Electronic Supplementary Information # Synthesis of 2,3-Di- and 2,3,4-Trisubstituted Furans From 1,2-Dioxines Generated by An Enyne-RCM / Diels-Alder Reaction Sequence Young-Keun Yang, Jung-Hoon Choi, and Jinsung Tae* Center for Bioactive Molecular Hybrids (CBMH) and Department of Chemistry, Yonsei University, Seoul, 120-749 (Korea) #### **CONTENTS** | 1. General Method | S2 | |---------------------------------------------------------------------------------|-----| | 2. General procedure for the FeSO ₄ -catalyzed cleavage of O-O bonds | S2 | | 3. General procedure for the reductive cleavage of 1,2-dioxines | S2 | | 4. General procedures for the oxidations of the allylic diols: | | | Condition A (TPAP/NMO) | S2 | | Condition B (PCC) | S2 | | Condition C (IBX, EtOAc) | S3 | | Condition D (IBX, DMSO) | S3 | | Condition E (Pyr-SO ₃ , DMSO) | S3 | | 5. Spectroscopic data for | | | 7a-b | S3 | | 7c, 7'd, 9a, 9'd, 10a | S4 | | 10b-c, 10'd, 11a | S5 | | 11b-c, 11'd | S6 | | 6. Preparation of | | | 13 | S6 | | 14, 15a | S7 | | 15b, 16a–b, 17a | S8 | | 17b, 18a-b | S9 | | 19a-b, 20a-b | S10 | | 7. General procedure for the cleavage of N-O bonds: | S11 | | 8. Spectroscopic data for 21a–c | S11 | | 9. Spectroscopic data for 21d–e | S12 | | 10. Reference | S12 | General Methods: THF and ether were distilled from sodium benzophenone ketyl under nitrogen just prior to use. For CH₂Cl₂, toluene, and benzene, the drying agent was calcium hydride. All reactions were performed under a N₂ atmosphere. All chromatographic purifications were performed on silica-gel (230-400 mesh) using the indicated solvent systems. All recorded melting points are uncorrected. IR spectra were recorded as a thin film. NMR spectra were recorded with reference to TMS as an internal standard. The organic extracts were dried over anhydrous MgSO₄. 1,2-Dioxines (**5a**–**c** and **5'd**) were synthesized starting from the corresponding acyclic enynes according to the published procedure.¹ General procedure for the FeSO₄-catalyzed cleavage of O-O bonds: A THF-H₂O (1:1) solution (1 mL) of **5'd** (45 mg, 0.17 mmol) was treated with FeSO₄·7H₂O (72 mg, 0.26 mmol) at rt. After 5 h, the reaction solution was quenched with water (5 mL) and extracted with EtOAc (5 mL x 3). The combined organic layers were dried over anhydrous MgSO₄, removed under reduced pressure, and the residue was column chromatographed on silica gel (elution with 10% ethyl acetate in hexanes) to give 11 mg (26%) of **7'd** and 13 mg (30%) of **9'd**. General procedure for the reductive cleavage of 1,2-dioxines: To a CH_2Cl_2 (1.5 mL) solution of **5b** (50 mg, 0.193 mmol) and zinc dust (50 mg, 0.78 mmol) was added acetic acid (0.02 mL) in CH_2Cl_2 (0.5 mL) at room temperature. The reaction mixture was stirred for two hours then filtered through celite pad and the solvent was concentrated under reduced pressure. The residue was column chromatographed on silica gel (EtOAc/MeOH = 1:1) to give **10b** (40 mg, 78%) and **7b** (7 mg, 15%) as colorless oil. #### General procedures for the oxidations of the allylic diols: Condition A (TPAP/NMO): To 10b (300 mg, 1.16 mmol) in 10% acetonitrile-CH₂Cl₂ (6 ml) were added TPAP (33 mg, 0.093 mmol), 4-methylmorpholine *N*-oxide (339 mg, 2.90 mmol) and 4 Å molecular sieves (340 mg). The reaction mixture was stirred for 10 hr at room temperature. The solvent was removed under reduced pressure and the residue was column chromatographed on silica gel (elution with 20% ethyl acetate in hexanes) to afford 75 mg (27%) of 7b as a colorless oil and 141 mg (54%) of 11b as a colorless solid. **Condition B (PCC)**: The diol **10c** (500 mg, 1.83 mmol) in CH₂Cl₂ (4 mL) was treated with pyridinium chlorochromate (789 mg, 3.66 mmol) and 4 Å