.$ $\left.113-115{ }^{\circ} \mathrm{C}\right) ; R_{f} 0.32\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} 10: 1\right) ; v_{\max }(\mathrm{ATR}) / \mathrm{cm}^{-1} 3381$ (br), 2922, 1724, 1619, 1471; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{Cl}_{3} / \mathrm{CD}_{3} \mathrm{OD} 10: 1$) $\delta 0.81(\mathrm{t}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.11-1.32(\mathrm{~m}, 14 \mathrm{H}), 1.40-1.61(\mathrm{~m}, 2 \mathrm{H})$, $2.75(\mathrm{~m}, 2 \mathrm{H}), 4.85(\mathrm{~s}, 1 \mathrm{H}), 5.14(\mathrm{~s}, 1 \mathrm{H}) ; m / z$ (EI) 266 (10) [$\left.{ }^{+}\right]$, 167 (20), 154 (65), 139 (15), 98 (15), 84 (15), 69 (20), 55 (25), 41 (100); HR-MS: Found 266.15180. Calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{4}$ 266.15181.

Agglomerin B (2b). ${ }^{2} 30 \mathrm{mg}(69 \%)$ as a white solid from 11b ($47 \mathrm{mg}, 0.16 \mathrm{mmol}$), DMAP (10 mg), methanesulfonyl chloride ($26 \mu \mathrm{~L}, 0.32 \mathrm{mmol}$), and $\mathrm{NEt}_{3}(0.90 \mathrm{~mL}, 0.64 \mathrm{mmol}) ; \mathrm{mp} 86-88^{\circ} \mathrm{C}\left(\mathrm{lit}^{2 \mathrm{c}} 85-88\right.$ $\left.{ }^{\circ} \mathrm{C}\right) ; R_{f} 0.32\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} 10: 1\right) ; v_{\max }(\mathrm{ATR}) / \mathrm{cm}^{-1} 3363$ (br), 2924, 1733, 1620, 1468; ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{Cl}_{3} / \mathrm{CD}_{3} \mathrm{OD} 10: 1\right) \delta 0.81(\mathrm{t}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.11-1.32(\mathrm{~m}, 14 \mathrm{H}), 1.47-1.62(\mathrm{~m}, 2 \mathrm{H})$, 1.85-2.07 (m, 4 H), 2.68-2.82 (m, 2 H), $4.83(\mathrm{~s}, 1 \mathrm{H}), 5.14(\mathrm{~s}, 1 \mathrm{H}), 5.20-5.39(\mathrm{~m}, 2 \mathrm{H})$; ESI-MS: Found 292.18. Calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{4}$ 292.17.
(4R)-4-(2'-Trimethylsilylethoxycarbonyl)-2,2-dimethyl-1,3-dioxolane (13). $\mathbf{1 2}$ ($0.58 \mathrm{~g}, 4.0 \mathrm{mmol}$) was prepared from 4 by hydrogenolysis and dissolved in dry THF (20 mL) under an atmosphere of argon. O-trimethylsilylethyl- $\mathrm{N}, \mathrm{N}^{\prime}$ '-dicyclohexylisourea $(1.6 \mathrm{~g}, 5.0 \mathrm{mmol})$ was added and the resulting mixture was heated at $50^{\circ} \mathrm{C}$ overnight. The precipitated dicyclohexylurea was removed by filtration over a short plug of celite and the filtrate was evaporated. The remainder was purified by CC on silica gel to leave $0.74 \mathrm{~g}(74 \%)$ of $\mathbf{1 3}$ (Found: C, $53.58 ; \mathrm{H}, 8.89 . \mathrm{C}_{11} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Si}$ requires C, 53.62; H, 9.00%); $R_{f} 0.43$ (hexane/ethyl acetate 6:1); $[\alpha]_{\mathrm{D}}{ }^{25} 7.6$ (c 0.98, dioxane); $v_{\max }$ (ATR)/ $\mathrm{cm}^{-1} 1756,1729,1249,1102,856,835$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-0.02(\mathrm{~s}, 9 \mathrm{H}), 0.89-1.01(\mathrm{~m}, 2 \mathrm{H}), 1.33$ and $1.42(\mathrm{~s}, 3 \mathrm{H}), 4.08(\mathrm{dd}, J=$ $8.6,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{dd}, J=8.6,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.2-4.4(\mathrm{~m}, 2 \mathrm{H}), 4.60(\mathrm{dd}, J=5.5,5.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-1.6,17.3,25.5,25.8,63.6,67.2,74.1,111.1,171.2$.
(2R)-2,3-Dihydroxypropanoic acid $\boldsymbol{\beta}$-trimethylsilylethyl ester (14). A solution of $\mathbf{1 3}$ (496 mg, $2.0 \mathrm{mmol})$ in $\mathrm{MeOH}(4 \mathrm{~mL})$ was treated with aqueous $1 \mathrm{M} \mathrm{HCl}(2.5 \mathrm{~mL}, 1.25$ equiv.) and the mixture was left stirring overnight. The volatiles were distilled off, the residue was neutralized with sat. NaHCO_{3} and the resulting aqueous phase was extracted with ethyl acetate / 10% isopropanol ($3 \times 50 \mathrm{~mL}$). The combined
organic phases were washed with brine (20 mL), dried and evaporated to leave crude 14 ($292 \mathrm{mg}, 70 \%$)
which was used as such for the next step.

References

(1) Wulff, G.; Sarhan, A.; Gimpel, J.; Lohmar, E. Chem. Ber. 1974, 107, 3364-3376.
(2) (a) Shoji, J.; Sakazaki, R.; Hattori, T.; Matsumoto, K.; Uotani, N.; Yoshida, T. J. Antibiot. 1989, 42, 1729-1733. (b) Terui, Y.; Sakazaki, R.; Shoji, J. J. Antibiot. 1990, 43, 1245-1253. (c) Yoshida, T.; Hattori, T.; Matsumoto, K.; Terui, Y.; Shoji, J. EP 0365329 A2, JP 266575, 1988.

