SUPPORTING INFORMATION

Europium(II) and Ytterbium(II) Cyclic Organohydroborates with Agostic Interactions

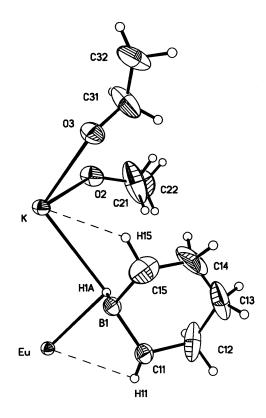
Xuenian Chen, Soyoung Lim, Christine E. Plečnik, Shengming Liu, Bin Du, Edward A. Meyers, Sheldon G. Shore

Department of Chemistry, The Ohio State University, Columbus, OH, 43210

Table of Contents

Table S1.	Crystallographic data for 3, and 4.	S 1
Figure S1.	Molecular structure (10 % probability thermal ellipsoids) of the	
	asymmetric unit of $\{K(THF)_4\}_2\{Eu\{(\mu-H)_2BC_8H_{14}\}_4\}, 3.$	S2
Figure S2.	Molecular structure (5 % probability thermal ellipsoids) of	
	{K(THF) ₄ } ₂ {Eu{(μ -H) ₂ BC ₈ H ₁₄ } ₄ }, 3.	S 3
Figure S3.	Molecular structure (10 % probability thermal ellipsoids) of the	
	asymmetric unit of $\{K(THF)_4\}_2\{Yb\{(\mu-H)_2BC_8H_{14}\}_4\}, 4$	S 4
Figure S4.	Molecular structure (5 % probability thermal ellipsoids) of	
	$\{K(THF)_4\}_2\{Yb\{(\mu-H)_2BC_8H_{14}\}_4\}, 4$	S5
Figure S5.	Molecular structure (50 % probability thermal ellipsoids) of the	
	asymmetric unit of $[NMe_4]_2[Eu\{(\mu-H)_2BC_8H_{14}\}_4]$, 5.	S 6
Figure S6.	Molecular structure (25 % probability thermal ellipsoids) of	
	$[NMe_4]_2[Eu\{(\mu-H)_2BC_8H_{14}\}_4], 5.$	S 7
Figure S7.	Molecular structure (50 % probability thermal ellipsoids) of the	
	asymmetric unit of $[NMe_4]_2[Yb\{(\mu-H)_2BC_8H_{14}\}_4]$, 6.	S 8
Figure S8.	Molecular structure (25 % probability thermal ellipsoids) of	
	$[NMe_4]_2[Yb\{(\mu-H)_2BC_8H_{14}\}_4], 6.$	S 9
Figure S9.	Molecular structure (25 % probability thermal ellipsoids) of the	
	asymmetric unit of $\{K(MeTHF)_3\}_2\{Eu\{(\mu-H)_2BC_8H_{14}\}_4\}, 7. \dots$	S10
Figure S10.	Molecular structure (10 % probability thermal ellipsoids) showing	
	the disorderd MeTHF solvent in 7	S 11

Figure S11.	Molecular structure (25 % probability thermal ellipsoids) of the	
	asymmetric unit of {K(MeTHF) ₃ } ₂ {Yb{(μ -H) ₂ BC ₈ H ₁₄ } ₄ }, 8	S12
Figure S12.	Molecular structure (10 % probability thermal ellipsoids) showing	
	the free disorderd MeTHF solvent in 8.	S13
Figure S13.	Solid-state (KBr) IR spectra of $\{K(THF)_4\}_2\{Eu\{(\mu-H)_2BC_8H_{14}\}_4\},\$	
	3	S14
Figure S14.	Solid-state (KBr) IR spectra of $\{K(THF)_4\}_2\{Yb\{(\mu - \mu - \mu)\}_2\}$	
	$H_{2}BC_{8}H_{14}_{4}, 4$	S15
Figure S15.	Solid-state (KBr) IR spectra of $[NMe_4]_2[Eu\{(\mu-H)_2BC_8H_{14}\}_4]$,	
	5	S16
Figure S16.	Solid-state (KBr) IR spectra of $[NMe_4]_2[Yb\{(\mu-H)_2BC_8H_{14}\}_4]$,	
	6	S17
Figure S17.	Solid-state (KBr) IR spectra of $\{K(MeTHF)_3\}_2 \{Eu\{(\mu - \mu - \mu)\}_2\}_2 \{Eu\}$	
	H) ₂ BC ₈ H ₁₄ $_{4}$, 7	S 18
Figure S18.	Solid-state (KBr) IR spectra of $\{K(MeTHF)_3\}_2\{Yb\{(\mu -$	
	H) ₂ BC ₈ H ₁₄ $_{4}$, 8	S19