molecular sieves (790 mg). The reaction mixture was stirred for 2 hr at room temperature. The solvent was removed under reduced pressure and the residue was column chromatographed on silica gel (elution with 10% ethyl acetate in hexanes) to give 426 mg (92%) of **7c** as a colorless oil. **Condition C (IBX, EtOAc)**: A EtOAc (2 mL) solution of **10a** (40 mg, 0.16 mmol) and IBX (135 mg, 0.48 mmol) was refluxed for 6 hr. The reaction mixture was loaded on silica gel and column chromatographed (elution with 20% ethyl acetate in hexanes) to give 29 mg (80%) of **7a** and 2 mg (5%) of **11a** as colorless solids. Condition D (IBX, DMSO): A DMSO (2 mL) solution of 10a (30 mg, 0.12 mmol) and IBX (101 mg, 0.36 mmol) was heated at 50 °C for 8 hr. The reaction solution was quenched with water (5 mL) and extracted with CH₂Cl₂ (5 mL x 3). The combined organic layers were dried over anhydrous MgSO₄, removed under reduced pressure, and the residue was column chromatographed on silica gel (elution with 10% ethyl acetate in hexanes) to give 11 mg (41%) of 7a and 5 mg (15%) of 11a. **Condition E (Pyr-SO₃, DMSO)**: A mixture of **10a** (20 mg, 0.08 mmol), Pyr-SO₃ (50%, 51 mg, 0.32 mmol), DMSO (50 mg, 0.64 mmol), and Et₃N (0.12 mL, 0.86 mmol) in CH₂Cl₂ (4 mL) was stirred for 10 hr at rt. The reaction solution was quenched with saturated NH₄Cl (5 mL) and extracted with CH₂Cl₂ (5 mL x 3). The combined organic layers were dried over anhydrous MgSO₄, removed under reduced pressure, and the residue was column chromatographed on silica gel (elution with 10% ethyl acetate in hexanes) to give 13 mg (64%) of **7a**. **4,7-Dihydro-1,5-dioxa-6-aza-indene-6-carboxylic** acid *tert*-butyl ester (7a): colorless solids; R_f = 0.8 (silica gel, hexane/EtOAc = 1:1); mp 70-72 °C; ¹H NMR (250 MHz, CDCl₃) δ = 7.34-7.33 (m, 1H), 6.27-6.26 (m, 1H), 4.87 (s, 2H), 4.64 (s, 2H), 1.51 (s, 9H); ¹³C NMR (125.8 MHz, CDCl₃) δ = 155.3, 145.3, 142.3, 115.3, 107.8, 82.6, 68.1, 45.5, 28.7; IR (film, cm⁻¹) 2976, 2930, 2868, 2361, 1711, 1363, 1317, 1245, 1158, 1066, 1030; HRMS: m/z calcd. for C₁₁H₁₆NO₄ (M+H)⁺: 226.1079; found: 226.1080. **7,8-Dihydro-4***H***-1,5-dioxa-6-aza-azulene-6-carboxylic acid** *tert*-butyl ester (**7b**): colorless oil; R_f = 0.7 (silica gel, hexane/EtOAc = 2:1); 1 H NMR (250 MHz, CDCl₃) δ = 7.26-7.25 (m, 1H), 6.17-6.16 (m, 1H), 4.83 (s, 2H), 3.89 (t, J = 6.0 Hz, 2H), 3.00 (t, J = 6.0 Hz, 2H), 1.51 (s, 9H); 13 C NMR (62.9 MHz, CDCl₃) δ = 154.5, 150.0, 140.4, 118.6, 109.6, 81.4, 70.4, 47.4, 28.4, 28.0; IR (film, cm⁻¹) 2930, 2858, 1726, 1696, 1399, 1368, 1281, 1230, 1173, 1107; HRMS: m/z calcd. for $C_{12}H_{18}NO_4(M+H)^+$: 240.1236; found: 240.1233. **4,7,8,9-Tetrahydro-1,5-dioxa-6-aza-cyclopentacyclooctene-6-carboxylic acid** *tert***butyl ester** (**7c**): colorless oil; R_f = 0.8 (silica gel, hexane/EtOAc = 2:1); 1 H NMR (250 MHz, CDCl₃) δ = 7.16 (s, 1H), 6.11 (s, 1H), 4.75 (s, 2H), 3.45 (t, J = 5.2 Hz, 2H), 2.79 (t, J = 5.8 Hz, 2H), 1.83- 1.73 (m, 2H), 1.42 (s, 9H); 13 C NMR (62.9 MHz, CDCl₃) δ = 156.3, 152.2, 139.9, 116.3, 110.9, 81.2, 69.5, 50.6, 28.2, 26.6, 24.7; IR (film, cm⁻¹) 2976, 2930, 2863, 1716, 1455, 1404, 1363, 1281, 1250, 1158, 1112; HRMS: m/z calcd. for $C_{13}H_{20}NO_4$ (M+H) $^+$: 254.1392; found: 254.1391. **3-Methyl-4,7-dihydro-1,6-dioxa-5-aza-indene-5-carboxylic acid** *tert*-butyl ester (7'd): colorless solids; R_f = 0.8 (silica gel, hexane/EtOAc = 2:1); mp 68-70 °C; ¹H NMR (250 MHz, CDCl₃) δ = 7.11 (s, 1H), 4.85 (s, 2H), 4.47 (s, 2H), 1.96 (s, 3H), 1.51 (s, 9H); ¹³C NMR (62.9 MHz, CDCl₃) δ = 154.8, 145.9, 138.5, 117.9, 114.5, 82.0, 67.1, 43.2, 28.3, 7.9; IR (film, cm⁻¹) 2976, 2915, 2863, 2356, 2336, 1711, 1685, 1368, 1219, 1153, 1096, 1086; HRMS: m/z calcd. for C₁₂H₁₈NO₄ (M+H)⁺: 