Supporting Information

$\mathbf{C u}(\mathbf{I})$-Catalyzed Direct Enantioselective Cross Aldol-Type Reaction of Acetonitrile
Yutaka Suto, Riichiro Tsuji, Motomu Kanai,* and Masakatsu Shibasaki*
Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 1130033, Japan.

General: NMR spectra were recorded on a JEOL JNM-LA500 spectrometer, operating at 500 MHz for ${ }^{1} \mathrm{H}$ NMR, 125.65 MHz for ${ }^{13} \mathrm{C}$ NMR and 202.35 MHz for ${ }^{31} \mathrm{P}$ NMR. Chemical shifts were reported downfield from TMS ($=0$) for ${ }^{1} \mathrm{H}$ NMR. For ${ }^{13} \mathrm{C}$ NMR, chemical shifts were reported in the scale relative to the solvent used as an internal reference. ${ }^{31} \mathrm{P}$ NMR were carried out with $\mathrm{H}_{3} \mathrm{PO}_{4}(=0 \mathrm{ppm})$ as an external standard. Optical rotations were measured on a JASCO P-1010 polarimeter. Column chromatographies were performed with silica gel Merck 60 (230-400 mesh ASTM). The enantiomeric excess (ee) was determined by HPLC analysis. HPLC analysis was performed on JASCO HPLC systems consisting of the following: pump, 880-PU or PU-980; detector, $875-\mathrm{UV}$ or UV-970, measured at 254 nm ; mobile phase, hexane-2-propanol. In general, reactions were carried out in dry solvents under an argon atmosphere, unless noted otherwise. Normal glassware can be used to conduct the reactions in this manuscript. All of cyanomethylation products are known compounds. ${ }^{1-7}(R)$-DTBM-SEGPHOS is provided by Takasago international corporation (Fax: +81-463-25-2084). Ligand $\mathbf{6}$ was synthesized following the reported procedures. ${ }^{8}$
General Procedure for Catalytic Enantioselective Direct Cyanomethylation of Aldehydes (Table 2, Entry 6). 3-Cyclohexyl-3-hydroxy-propionitrile (5f) ${ }^{6}$: (R)-DTBM-SEGPHOS ($53.1 \mathrm{mg}, 0.045 \mathrm{mmol}$) and $\mathrm{CuO}^{\prime} \mathrm{Bu}$ ($120 \square \mathrm{~L}$ of 0.25 M THF solution, 0.03 mmol) were mixed and the solvent was evaporated under vacuum. The residue was dried under vacuum for 1 h . $\mathrm{HMPA}(0.6 \mathrm{~mL})$ and $\mathrm{CH}_{3} \mathrm{CN}(0.3 \mathrm{~mL})$ were added. To the mixed solution, aldehyde $\mathbf{4 f}$ was added slowly over 5 h by a syringe pump, and the mixture was stirred for further 10 min . Satd. $\mathrm{NH}_{4} \mathrm{Cl}$ was added and the product was extracted with AcOEt. The combined organic layer was washed with satd. NaCl aq., and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration, evaporation, and purification by silica gel column chromatography (AcOEt/hexane $=1 / 10-1 / 5$) gave the product in 91% yield $(42.4 \mathrm{mg})$. Ee was determined after conversion to the corresponding benzoyl ester (1.5 equiv of benzoylchloride in pyridine at room temperature). DAICEL CHIRALPAK OD-H, hexane/2-propanol 20/1, $1.0 \mathrm{ml} / \mathrm{min}, \mathrm{t}_{\mathrm{R}} 9.7 \mathrm{~min}$ (minor), 12.6 min (major). The absolute configuration was determined to be S by comparison of the optical rotations to the reported values ${ }^{9}:[\square]^{26}{ }_{\mathrm{D}}=-7.5\left(\mathrm{c} 0.99, \mathrm{CHCl}_{3}\right)(75 \%$ ee $)$.

Spectroscopic data and HPLC conditions of the products:

3-Hydroxy-nonanenitrile (5a) ${ }^{1}$: Ee was determined after conversion to the corresponding benzoyl ester. DAICEL CHIRALCEL OD-H, hexane $/ 2$-propanol $20 / 1,1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R}} 8.6 \mathrm{~min}$ (minor), 10.9 min (major).
3-Hydroxy-undecanenitrile ($\mathbf{5 b})^{2}$: Ee was determined after conversion to the corresponding benzoyl ester. DAICEL CHIRALCEL OD-H, hexane $/ 2$-propanol $20 / 1,1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R}} 8.4 \mathrm{~min}$ (minor), 10.8 min (major).
3-Hydroxy-5-phenyl-pentanenitrile (5c) ${ }^{3}$: DAICEL CHIRALCEL AD-H, hexane/2-propanol 20/1, 1.0 $\mathrm{mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R}} 21.1 \mathrm{~min}$ (major), 23.0 min (minor).
4-Cyclohexyl-3-hydroxy-butyronitrile (5d) ${ }^{4}$: Ee was determined after conversion to the corresponding benzoyl ester. DAICEL CHIRALCEL OD-H, hexane $/ 2-$ propanol $20 / 1,1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R}} 7.4 \mathrm{~min}$ (minor), 10.3 \min (major). [[$]^{25}{ }_{\mathrm{D}}=+9.9$ (c 1.4, $\left.\mathrm{CHCl}_{3}\right)(76 \%$ ee).
3-Hydroxy-5-methyl-hexanenitrile (5e) ${ }^{5}$: Ee was determined after conversion to the corresponding benzoyl ester. DAICEL CHIRALCEL OD-H, hexane $/ 2$-propanol $20 / 1,1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R}} 8.6 \mathrm{~min}$ (minor), 12.7 min (major).
3-Hydroxy-4,4-dimethyl-5-phenyl-pentanenitrile (5g) ${ }^{5}$: DAICEL CHIRALCEL OD-H, hexane/2-propanol $20 / 1,1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{R}=23.8 \mathrm{~min}$ (minor) and 46.4 min (major).
3-Hydroxy-3-phenylpropionitrile (5h) ${ }^{7}$: DAICEL CHIRALCEL AS-H, hexane/2-propanol 20/1, 0.8 $\mathrm{mL} / \mathrm{min}, \mathrm{t}_{R}=51.2 \mathrm{~min}$ (minor) and 54.4 min (major).

Ligand 6 was synthesized via the following synthetic scheme. Compounds $\mathbf{7 - 1 0}$ are known synthetic intermediates. ${ }^{8}$