Table S1.	Crystallographic	data for complexes 3 , and 4
-----------	------------------	--

	3	4
empirical formula	$C_{64}H_{64}O_8B_4Eu\;K_2$	$C_{64}H_{64}O_8B_4YbK_2$
fw	1299.06	1320.14
space group	P4(2)/nmc(No.137)	P4(2)/nmc(No.137)
a, Å	13.439(1)	13.3634(1)
b, Å	13.439(1)	13.3634(1)
<i>c</i> , Å	20.421(1)	20.2053(1)
α, deg	90	90
<i>B</i> , deg	90	90
γ, deg	90	90
7, Å ³	3688.2(4)	3608.27(4)
Z	2	2
$D_{calcd}, g \cdot cm^{-3}$	1.170	1.215
T, °C	-33	-73
μ , mm ⁻¹	1.009	1.458
R1 $[I > 2\sigma(I)]^{a}$	0.0453	0.0510
wR2 (all data) b	0.1554	0.1784

^{*a*} R1 = $\sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|.$

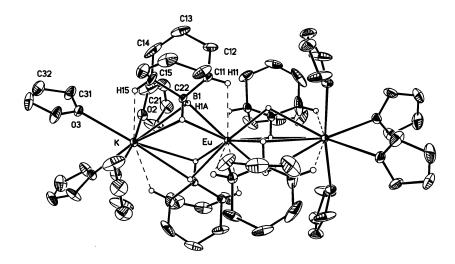

^b wR2 = $[\sum w(F_o^2 - F_c^2)^2 / \sum w(F_o^2)^2]^{1/2}$.

Figure S1. Molecular structure (10 % probability thermal ellipsoids) of the asymmetric unit of $\{K(THF)_4\}_2 \{Eu\{(\mu-H)_2BC_8H_{14}\}_4\}, 3.$

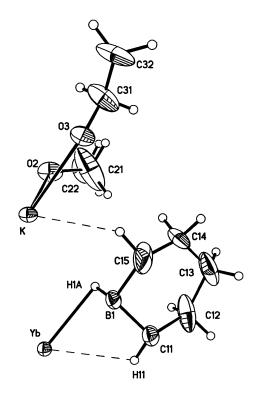

The Eu atom in **3** resides on a special position, (3/4, 1/4, 1/4). The asymmetric unit is comprised of 1/8 Eu atom, 1/4 K atom, a half of $\{(\mu-H)_2BC_8H_{14}\}_4\}$ unit and one THF solvent.

Figure S2. Molecular structure (5 % probability thermal ellipsoids) of $\{K(THF)_4\}_2\{Eu\{(\mu-H)_2BC_8H_{14}\}_4\}, 3.$

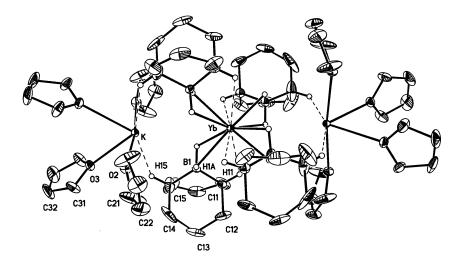

The remainder of **3** is generated by symmetry transformations through the Eu center. Symmetry transformations used to generate equivalent atoms: A(#1): y + 1/2, -x + 1, -z + 1/2; B(#2): -y + 1, x - 1/2; -z + 1/2; C(#3): -x + 3/2, -y + 1/2, z; D(#4): x, -y + 1/2, z; E(#5): -x + 3/2, y, z. The hydrogen atoms on THF solvent and on β -, and γ -position in {(μ -H)₂BC₈H₁₄} unit are omitted for clarity.