240.1236; found: 240.1234. **2-Hydroxy-2,4,7,7a-tetrahydro-1,5-dioxa-6-aza-indene-6-carboxylic acid tert-butyl ester (9a):** colorless oil; $R_f = 0.1$ (silica gel, hexane/EtOAc = 2:1); ¹H NMR (250 MHz, CDCl₃) $\delta = 6.18\text{-}6.14$ (m, 1H), 5.82-5.73 (m, 1H), 4.81 (bs, 1H), 4.65-4.46 (m, 4H), 3.24-2.92 (m, 1H), 1.50 (s, 9H); ¹³C NMR (62.9 MHz, CDCl₃) $\delta = 154.5$, 140.2, 121.8, 102.8, 82.5, 76.2, 69.2, 54.5, 28.2; IR (film, cm⁻¹) 3415, 2984, 2926, 2864, 2360, 2248, 1705, 1478, 1451, 1370, 1232,1158, 1089; ESI-MS m/z 266 ((M+Na)⁺). Anal. Calcd for C₁₁H₁₇NO₅: C, 54.31; H, 7.04. Found: C, 54.35; H, 7.02. **2-Hydroxy-3-methyl-2,4,7,7a-tetrahydro-1,6-dioxa-5-aza-indene-5-carboxylic acid** *tert*-**butyl ester** (**9'd**): colorless oil; $R_f = 0.1$ (silica gel, hexane / EtOAc = 2 : 1); 1 H NMR (250 MHz, CDCl₃) δ = 5.96-5.85 (m, 1H), 4.95 (bs, 1H), 4.80-4.75 (m, 1H), 4.40-4.30 (m, 1H), 3.90-3.83 (m, 1H), 3.63-3.29 (m, 1H), 3.05-3.02 (m, 1H), 1.82 (s, 3H), 1.49 (s, 9H); 13 C NMR (62.9 MHz, CDCl₃) δ = 155.0, 130.3, 129.4, 105.8, 82.5, 78.3, 77.0, 45.8, 28.3, 9.8; IR (film, cm⁻¹) 3415, 2976, 2926, 2876, 2360, 1728, 1709, 1482, 1455, 1370, 1251, 1162, 1131, 1062, 1031; ESI-MS m/z 280 ((M+Na)⁺). Anal. Calcd for C₁₂H₁₉NO₅: C, 56.02; H, 7.44. Found: C, 56.11; H, 7.54. **4-Hydroxy-5-(2-hydroxy-ethylidene)-[1,2]oxazinane-2-carboxylic acid** *tert*-butyl **ester (10a):** colorless oil; $R_f = 0.1$ (silica gel, hexane/EtOAc = 1:1); ¹H NMR (250 MHz, CDCl₃) $\delta = 5.54$ (s, 1H), 4.64 (d, J = 12.4 Hz, 1H), 4.52-4.51 (m, 1H), 4.35 (bs, 2H), 4.20-4.17 (m, 1H),4.07-3.92 (m, 4H), 3.40 (d, J = 13.9 Hz, 1H), 1.40 (s, 9H); ¹³C NMR (62.9 MHz, CDCl₃) $\delta = 155.9$, 135.2, 127.2, 82.0, 72.8, 62.1, 56.8, 52.8, 28.2; IR (film, cm⁻¹) 3406 (br), 2981, 2930, 1696, 1429, 1293, 1368, 1255, 1163, 1112, 1015; HRMS m/z calcd. for C₁₁H₂₀NO₅ (M+H)⁺: 246.1341; found: 246.1341. **5-Hydroxy-6-(2-hydroxy-ethylidene)-[1,2]oxazepane-2-carboxylic acid** *tert*-butyl **ester (10b):** colorless oil; R_f = 0.1 (silica gel, hexane/EtOAc = 1:1); 1 H NMR (250 MHz, CDCl₃) δ = 5.54 (t, J = 6.0 Hz, 1H), 4.83 (d, J = 4.4 Hz, 1H), 4.60 (d, J = 12.2 Hz, 1H), 4.29 (d, J = 12.3 Hz, 1H), 4.23-4.15 (m, 2H), 3.74-3.56 (m, 4H), 1.97-1.92 (m, 1H), 1.81-1.77 (m, 1H), 1.44 (s, 9H); 13 C NMR (62.9 MHz, CDCl₃) δ = 155.2, 140.5, 129.5, 81.5, 77.1, 68.6, 57.9, 45.2, 35.2, 28.3; IR (film, cm⁻¹) 3421 (br), 2981, 2930, 2879, 1696, 1486, 1450, 1393, 1363, 1301, 1245, 1163, 1117, 1066; HRMS m/z calcd. for $C_{12}H_{22}NO_5$ (M+H) $^{+}$: 260.1498; found: 260.1499. **6-Hydroxy-7-(2-hydroxy-ethylidene)-[1,2]oxazocane-2-carboxylic acid** *tert*-butyl **ester** (**10c**): colorless oil; R_f = 0.2 (silica gel, hexane/EtOAc = 1:1); 1 H NMR (250 MHz, CDCl₃) δ = 5.62 (t, J = 6.2 Hz, 1H), 4.56-4.48 (m, 2H), 4.23-4.02 (m, 5H), 3.60-3.55 (m, 1H), 3.04 (t, J = 10.3 Hz, 1H), 1.95-1.89 (m, 2H), 1.72-1.64 (m, 1H), 1.39 (s, 9H); 13 C NMR (62.9 MHz, CDCl₃) δ = 156.5, 138.8, 134.7, 81.5, 75.9, 68.3, 57.6, 49.4, 33.6, 28.3, 21.7; IR (film, cm⁻¹) 3437 (br), 2991, 2935, 2868, 2254, 1696, 1450, 1404, 1260, 1158, 1112, 1025; HRMS m/z calcd. for $C_{13}H_{24}NO_5$ (M+H)⁺: 274.1654; found: 274.1655. **5-Hydroxy-4-(2-hydroxy-1-methyl-ethylidene)-[1,2]oxazinane-2-carboxylic acid** *tert*-butyl ester (10'd): colorless oil; R_f = 0.1 (silica gel, hexane/EtOAc = 1:1); 1 H NMR (250 MHz, CDCl₃) δ = 4.53-4.46 (m, 2H), 4.24 (d, J = 11.8 Hz, 1H), 4.01-3.90 (m, 2H), 3.82-3.78 (m, 2H), 1.69 (s, 3H), 1.33 (s, 9H); 13 C NMR (62.9 MHz, CDCl₃) δ = 155.1, 133.4, 127.0, 82.0, 75.5, 62.9, 61.4, 45.4, 28.1, 16.0; IR (film, cm⁻¹) 3386 (br), 2976, 2925, 2361, 2336, 1701, 1440, 1394, 1363, 1240, 1153, 1076, 1107, 1004; HRMS m/z calcd. for $C_{12}H_{22}NO_5$ (M+H)⁺: 260.1498; found: 