10
$\xrightarrow[\mathrm{Et}_{2} \mathrm{O}, \text { ca. } 67 \%]{\mathrm{Li}}$

(3-Methoxyphenyl)phosphonic acid diethyl ester (7): A solution of 3-bromoanisole ($25.2 \mathrm{~g}, 135 \mathrm{mmol}$) in THF (65 mL) was added dropwise to $\mathrm{Mg}(3.5 \mathrm{~g}, 144 \mathrm{mmol})$ and a small tip of I_{2}. After stirring at rt for 3 h , the Grignard reagent solution was cooled to $-78^{\circ} \mathrm{C}$, and diethylchlorophosphate ($25.0 \mathrm{~g}, 145 \mathrm{mmol}$) in THF $(55 \mathrm{~mL})$ was added dropwise. The reaction temperature was gradually increased to rt , and the reaction was continued for 16 h . The solvent was evaporated to half amount, and $\mathrm{H}_{2} \mathrm{O}$ was added. Products were extracted with $\mathrm{AcOEt} / \mathrm{hexane}=1 / 1 \times 3$ times, and the combined organic layer was washed with saturated NaCl . After concentration of the organic layer, purification by SiO_{2} column chromatography (eluent: AcOEt/hexane $=$ $1 / 2$) gave 7 in 73% yield (24.0 g). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) ~ \square 1.33(\mathrm{t}, J=7.0 \mathrm{~Hz} 6 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 4.05-4.17(\mathrm{~m}$, $4 \mathrm{H}), 7.09(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.40(\mathrm{~m}, 3 \mathrm{H})$.
(2-Iodo-3-methoxyphenyl)phosphonic acid diethyl ester (8): A hexane solution of BuLi (1.56 M in hexane, $75 \mathrm{~mL}, 117 \mathrm{mmol}$) was added to a solution of tetramethylpiperidine ($24 \mathrm{~mL}, 142 \mathrm{mmol}$) in THF $(100 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The temperature was increased to $-20^{\circ} \mathrm{C}$, and the solution was stirred for 1 h . After recooling to $-78{ }^{\circ} \mathrm{C}$, cold solution $\left(-78{ }^{\circ} \mathrm{C}\right)$ of 7 in THF (100 mL) was added, and the deprotonation was performed for 30 min . To this aryllithium, $\mathrm{I}_{2}(25 \mathrm{~g}, 100 \mathrm{mmol})$ in THF (50 mL) was added, and the temperature was increased gradually to rt. After 16 h , saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{H}_{2} \mathrm{O}$ were added, and products were extracted with AcOEt. After concentration, purification through SiO_{2} column chromatography (eluent: acetone $/$ hexane $=1 / 10$) followed by recrystallization from toluene $/$ hexane $=1 / 5$ gave $\mathbf{8}$ in 60% yield (21.8 g).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \square 1.37(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 4.11-4.23(\mathrm{~m}, 4 \mathrm{H}), 6.98(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.40$ (m, 1H), $7.63(\mathrm{~m}, 1 \mathrm{H})$.
(R)-[6'-(Diethoxyphosphoryl)-6,2'-dimethoxybiphenyl-2-yl]phosphonic acid diethyl ester (9): Cu powder ($6.5 \mathrm{~g}, 102 \mathrm{mmol}$) was added to a solution of $\mathbf{8}(19.7 \mathrm{~g}, 53 \mathrm{mmol})$ in DMF (50 mL), and the whole was stirred at $140{ }^{\circ} \mathrm{C}$ for 2 h . After cooling to rt , solvent was evaporated at $70{ }^{\circ} \mathrm{C}$, and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. Precipitate was filtrated, and the residue was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer was washed with saturated $\mathrm{NH}_{4} \mathrm{Cl} \times 3$ times, and concentrated to give the racemate. Part of the crude racemates ($12.3 \mathrm{~g}, 25 \mathrm{mmol}$) was resolved by salt formation with (+)-dibenzoyltartaric acid $(9.5 \mathrm{~g}, 26.5 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}$ to give pure (R)-isomer salt $(2.95 \mathrm{~g}, 48 \%$: the absolute configuration was temporarily assigned based on the analogy of ligand 6 to DTBM-SEGPHOS and the absolute configuration of the nitrile aldol product). Conversion of the salt to 9 was performed by washing a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of the salt with saturated NaHCO_{3}. Enantiomeric purity was checked by chiral HPLC analysis. DAICEL CHIRALCEL OD-H, hexane/2-propanol $20 / 1,1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{R}=19.4 \mathrm{~min}(S)$ and $22.2 \mathrm{~min}(R)$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \square 1.12(\mathrm{t}, J=8.3 \mathrm{~Hz}, 6 \mathrm{H}), 1.17(\mathrm{t}, J=8.3 \mathrm{~Hz}, 6 \mathrm{H}), 3.71(\mathrm{~s}, 6 \mathrm{H}), 3.77-3.94(\mathrm{~m}, 8 \mathrm{H}), 7.10(\mathrm{~d}, J=8.3$ $\mathrm{Hz}), 7.42$ (ddd, $J=4.9,7.9,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{ddd}, J=0.9,7.9,13.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{31} \mathrm{P} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \square 18.1$.
(R)-[6'-(Dichlorophosphoryl)-6,2'-dimethoxybiphenyl-2-yl]phosphonic acid dichloride (10): SOCl_{2} (3.6 $\mathrm{mL}, 49 \mathrm{mmol})$ and DMF ($380 \square \mathrm{~L}$) were added to $9(2.45 \mathrm{~g}, 5.0 \mathrm{mmol}$), and the mixture was stirred under
reflux for 3.5 h . The solvent was evaporated, and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. Filtration through celite pad, evaporation of solvent, and crystallization with hexane gave $\mathbf{1 0}$ as white powder (1.7 g , 76%). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \square 3.78(\mathrm{~s}, 6 \mathrm{H}), 7.23(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{dd}, J=6.2,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{dd}, J$ $=8.2,20 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right) \square 34.1$.
6,6'-Bis-[bis(4-isopropoxy-3,5-diisopropylphenyl)phosphinoyl]-2,2'-dimethoxybiphenyl (11): A hexane solution of ${ }^{t} \mathrm{BuLi}(1.43 \mathrm{M}, 4.4 \mathrm{~mL})$ was added to a solution of 5 -bromo-2-isopropoxy-1,3-diisopropylbenzene $(1.0 \mathrm{~g}, 3.3 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$, and the temperature was increased to $-40^{\circ} \mathrm{C}$. This aryllithium solution was added to a solution of $\mathbf{1 0}(200 \mathrm{mg}, 0.45 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$, and the mixture was warmed gradually to rt. A saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added, and products were extracted with AcOEt. The combined organic layer was washed with saturated NaCl , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. Partial purification through SiO_{2} column chromatography gave 11 in ca. 67% yield (355 mg).
($\mathbf{1 S}$)-2,6'-Bis[bis(3,5-diisopropyl-4-isopropoxyphenyl)phosphanyl]-6,2'-dimethoxybiphenyl (ligand 6): $\mathrm{Cl}_{3} \mathrm{SiH}(230 \square \mathrm{~L}, 2.3 \mathrm{mmol})$ was added to a solution of $\mathbf{1 1}(340 \mathrm{mg}, 0.29 \mathrm{mmol})$ and $\mathrm{Bu}_{3} \mathrm{~N}(540 \square \mathrm{~L}, 2.3$ mmol) in xylene (4 mL), and the mixture was heated under reflux for 3 h . After cooling to rt, $30 \% \mathrm{NaOH}$ aq $(2 \mathrm{~mL})$ was added, and the mixture was stirred at $60^{\circ} \mathrm{C}$ for 1 h . After cooling, products were extracted with AcOEt x 3 times, and the combined organic layer was washed with saturated $\mathrm{NaHCO}_{3}, \mathrm{NH}_{4} \mathrm{Cl}$, and NaCl aqueous solutions successively. Concentration and purification through SiO_{2} column chromatography (hexane to AcOEt/hexane = 1/20) gave $\mathbf{6}$ in 96% yield (321 mg). $\mathbf{6}$ was further purified by recrystallization from MeOH. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) ~ \square 0.99(\mathrm{~d}, J=5.4 \mathrm{~Hz} 12 \mathrm{H}), 1.00(\mathrm{~d}, J=5.4 \mathrm{~Hz} 12 \mathrm{H}), 1.08(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 3 \mathrm{H})$, 1.13 (d, $J=5.4 \mathrm{~Hz} 12 \mathrm{H}), 1.23-1.31(\mathrm{~m}, 24 \mathrm{H}), 3.01(\mathrm{~s}, 6 \mathrm{H}), 3.23$ (sept, $J=5.4 \mathrm{~Hz}, 4 \mathrm{H}), 3.30$ (sept, $J=5.4 \mathrm{~Hz}$, $4 \mathrm{H}), 4.02$ (sept, $J=5.0 \mathrm{~Hz} 2 \mathrm{H}$), 4.08 (sept, $J=5.0 \mathrm{~Hz} 2 \mathrm{H}$), 6.68 (d, $J=6.5 \mathrm{~Hz} 2 \mathrm{H}), 6.74-6.78$ (m, 2H), 6.95$7.03(\mathrm{~m}, 8 \mathrm{H}), 7.22(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \square 22.1,22.2,22.36,22.41,23.90,23.95,24.0,24.3$, $26.55,26.60,31.6,54.9,75.77,75.80,110.61,126.2,127.7,128.9(\mathrm{t}, J=10.8 \mathrm{~Hz}), 130.6$ (t, $J=11.9 \mathrm{~Hz}$), 132.3-132.4 (m), 133.1-133.4 (m), 134.4-134.6 (m), 139.9-140.1 (m), 141.1-141.3 (m), 151.0, 151.6, $157.6(\mathrm{t}$, $J=6.2 \mathrm{~Hz})$; ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right) \square-15.1$; MS m/z $1152\left(\mathrm{M}+\mathrm{H}^{+}\right)$; HRMS Calcd for $\mathrm{C}_{74} \mathrm{H}_{105} \mathrm{O}_{6} \mathrm{P}_{2}\left(\mathrm{M}+\mathrm{O}_{2}+\mathrm{H}^{+}\right)$ 1183.7279. Found 1183.7280. IR (neat) $2965,1460 \mathrm{~cm}^{-1}$.

