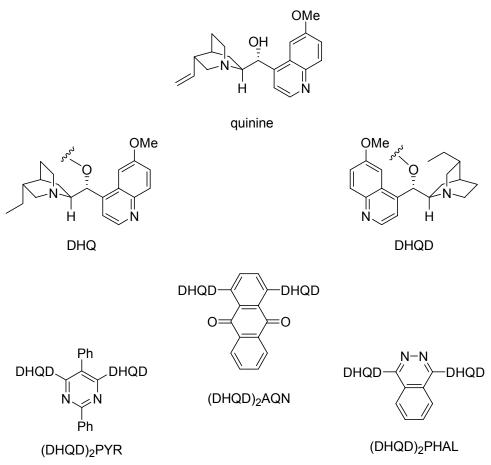
Enantioselective Organocatalytic Allylic Amination

Thomas B. Poulsen, Carlos Alemparte, and Karl Anker Jørgensen*

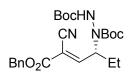

The Danish National Research Foundation: Center for Catalysis Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark e-mail: kaj@chem.au.dk

Supporting Information

Contents

Catalyst structures	S2
General methods	S3
Materials	S3
General procedure for the allylic amination	S3
Characterization data for the amination products	S4
Procedures and characterization data for derivatives of the amination products	S12
Determination of the absolute configuration	S16
References	S17

Catalyst Structures


General Methods. NMR spectra were acquired on a Varian AS 400 spectrometer, running at 400 and 100 MHz for ¹H and ¹³C, respectively. Chemical shifts (δ) are reported in ppm relative to residual solvent signals. All spectra were recorded at elevated temperatures (60 °C) in order to minimize the effect of rotameric isomers. ¹³C NMR spectra were acquired on a broad band decoupled mode. Mass spectra were recorded on a micromass LCT spectrometer using electrospray (ES⁺) ionization techniques. Flash column chromatography (FC) was carried out using the FlashMaster II from Jones Chromatography with columns containing silica gel. Analytical thin layer chromatography (TLC) was performed using pre-coated aluminium-backed plates (Merck Kieselgel 60 F254) and visualized by ultraviolet irradiation or KMnO₄ dip. Optical rotations were measured on a Perkin-Elmer 241 polarimeter. The enantiomeric excess (ee) of the products was determined by chiral stationary phase HPLC (Daicel Chiralpak AS/AD or Daicel Chiralcel OD columns).

Materials. Analytical grade solvents were used as received. For flash chromatography (FC) silica gel was purchased from Iatron Laboratories Inc. (Iatrobeads 6RS-8060) or from Fluka (Silica gel 60, 230-400 mesh). Dialkyl azodicarboxylates and catalysts (**2**) are all commercially available and were used as received. Substrates **1a-k,o** were prepared by Knoevenagel condensation of the appropriate α -cyanoacetate and aldehyde following a literature procedure.¹ Substrate **11** was synthesized by condensing malonitrile with butyraldehyde.² Substrates **1m,n** were prepared from malononitrile and the corresponding ketones.³

General Procedure for allylic amination of alkylidene cyanoacetates: To a test tube equipped with a magnetic stirring bar were added dichloromethane (1.0 mL), di-*tert*-butyl azodicarboxylate (0.24 mmol, 55.4 mg), and the alkylidene cyanoacetate (0.2 mmol). The test tube was fitted with a rubber septum, stirred at ambient temperature to dissolve the solids, and then cooled to -78 °C. (DHQ)₂PYR (10 mol%, 0.02 mmol, 17.6 mg) was added as a solid to the cooled mixture, which was then placed at -24 °C for 41-47 h. The mixture was then cooled to -78 °C and loaded directly onto a chromatographic column

containing Iatrobeads. The pure product was isolated by FC. The enantiomeric excess of the products was determined by HPLC using a chiral stationary phase.