260.1494. **2-Oxo-2,6,7,7a-tetrahydro-4***H***-furo**[**3,2-c**]**pyran-6-carboxylic acid** *tert***-butyl ester** (**11a**): colorless solids; R_f = 0.6 (silica gel, hexane/EtOAc = 1:1); mp 121-123 °C; 1 H NMR (250 MHz, CDCl₃) δ = 6.05 (s, 1H), 4.93-4.66 (m, 4H), 3.14 (dd, J = 12.4, 9.8 Hz, 1H), 1.51 (s, 9H); 13 C NMR (62.9 MHz, CDCl₃) δ = 171.4, 162.4, 153.8, 115.7, 83.4, 74.5, 68.7, 53.6, 28.2; IR (film, cm⁻¹) 2981, 2940, 2366, 2336, 1788, 1757, 1726, 1450, 1373, 1327, 1240, 1153; HRMS: m/z calcd. for $C_{11}H_{16}NO_5 (M+H)^+$: 242.1028; found: 242.1023. **2-Oxo-2,7,8,8a-tetrahydro-4***H***-1,5-dioxa-6-aza-azulene-6-carboxylic acid** *tert***-butyl ester (11b):** colorless solids; R_f = 0.4 (silica gel, hexane/EtOAc = 1:1); mp 107-109 °C; ¹H NMR (250 MHz, CDCl₃) δ = 5.89 (s, 1H), 5.30-5.24 (m, 1H), 5.08-5.00 (m, 1H), 4.90-4.83 (m, 1H), 4.18-4.11 (m, 1H), 3.38-3.27 (m, 1H), 2.53-2.46 (m, 1H), 1.72-1.65 (m, 1H), 1.47 (s, 9H); ¹³C NMR (62.9 MHz, CDCl₃) δ = 171.7, 171.1, 155.2, 115.3, 82.9, 82.5, 71.3, 46.6, 34.6, 28.2; IR (film, cm⁻¹) 2976, 2930, 1757, 1706, 1399, 1363, 1301, 1245, 1173, 1153, 1122, 1081, 1020; HRMS: m/z calcd. for C₁₂H₁₈NO₅ (M+H)⁺: 256.1185; found: 256.1189. ## 2-Oxo-2,4,7,8,9,9a-hexahydro-1,5-dioxa-6-aza-cyclopentacyclooctene-6- **carboxylic acid** *tert*-butyl **ester** (**11c**): colorless solids; R_f = 0.2 (silica gel, hexane/EtOAc = 2:1); mp 100-102 °C; ¹H NMR (250 MHz, CDCl₃) δ = 6.08 (s, 1H), 5.17 (bs, 1H), 5.01 (d, J = 13.8 Hz, 1H), 4.50 (d, J = 13.7 Hz, 1H), 3.84-3.77 (m, 1H), 3.04-3.00 (m, 1H), 2.28-2.21 (m, 2H), 1.70-1.60 (m, 2H), 1.48 (s, 9H); ¹³C NMR (62.9 MHz, CDCl₃) δ = 171.7, 166.1, 156.9, 122.5, 83.2, 82.4, 68.7, 50.0, 30.2, 28.3, 20.6; IR (film, cm⁻¹) 2976, 2925, 1757, 1706, 1450, 1363, 1265, 1168, 1107; HRMS: m/z calcd. for $C_{13}H_{20}NO_5$ (M+H)⁺: 270.1341; found: 270.1337. **3-Methyl-2-oxo-2,4,7,7a-tetrahydro-1,6-dioxa-5-aza-indene-5-carboxylic** acid *tert*-butyl ester (11'd): colorless oil; R_f = 0.3 (silica gel, hexane/EtOAc = 2:1); 1 H NMR (250 MHz, CDCl₃) δ = 5.01-4.93 (m, 2H), 4.60-4.52 (m, 1H), 4.05 (d, J = 14.4 Hz, 1H), 3.55 (t, J = 10.5 Hz, 1H), 1.91 (s, 3H), 1.47 (s, 9H); 13 C NMR (62.9 MHz, CDCl₃) δ = 173.2, 154.3, 152.4, 122.8, 83.3, 75.7, 74.2, 46.4, 28.1, 8.7; IR (film, cm⁻¹) 2976, 2930, 2382, 1762, 1731, 1716, 1696, 1455, 1373, 1342, 1240, 1153, 1086, 1030; HRMS : m/z calcd. for $C_{12}H_{18}NO_5$ (M+H)⁺: 256.1185; found: 256.1185. **2-[4-(***tert***-Butyl-dimethyl-silanyloxy)-but-2-ynyloxy]-isoindole-1,3-dione** (**13**): To a CH₂Cl₂ (20 mL) solution of **12** (2.00g, 10.0 mmol), PPh₃ (3.97 g, 15.0 mmol), and *N*-hydroxyphthalimide (1.78 g, 12.0 mmol) was added DIAD (2.95 mL, 15.0 mmol) at 0 °C. After 30 min, the cooling bath was removed and the reaction mixture was stirred for 5 hr at room temperature. The solvent was removed under reduced pressure and the residue was column chromatographed on silica gel (elution with 10% ethyl acetate in hexanes) to afford 3.10 g (89%) of **13** as a colorless solid: R_f = 0.5 (silica gel, hexane / EtOAc = 3 : 1); mp 32-34 °C; ¹H NMR (250 MHz, CDCl₃) δ = 7.78-7.73 (m, 4H), 4.85-4.83 (m, 2H), 4.25-4.24 (m, 2H), 0.75 (s, 9H), -0.04 (s, 6H); ¹³C NMR (62.9 MHz, CDCl₃) δ = 163.3, 134.6, 128.7, 123.6, 88.7, 77.4, 65.3, 51.6, 25.7, 18.1, -5.4; IR (film, cm⁻¹) 2953, 2929, 2887, 2856, 1794, 1732, 1613, 1578, 1470, 1374, 1328, 1255, 1189, 1143, 1085, 1016; HRMS: m/z calcd. for $C_{18}H_{24}NO_4Si$ (M+H)⁺: 346.1475; found: 346.1474. O-[4-(tert-Butyl-dimethyl-silanyloxy)-but-2-ynyl]-hydroxylamine-N-carboxylic acid tert-butyl ester (14): To a CH₂Cl₂ (30 mL) solution of 13 (2.00g, 5.79 mmol) was added NH₂NH₂·H₂O (1.40 mL, 29.0 mmol) at 0 °C. After 10 min, the cooling bath was removed and the reaction