References:

${ }^{1}$ Kozikowski, A. P.; Pillay, M. K. J. Org. Chem. 1983, 48, 366.
${ }^{2}$ Itoh, T.; Mitsukura, K.; Kanphai, W.; Takagi, Y.; Kihara, H.; Tsukube, H. J. Org. Chem. 1997, 56, 9165.
${ }^{3}$ Itoh, T.; Takagi, Y.; Nishiyama, S. J. Org. Chem. 1991, 56, 1521.
${ }^{4}$ Kumagai, N.; Matsunaga, S.; Shibasaki, M. Chem. Commun. in press DOI: 10.1039/b504519c.
${ }^{5}$ Suto, Y.; Kumagai, N.; Matsunaga, S.; Kanai, M.; Shibasaki, M. Org. Lett. 2003, 5, 3147.
${ }^{6}$ Zhou, Z.; Shi, L.; Huang, Y.-Z. J. Chem. Soc., Perkin Trans 1 1991, 1931.
${ }^{7}$ Zhang, X.-L.; Han, Y.; Tao, W.-T.; Huang, Y.-Z. J. Chem. Soc., Perkin Trans 1 1995, 189.
${ }^{8}$ Schmid, R.; Broger, E. A.; Cereghetti, M.; Crameri, Y.; Foricher, J.; Lalonde, M.; Muller, R. K.; Scalone, M.; Schoettel, G.; Zutter, U. Pure Appl. Chem. 1996, 68, 131.
${ }^{9}$ Dehli, X.-L.; Gotor, V. Tetrahedron: Asymmetry 2000, 11, 3693.