Figure S3. Molecular structure (10 % probability thermal ellipsoids) of the asymmetric unit of $\{K(THF)_4\}_2\{Yb\{(\mu-H)_2BC_8H_{14}\}_4\}, 4$.

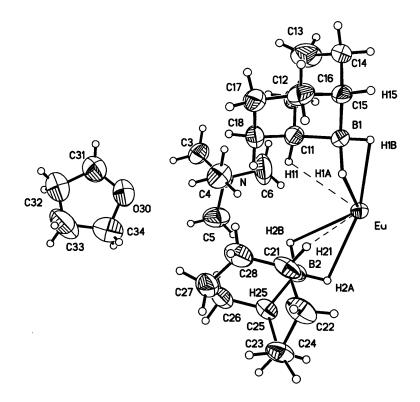
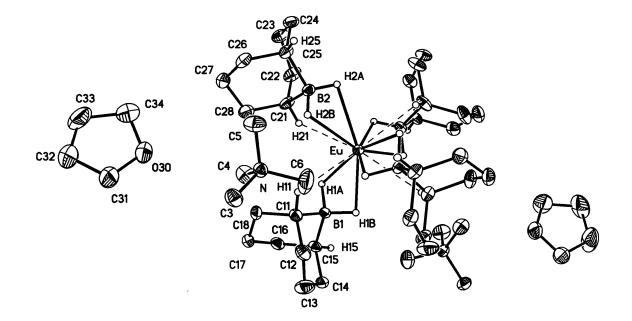

The Yb atom in **4** resides on a special position, (3/4, 1/4, 1/4). The asymmetric unit is comprised of 1/8 Yb atom, 1/4 K atom, a half of $\{(\mu-H)_2BC_8H_{14}\}_4\}$ unit and one THF solvent.

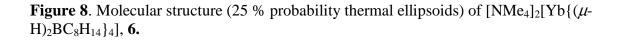
Figure 4. Molecular structure (5 % probability thermal ellipsoids) of $\{K(THF)_4\}_2\{Yb\{(\mu-H)_2BC_8H_{14}\}_4\}, 4.$



The remainder of **4** is generated by symmetry transformations through the Yb center. Symmetry transformations used to generate equivalent atoms: A(#1): y + 1/2, -x + 1, -z + 1/2; B(#2): -y + 1, x - 1/2; -z + 1/2; C(#3): -x + 3/2, -y + 1/2, z; D(#4): x, -y + 1/2, z; E(#5): -x + 3/2, y, z. The hydrogen atoms on THF solvent and on β -, and γ -position in {(μ -H)₂BC₈H₁₄} unit are omitted for clarity.

Figure 5. Molecular structure (50 % probability thermal ellipsoids) of the asymmetric unit of $[NMe_4]_2[Eu\{(\mu-H)_2BC_8H_{14}\}_4] \cdot 2THF$, **5**·2**THF**.


The Eu atom in **5** is resides on a special position, (0, 1/2, z). The asymmetric unit is comprised of a half of Eu atom, two { $(\mu-H)_2BC_8H_{14}$ } units, one THF solvent and one cation [NMe₄]⁺.


Figure 6. Molecular structure (25 % probability thermal ellipsoids) of $[NMe_4]_2[Eu\{(\mu - H)_2BC_8H_{14}\}_4]$ ·2THF, **5**·2**THF**.

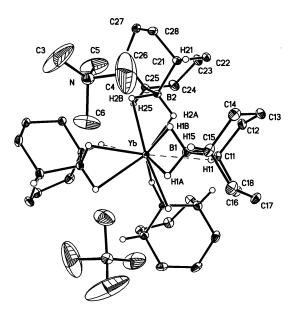
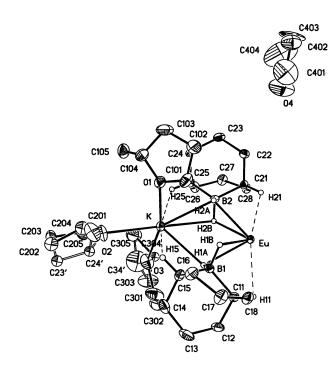
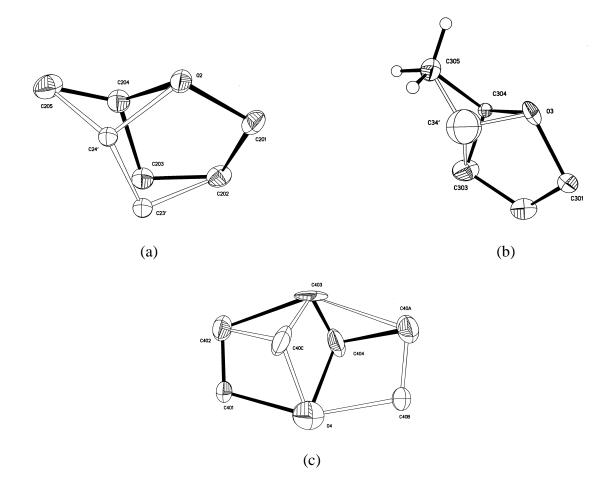