mixture was stirred for 2 hr at room temperature. The reaction mixture was diluted with 5 % Na₂CO₃ (30 mL), extracted with EtOAc (30 mL x 3). The combined organic layers were dried over anhydrous MgSO₄, removed under reduced pressure to afford 1.20 g (96%) of the hydroxylamine. To the hydroxylamine (1.75 g, 8.13 mmol) in 1,4-dioxane (14 mL) and 1 N Na₂CO₃ (14 mL) was added (Boc)₂O (2.71 g, 12.0 mmol) at 0 °C. After 10 min, the cooling bath was removed and the reaction mixture was stirred for 8 hr at room temperature. The reaction mixture was diluted with saturated NH₄Cl (30 mL), extracted with CH₂Cl₂ (30 mL x 3). The combined organic layers were dried over anhydrous MgSO₄, removed under reduced pressure, and the residue was column chromatographed on silica gel (elution with 15% ethyl acetate in hexanes) to give 2.41 g (94%) of **7a** as a colorless solid; $R_f = 0.5$ (silica gel, hexane / EtOAc = 3 : 1); mp 34-36 °C; ¹H NMR (250 MHz, CDCl₃) δ = 7.47 (s, 1H), 4.47-4.46 (m, 2H), 4.33-4.31 (m, 2H), 1.44 (s, 9H), 0.86 (s, 9H), 0.08 (s, 6H); ¹³C NMR (62.9 MHz, CDCl₃) $\delta = 156.4$, 86.2, 82.0, 79.3, 64.0, 51.7, 28.2, 25.8, 18.3, -5.1; IR (film, cm⁻¹) ¹) 3280, 2957, 2926, 2891, 2856, 1817, 1751, 1728, 1470, 1397, 1366, 1251, 1174, 1135, 1089, 1008; HRMS: m/z calcd. for $C_{15}H_{30}NO_4Si$ (M+H)⁺: 316.1944; found: 316.1942. *N*-Allyl-*O*-[4-(tert-butyl-dimethyl-silanyloxy)-but-2-ynyl]-*N*-carboxylic acid *tert*-butyl ester (15a): A solution of 14 (3.00 g, 12.0 mmol), allyl bromide (1.24 mL, 14.0 mmol), and catalytic amount of *n*-Bu₄NI (20 mg) in THF (30 mL) was treated with 60% NaH (490 mg, 12.0 mmol) at 0 °C. The solution was stirred for 10 hr at 25 °C and quenched with saturated NH₄Cl (50 mL). It was extracted with EtOAc (50 mL x 3). The combined organic phases were dried and removed under reduced pressure. The residue was column chromatographed on silica gel (elution with 10% ethyl acetate in hexanes) to give 2.91 g (86 %) of 15a a colorless oil; R_f = 0.6 (silica gel, hexane / EtOAc = 8 : 1); ¹H NMR (250 MHz, CDCl₃) δ= 5.85-5.79 (m, 1H), 5.22-5.12 (m, 2H), 4.47-4.46 (m, 2H), 4.32-4.30 (m, 2H), 4.07-4.04 (m, 2H), 1.44 (s, 9H), 0.86 (s, 9H), 0.07 (s, 6H); ¹³C NMR (62.9 MHz, CDCl₃) δ = 156.6, 132.3, 118.1, 85.8, 81.7, 79.7, 62.8, 53.6, 51.8, 28.2, 25.8, 18.3, -5.2; IR (film, cm⁻¹) 3076, 2953, 2926, 2895, 2856, 2706, 2360, 1736, 1713, 1644, 1474, 1432, 1366, 1255, 1143, 1081; HRMS: m/z calcd. for $C_{18}H_{34}NO_4Si$ (M+H)⁺: 356.2257; found: 356.2264. *N*-But-3-enyl-*O*-[4-(*tert*-butyl-dimethyl-silanyloxy)-but-2-ynyl]-*N*-carboxylic acid *tert*-butyl ester (15b): 15b was prepared in 63% as a colorless oil; R_f = 0.6 (silica gel, hexane / EtOAc = 5 : 1); ¹H NMR (250 MHz, CDCl₃) δ = 5.79-5.68 (m, 1H), 5.09-4.96 (m, 2H), 4.47-4.46 (m, 2H), 4.32-4.30 (m, 2H), 3.53 (t, J = 8.5 Hz, 2H), 2.38-2.33 (m, 2H), 1.44 (s, 9H), 0.86 (s, 9H), 0.07 (s, 6H); ¹³C NMR (62.9 MHz, CDCl₃) δ = 156.5, 135.2, 116.8, 85.9, 81.5, 79.6, 62.6, 51.7, 49.9, 31.2, 28.2, 25.8, 18.3, -5.2; IR (film, cm⁻¹) 3079, 2955, 2931, 2859, 1710, 1642, 1472, 1460, 1368, 1255, 1141, 1085, 1002; HRMS : m/z calcd. for C₁₉H₃₆NO₄Si (M+H)⁺: 370.2414; found: 370.2404. **5-[1-(***tert***-Butyl-dimethyl-silanyloxymethyl)-vinyl]-3,6-dihydro-[1,2]oxazine-2-carboxylic acid** *tert***-butyl ester (16a):** A solution of **15a** (1.00 g, 2.81 mmol) and 1st generation Grubbs' catalyst (50 mg, 0.060 mmol) in CH₂Cl₂ (140 mL) was refluxed at 45 °C for 16 hr under N₂. The solvent was removed under reduced pressure and the residue mixture was column chromatographed on silica gel (hexane / EtOAc = 20:1) to give 950 mg (95%) of **16a** as a colorless oil; R_f = 0.5 (silica gel, hexane / EtOAc = 8 : 1); ¹H NMR (250 MHz, CDCl₃) δ = 5.80 (s, 1H), 5.21 (s, 1H), 4.87 (s, 1H), 4.52-4.51 (m, 2H), 4.27 (s, 2H), 4.10-4.09 (m, 2H), 1.44 (s, 9H), 0.86 (s, 9H), 0.01 (s, 6H); ¹³C NMR (62.9 MHz, CDCl₃) δ = 154.8, 142.1, 132.1, 118.0, 109.8, 81.6, 68.5, 63.3, 44.7, 28.2, 25.8, 18.2, -5.4; IR (film, cm⁻¹) 2954, 2927, 2891, 2855, 2360, 2341, 1735, 1695, 1477, 1461, 1394, 1366, 1251, 1168, 1101; ESI-MS m/z 378 ((M+Na)⁺). Anal. Calcd for C₁₈H₃₃NO₄Si: C, 60.81; H, 9.36. Found: C, 60.88; H, 9.31. #### 6-[1-(tert-Butyl-dimethyl-silanyloxymethyl)-vinyl]-4,7-dihydro-3H- [1,2]oxazepine-2-carboxylic acid *tert*-butyl ester (16b): 16b was prepared in 93% as a colorless oil; $R_f = 0.5$ (silica gel, hexane / EtOAc = 5 : 1); ¹H NMR (250 MHz, CDCl₃) $\delta = 5.84$ (t, J = 6.8 Hz, 1H), 5.20 (s, 1H), 4.87 (s, 1H), 4.76 (s, 2H), 4.24 (s, 2H), 3.68 (t, J = 6.4Hz, 2H), 2.56-2.48 (m, 2H), 1.47 (s, 9H), 0.88 (s, 9H), 0.05 (s, 6H); ¹³C NMR (62.9 MHz, CDCl₃) $\delta = 155.3$, 143.9, 135.9, 122.8, 110.1, 81.0, 76.6, 63.8, 50.6, 28.4, 25.9, 23.4, 18.3, -5.4; IR (film, cm⁻¹) 2931, 2858, 1727, 1701, 1470, 1390, 1367, 1254, 1173, 1118; HRMS : m/z calcd. for C₁₉H₃₆NO₄Si (M+H)⁺: 370.2414; found: 370.2400. **4-**(*tert*-Butyl-dimethyl-silanyloxymethyl)-3,5,8,8a-tetrahydro-1,2,6-trioxa-7-aza-naphthalene-7-carboxylic acid *tert*-butyl ester (17a): A 5% MeOH-CH₂Cl₂ solution (12 mL) of **16a** (30 mg, 0.080 mmol) and a catalytic amount of rose Bengal bengal sensitizer (5 mg) was irradiated using a 400-W tungsten lamp while a steady flow of oxygen was passed though the solution. The reaction flask was cooled in an ice-bath during this procedure. After 6 h, the solvent was removed under reduced pressure and the residue mixture was column chromatographed on silica gel (elution with 5% ethyl acetate in hexanes) to give 22 mg (66%) of **17a** as a colorless oil; R_f = 0.4 (silica gel, hexane / EtOAc = 5 : 1); ¹H NMR (250 MHz, CDCl₃) δ = 4.85-4.73 (m, 3H), 4.48 (d, J = 16.9, 1H), 4.30-4.22 (m, 4H), 3.01 (dd, J = 12.6, 10.5 Hz, 1H), 1.49 (s, 9H), 0.87 (s, 9H), 0.05 (s, 6H); ¹³C NMR (62.9 MHz, CDCl₃) δ = 154.4, 130.9, 125.4, 82.4, 72.1, 70.9, 67.0, 58.8, 48.4, 28.2, 25.7, 18.2, -5.4; IR (film, cm⁻¹) 2954, 2931, 2883, 2859, 1739, 1707, 1465, 1370, 1327, 1259, 1224, 1164, 1109, 1073; HRMS: m/z calcd. for $C_{18}H_{34}NO_6Si$ (M+H)⁺: 388.2155; found: 388.2154. **4-**(*tert*-Butyl-dimethyl-silanyloxymethyl)-3,8,9,9a-tetrahydro-5H-1,2,6-trioxa-7-aza-benzocycloheptene-7-carboxylic acid *tert*-butyl ester (17b): 17b was prepared in 42% as a colorless oil; R_f = 0.5 (silica gel, hexane / EtOAc = 5 : 1); ¹H NMR (250 MHz, CDCl₃) δ = 4.84-4.78 (m, 1H), 4.63-4.58 (m, 2H), 4.50-4.43 (m, 2H), 4.25-4.15 (m, 1H), 4.11-4.02 (m, 2H), 3.26 - 3.10 (m, 1H), 2.38- 2.21 (m, 1H), 2.15-2.07 (m, 1H), 1.49 (s, 9H), 0.88 (s, 9H), 0.05 (s, 6H); ¹³C NMR (62.9 MHz, CDCl₃) δ = 155.8, 130.7, 130.2, 81.9, 77.7, 71.3, 70.0, 59.0, 46.2, 34.1, 28.4, 25.9, 18.4, -5.3; IR (film, cm⁻¹); 2960, 2930, 2887, 2856, 2560, 2394, 2352, 2210, 1709, 1667, 1540, 1474, 1393, 1362, 1289, 1255, 1162, 1112, 1070, 1004; HRMS : m/z calcd. for C₁₉H₃₆NO₆Si (M+H)⁺: 402.2312; found: 402.2307. **3-**(*tert*-Butyl-dimethyl-silanyloxymethyl)-4,7-dihydro-1,5-dioxa-6-aza-indene-6-carboxylic acid *tert*-butyl ester (18a): colorless oil; $R_f = 0.8$ (silica gel, hexane / EtOAc = 5 : 1); ¹H NMR (250 MHz, CDCl₃) $\delta = 7.20$ (s, 1H), 4.91-4.90 (m, 2H), 4.60 (s, 2H), 4.52 (s, 2H), 1.5 (s, 9H), 0.89 (s, 9H), 0.05 (s, 6H); ¹³C NMR (62.9 MHz, CDCl₃) $\delta = 154.9$, 145.5, 137.8, 123.2, 115.1, 82.1, 67.3, 56.5, 45.0, 28.3, 25.8, 18.2, -5.4; IR (film, cm⁻¹) 2962, 2927, 2851, 2360, 2345, 1703, 1549, 1469, 1366, 1263, 1160, 1069; ESI-MS m/z 369 (M⁺). Anal. Calcd for C₁₈H₃₁NO₅Si: C, 58.51; H, 8.46. Found: C, 58.55; H, 