The remainder of **5**·**2THF** is generated by inversion through the Eu center. Symmetry transformation used to generate equivalent atoms: -x, -y + 1, z. Hydrogen atoms on solvents THF, cation NMe₄, and β - and γ -position in the {(μ -H)₂BC₈H₁₄}unit are omitted for clarity.

Figure 7. Molecular structure (50 % probability thermal ellipsoids) of the asymmetric unit of $[NMe_4]_2[Yb\{(\mu-H)_2BC_8H_{14}\}_4]$, **6**.


The Yb atom in **6** is resides on a special position, (1/2, y, 3/4). The asymmetric unit is comprised of a half of Yb atom, two { $(\mu-H)_2BC_8H_{14}$ } units, and one cation [NMe₄]⁺.



The remainder of **6** is generated by inversion through the Yb center. Symmetry transformation used to generate equivalent atoms: -x + 1, y, -z + 3/2. Hydrogen atoms on cation NMe₄, and β - and γ -position in the {(μ -H)₂BC₈H₁₄}unit are omitted for clarity.

Figure 9. Molecular structure (25 % probability thermal ellipsoids) of the asymmetric unit of $\{K(MeTHF)_3\}_2 \{Eu\{(\mu-H)_2BC_8H_{14}\}_4\} \cdot MeTHF$, **7**·**MeTHF**.

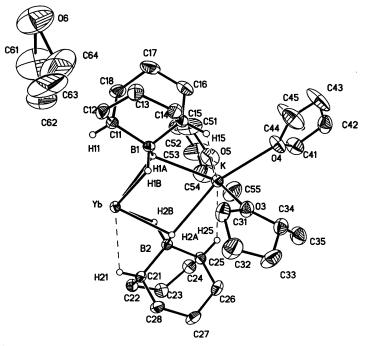

The Eu atom in **7**·**MTHF** is resides on a special position, (1/2, y, 3/4). The asymmetric unit is comprised of Eu on an inversion center, one K atom, two $\{(\mu-H)_2BC_8H_{14}\}$ units, three coordinated MeTHF solvent ligands, and a half of free MeTHF ligand. Inversion through the Eu center generates the remainder of molecule. Symmetry transformation used to generate equivalent atoms: -x + 1, y, -z + 3/2. Hydrogen atoms on solvents MeTHF, and on β - and γ - position in $\{(\mu-H)_2BC_8H_{14}\}$ unit are omitted for clarity. The free MeTHF solvent and two coordinated MeTHF solvents are disordered.

Figure 10. Molecular structure (10 % probability thermal ellipsoids) showing the disorderd MeTHF solvent ligands and free MeTHF solvent in **7**·**MeTHF**.

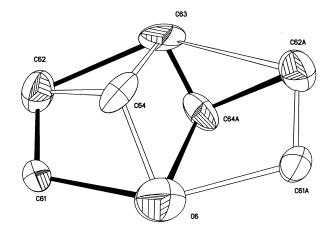

The α -, and β -carbon in coordinated MeHTF solvents in **7**·MeTHF is disordered (Figure (a), (b)). These atoms were treated by splitting the MeTHF ring (C203, C204, and C304). The following site occupancy factors were determined: C203, C204, C304, 0.43; and C23', C24', C34', 0.57. The free MeTHF solvent in **7**·MeTHF is disordered (Figure (c)). The carbon atoms adopt two sets of alternate orientation that are related by rotation. The site occupancy factors of two sets are 50%. Two sets are represented by solid line and open line, respectively. Positions of hydrogen atoms on the disordered solvent ligands were not calculated.