8.45. **3-**(*tert*-Butyl-dimethyl-silanyloxymethyl)-7,8-dihydro-4H-1,5-dioxa-6-aza-azulene-6-carboxylic acid *tert*-butyl ester (18b): colorless oil; $R_f = 0.6$ (silica gel, hexane / EtOAc = 5 : 1); 1 H NMR (250 MHz, CDCl₃) $\delta = 7.16$ (s.1H), 4.87 (s, 2H), 4.46 (s, 2H), 3.88 (t, J = 6.1Hz, 2H), 2.98 (t, J = 6.0Hz, 2H), 1.51 (s, 9H), 0.88 (s, 9H), 0.07 (s, 6H); 13 C NMR (62.9 MHz, CDCl₃) $\delta = 154.5$, 150.6, 137.1, 124.2, 118.5, 81.4, 69.6, 56.3, 47.3, 28.4, 28.0, 25.9, 18.4, -5.4; IR (film, cm⁻¹) 2958, 2923, 2855, 1731, 1699, 1691, 1457, 1382, 1255, 1164, 1109, 1069, 1042; ESI-MS m/z 406 ((M+Na)⁺). Anal. Calcd for C₁₉H₃₃NO₅Si: C, 59.50; H, 8.67. Found: C, 59.56; H, 8.62. **5-[1-(***tert*-Butyl-dimethyl-silanyloxymethyl)-2-hydroxy-ethylidene]-4-hydroxy-[1,2]oxazinane-2-carboxylic acid *tert*-butyl ester (19a): colorless oil; $R_f = 0.1$ (silica gel, hexane / EtOAc = 5 : 1); 1 H NMR (250 MHz, CDCl₃) $\delta = 4.74$ -4.68 (m, 2H), 4.56-4.50 (m, 1H), 4.37-4.11 (m, 5H), 3.53-3.46 (m, 1H), 3.38 (bs, 1H), 3.08 (bs, 1H), 1.48 (s, 9H), 0.88 (s, 9H), 0.07 (s, 6H); 13 C NMR (62.9 MHz, CDCl₃) $\delta = 155.9$, 135.7, 131.7, 81.9, 67.0, 62.6, 61.2, 59.4, 53.0, 28.2, 25.8, 18.2, -5.4; IR (film, cm⁻¹) 3410, 2958, 2935, 2887, 2855, 1699, 1469, 1438, 1390, 1370, 1255, 1156, 1101, 1061, 1002; ESI-MS m/z 412 ((M+Na)⁺). Anal. Calcd for $C_{18}H_{35}NO_6Si$: C, 55.50; H, 9.06. Found: C, 55.52; H, 9.08. **6-[1-(***tert***-Butyl-dimethyl-silanyloxymethyl)-2-hydroxy-ethylidene]-5-hydroxy- [1,2]oxazepane-2-carboxylic acid** *tert***-butyl ester (19b):** colorless oil; $R_f = 0.1$ (silica gel, hexane / EtOAc = 1 : 1); 1 H NMR (250 MHz, CDCl₃) $\delta = 5.04$ (s. 1H), 4.80 (d, J = 14.2 Hz, 1H), 4.59 (d, J = 14.2 Hz, 1H), 4.30-4.13 (m, 4H), 3.94-3.89 (m, 1H), 3.45-3.44 (m, 1H), 3.04 (bs, 1H), 2.66 (bs, 1H), 2.07-2.03 (m, 1H), 1.90-1.85 (m, 1H), 1.46 (s, 9H), 0.88 (s, 9H), 0.07 (s, 6H); 13 C NMR (62.9 MHz, CDCl₃) $\delta = 155.7$, 137.0, 135.7, 81.8, 72.4, 69.6, 62.0, 60.4, 44.8, 35.2, 28.4, 25.9, 18.3, -5.3; IR (film, cm⁻¹) 3419, 2953, 2930, 2856, 2510, 2394, 2364, 2240, 1701, 1474, 1459, 1397, 1366, 1251, 1166, 1120, 1070, 1004; HRMS : m/z calcd. for C₁₉H₃₈NO₆Si (M+H)⁺: 404.2468; found: 404.2476. **3-**(*tert*-Butyl-dimethyl-silanyloxymethyl)-2-oxo-2,4,7,7a-tetrahydro-1,5-dioxa-6-aza-indene-6-carboxylic acid *tert*-butyl ester (20a): colorless solid; R_f = 0.5 (silica gel, hexane / EtOAc = 3 :1); mp 39-41 °C; ¹H NMR (250 MHz, CDCl₃) δ = 5.36 (d, J = 13.0 Hz, 1H), 4.80-4.53 (m, 5H), 3.14 (dd, J = 10.9Hz, 1H), 1.50 (s, 9H), 0.88 (s, 9H), 0.08 (s, 6H); ¹³C NMR (62.9 MHz, CDCl₃) δ = 171.1, 155.0, 153.0, 126.7, 83.1, 73.4, 67.8, 58.8, 53.2, 28.2, 25.8, 18.2, -5.6; IR (film, cm⁻¹) 2958, 2931, 2859, 1766, 1727, 1699, 1477, 1457, 1374, 1259, 1152, 1101, 1038; HRMS : m/z calcd. for $C_{18}H_{32}NO_6Si$ (M+H)⁺: 386.1999; found: 386.1995. **3-(***tert***-Butyl-dimethyl-silanyloxymethyl)-2-oxo-2,7,8,8a-tetrahydro-4H-1,5-dioxa-6-aza-azulene-6-carboxylic acid** *tert***-butyl ester (20b):** colorless solid; $R_f = 0.1$ (silica gel, hexane / EtOAc = 5 : 1); mp 39-41 °C; ¹H NMR (250 MHz, CDCl₃) $\delta = 5.28-5.20$ (m, 2H), 5.00-4.90 (m, 1H), 4.48 (s, 2H), 4.24-4.18 (m, 1H), 3.34-3.24 (m, 1H), 2.50-2.45 (m, 1H), 1.72-1.58 (m, 1H), 1.49 (s, 9H), 0.91 (s, 9H), 0.09 (s, 6H); ¹³C NMR (62.9 MHz, CDCl₃) $\delta = 171.3$, 164.0, 155.5, 126.3, 82.3, 81.9, 72.1, 58.7, 46.5, 34.8, 28.3, 26.0, 18.3, -5.5; IR (film, cm⁻¹) 2953, 2926, 2853, 1759, 1709, 1594, 1470, 1397, 1366, 1247, 1162, 1093, 1050, 1031; HRMS : *m/z* calcd. for C₁₉H₃₄NO₆Si (M+H)⁺: 400.2164; found: 400.2164. General procedure for the cleavage of N-O bonds: To a solution of 7a (10 mg, 0.04 mmol) in CH₃CN-H₂O (4:1, 2 mL) were added Mo(CO)₆ (2 mg, 0.008 mmol) and NaBH₄ (2 mg, 0.053 