Figure 11. Molecular structure (25 % probability thermal ellipsoids) of the asymmetric unit of $\{K(MeTHF)_3\}_2\{Yb\{(\mu-H)_2BC_8H_{14}\}_4\}$ ·MeTHF, **8**·MeTHF.

The Yb atom in **8**•**MeTHF** is resides on a special position, (1, y, 5/4). The asymmetric unit is comprised of Yb on an inversion center, one K atom, two { $(\mu-H)_2BC_8H_{14}$ }units, three coordinated MeTHF solvent ligands, and a half of free MeTHF ligand. Inversion through the Yb center generates the remainder of molecule. Symmetry transformations used to generate equivalent atoms: -x + 2, y, -z + 5/2 and -x + 1, y, -z + 5/2. Hydrogen atoms on solvents MeTHF, and on β - and γ - position in { $(\mu-H)_2BC_8H_{14}$ }unit are omitted for clarity. The free MeTHF solvent is disordered.

Figure 12. Molecular structure (10 % probability thermal ellipsoids) showing the disorderd free THF solvent in 8·MeTHF.

The free MeTHF solvent in 8·MeTHF is disordered. The carbon atoms adopt two sets of alternate orientation that are related by rotation. The site occupancy factors of two sets are 50%. Two sets are represented by solid line and open line, respectively. Positions of hydrogen atoms on the disordered solvent ligands were not calculated.

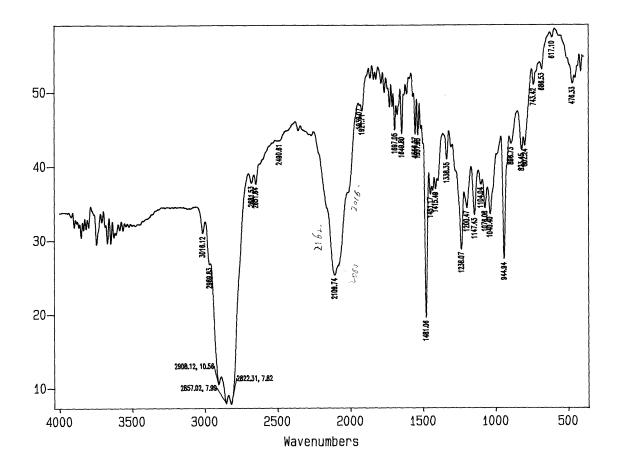


Figure 13. Solid-state (KBr) IR spectra of $\{K(THF)_4\}_2\{Eu\{(\mu-H)_2BC_8H_{14}\}_4\}, 3.$

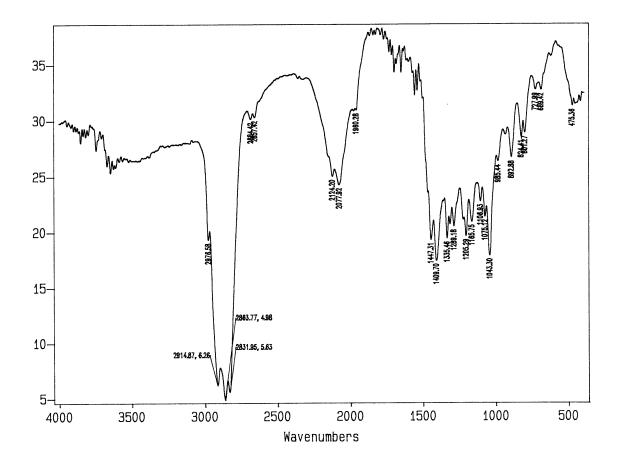
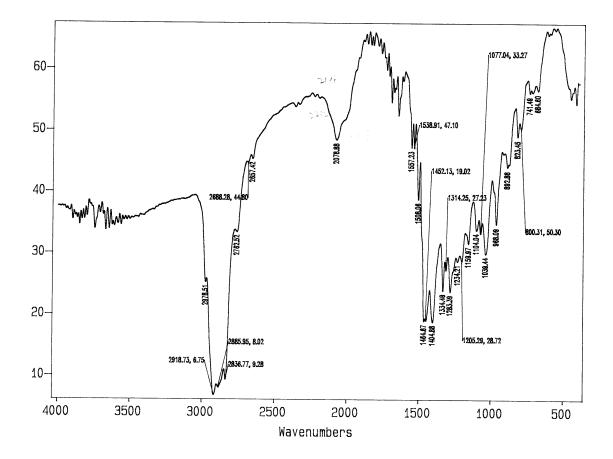



Figure 14. Solid-state (KBr) IR spectra of $\{K(THF)_4\}_2\{Yb\{(\mu-H)_2BC_8H_{14}\}_4\}, 4$.

Figure 15. Solid-state (KBr) IR spectra of [NMe₄]₂[Eu{(μ-H)₂BC₈H₁₄}₄], **5**.

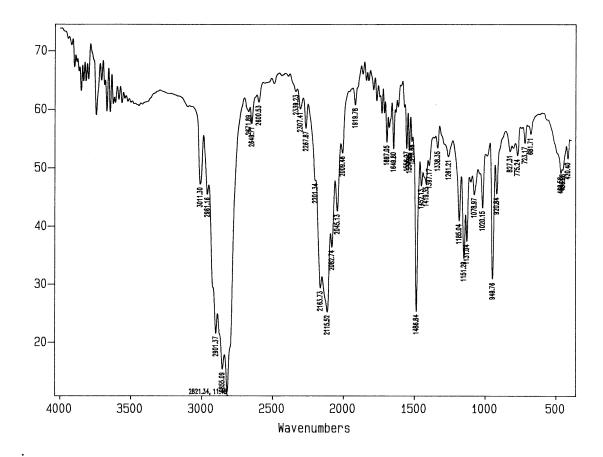


Figure 16. Solid-state (KBr) IR spectra of $[NMe_4]_2[Yb\{(\mu-H)_2BC_8H_{14}\}_4]$, 6.

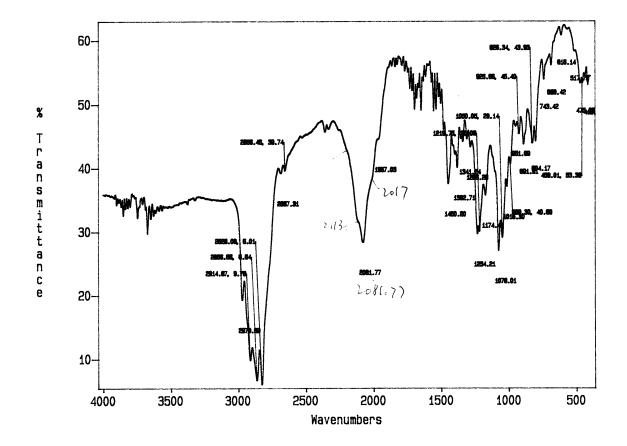


Figure 17. Solid-state (KBr) IR spectra of $\{K(MeTHF)_3\}_2\{Eu\{(\mu-H)_2BC_8H_{14}\}_4\}, 7.$

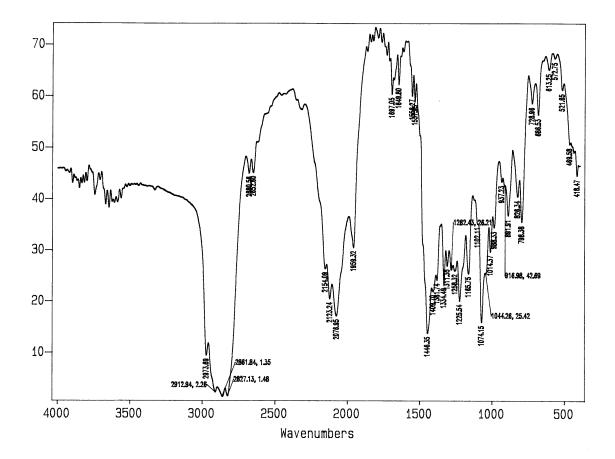


Figure 18. Solid-state (KBr) IR spectra of $\{K(MeTHF)_3\}_2\{Yb\{(\mu-H)_2BC_8H_{14}\}_4\}, 8.$