mmol). The reaction solution was heated at 85 °C for 2 hr, quenched with water (5 mL) and extracted with EtOAc (5 mL x 3). The combined organic layers were dried over anhydrous MgSO₄, removed under reduced pressure, and the residue was column chromatographed on silica gel (elution with 10% ethyl acetate in hexanes) to give 10 mg (98%) of 21a a colorless oil. (3-Hydroxymethyl-furan-2-ylmethyl)-carbamic acid tert-butyl ester (21a): colorless oil; $R_f = 0.2$ (silica gel, hexane / EtOAc = 2 : 1); 1 H NMR (250 MHz, CDCl₃) $\delta = 7.29$ -7.28 (m, 1H), 6.35 (s, 1H), 5.30 (bs, 1H), 4.53 (s, 2H), 4.26 (d, J = 6.1 Hz, 2H), 3.82 (bs, 1H), 1.41 (s, 9H); 13 C NMR (62.9 MHz, CDCl₃) $\delta = 156.5$, 148.8, 141.6, 122.3, 111.6, 80.5, 56.0, 35.6, 28.4; IR (film, cm⁻¹) 3338, 2976, 2930, 2876, 2360, 1694, 1624, 1517, 1451, 1424, 1393, 1366, 1255, 1170, 1101, 1051, 1012; ESI-MS m/z 250 ((M+Na)⁺). Anal. Calcd for C₁₁H₁₇NO₄: C, 58.14; H, 7.54. Found: C, 58.10; H, 7.57. [2-(3-Hydroxymethyl-furan-2-yl)-ethyl]-carbamic acid *tert*-butyl ester(21b): colorless oil; $R_f = 0.2$ (silica gel, hexane / EtOAc = 2 : 1); ¹H NMR (250 MHz, CDCl₃) $\delta = 7.29$ -7.27 (m, 1H), 6.39-6.38 (m, 1H), 4.87 (bs, 1H), 4.47 (s, 2H), 3.39-3.34 (m, 2H), 2.84 (t, J = 6.2 Hz, 2H), 2.43 (bs, 1H), 1.41 (s, 9H); ¹³C NMR (62.9 MHz, CDCl₃) $\delta = 156.2$, 150.3, 141.3, 120.7, 111.3, 79.7, 56.3, 39.5, 28.5, 27.0; IR (film, cm⁻¹) 3342, 2976, 2930, 2872, 2394, 2360, 2229, 1694, 1624, 1517, 1455, 1393, 1370, 1282, 1251, 1166, 1143; ESI-MS m/z 264 ((M+Na)⁺). Anal. Calcd for C₁₂H₁₉NO₄: C, 59.73; H, 7.94. Found: C, 59.80; H, 7.98. [3-(3-Hydroxymethyl-furan-2-yl)-propyl]-carbamic acid *tert*-butyl ester (21c): colorless oil; $R_f = 0.1$ (silica gel, hexane / EtOAc = 3 : 1); ¹H NMR (250 MHz, CDCl₃) $\delta = 7.27-7.26$ (m, 1H), 6.38-6.37(m, 1H), 4.77(bs, 1H), 4.43(s, 2H), 3.10-3.05(m, 2H), 2.69(t, J = 6.8Hz, 2H), 1.88-1.78(m, 2H), 1.43(s, 9H); ¹³C NMR (62.9 MHz, CDCl₃) $\delta = 156.5$, 151.8, 140.9, 128.6, 120.1, 111.2, 79.6, 56.2, 39.3, 28.5, 22.9; IR (film, cm⁻¹)3353, 2976, 2926, 2872, 2726, 2564, 2352, 2325, 2202, 2059, 1694, 1540, 1517, 1455, 1393, 1362, 1278, 1255, 1174, 1047, 993; ESI-MS m/z 278 ((M+Na)⁺). Anal. Calcd for $C_{13}H_{25}NO_4$: C, 61.16; H, 8.29. Found: C, 61.20; H, 8.28. [4-(*tert*-Butyl-dimethyl-silanyloxymethyl)-3-hydroxymethyl-furan-2-ylmethyl]-carbamic acid *tert*-butyl ester (21d): colorless solid; $R_f = 0.1$ (silica gel, hexane / EtOAc = 5 : 1); mp 40-42 °C; ¹H NMR (250 MHz, CDCl₃) δ = 7.24(s ,1H) , 5.00(s ,1H) , 4.60 (s,2H), 4.53 (d, J = 6.3Hz, 2H), 4.26 (d, J = 6.0, 2H), 3.67 (s ,1H), 1.42 (s ,9H), 0.91 (s ,9H), 0.10 (s ,6H); ¹³C NMR (62.9 MHz, CDCl₃) δ = 156.0, 149.1, 138.7, 125.1, 121.5, 80.1, 56.5, 54.6, 35.8, 28.3, 25.8, 18.3, -5.4; IR (film, cm⁻¹) 3378, 2966, 2927, 2855, 1941, 1695, 1529, 1509, 145, 1366, 1251, 1172,1049, 1006; ESI-MS m/z 394 ((M+Na)⁺). Anal. Calcd for C₁₈H₃₃NO₅Si: C, 58.19; H, 8.95. Found: C, 58.23; H, 8.90. [2-[4-(tert-Butyl-dimethyl-silanyloxymethyl)-3-hydroxymethyl-furan-2-yl]-ethyl]-carbamic acid tert-butyl ester (21e): colorless oil; R_f = 0.2 (silica gel, hexane / EtOAc = 3 : 1); 1 H NMR (250 MHz, CDCl₃) δ = 7.23(s, 1H), 4.78(bs, 1H), 4.60(s, 2H), 4.45(s, 2H), 3.38-3.35(m, 2H), 3.27(bs, 1H), 2.82(t, J = 6.4 Hz, 2H), 1.43(s, 9H), 0.90(s, 9H), 0.11(s, 6H); 13 C NMR (62.9 MHz, CDCl₃) δ =156.0, 150.9, 138.3, 125.0, 120.8, 79.5 56.8, 55.0, 39.5, 28.5, 27.0, 26.0 18.4, -5.2; IR (film, cm⁻¹) 3357, 2953, 2930, 2856, 2360, 2337, 1697, 1543, 1520, 1470, 1393, 1366, 1259, 1174, 1112, 1058, 1004; ESI-MS m/z 408 ((M+Na)⁺). Anal. Calcd for C₁₉H₃₅NO₅Si: C, 59.19; H, 9.15. Found: C, 59.23; H, 9.10. #### **Reference:** (1) Yang, Y.-K.; Lee, S.; Tae, J. Bull. Kor. Chem. Soc. **2004**, 25, 1307.