(*R*)-(*E*)-4-[*N*,*N*'-Bis(*tert*-butoxycarbonyl)-hydrazino]-2-cyanohex-2-enoic acid benzyl ester (2a):

The title compound was obtained according to the general procedure, but using $(DHQD)_2PYR$ as the catalyst, after FC in Et₂O/*n*-hexane as a viscous colorless oil (83% yield). ¹H NMR (CDCl₃, 60 °C) δ 7.67 (d, *J* 9.1 Hz, 1H), 7.43-7.31 (m, 5H), 6.11 (br s, 1H), 5.30 (s, 2H), 4.94 (q, *J* 6.5 Hz, 1H), 1.88 (m, 1H), 1.66

(m, 1H), 1.48 (s, 9H), 1.46 (s, 9H), 0.99 (t, *J* 7.4 Hz, 3H). ¹³C NMR (CDCl₃, 60 °C) δ 160.9, 160.3, 155.9, 154.3, 134.9, 128.6 (2C), 128.5 (2C), 128.2, 113.0, 109.3, 82.5, 81.9, 68.0, 60.3, 28.2 (3C), 28.0 (3C), 24.8, 10.4. HRMS calc.: C₂₄H₃₃N₃NaO₆ 482.2267; found: 482.2270. The ee was determined by HPLC using a Chiralpak AD column [hexane/*i*PrOH (75:25)]; flow rate 1.0 mL/min; $\tau_{major} = 18.2 \text{ min}$, $\tau_{minor} = 11.8 \text{ min}$ (94% ee).

(S)-(E)-4-[N,N'-Bis(*tert*-butoxycarbonyl)-hydrazino]-2-cyanohex-2-enoic acid allyl ester (2b):

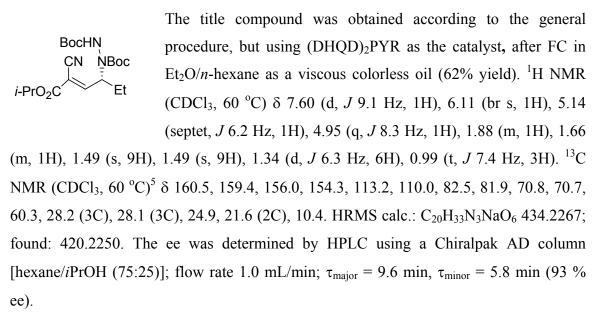
The title compound was obtained according to the general procedure after FC in Et₂O/*n*-hexane as a viscous colorless oil (90% yield). ¹H NMR (CDCl₃, 60 °C) δ 7.66 (d, J 9.1 Hz, 1H), 6.12 (br s, 1H), 5.96 (ddt, J 16.2, 10.8, 5.8 Hz, 1H), 5.40 (dd, J

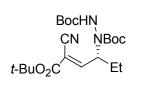
17.2, 1.4 Hz, 1H), 5.30 (dd, J 10.6, 1.1 Hz, 1H), 4.95 (q, J 8.2

Hz, 1H), 4.75 (d, *J* 5.7 Hz, 2H), 1.88 (m, 1H), 1.67 (m, 1H), 1.49 (s, 9H), 1.49 (s, 9H), 1.00 (t, *J* 7.4 Hz, 3H). ¹³C NMR (CDCl₃, 60 °C) δ 160.7, 160.2, 156.0, 154.3, 131.0, 119.2, 113.0, 109.2, 82.5, 81.9, 66.8, 60.3, 28.2 (3C), 28.1 (3C), 24.8, 10.4. HRMS calc.: C₂₀H₃₁N₃NaO₆ 432.2111; found: 432.2104. The ee was determined by HPLC using a Chiralpak AD column [hexane/*i*PrOH (75:25)]; flow rate 1.0 mL/min; $\tau_{major} = 7.0$ min, $\tau_{minor} = 11.4$ min (97% ee).

(S)-(E)-4-[N,N'-Bis(*tert*-butoxycarbonyl)-hydrazino]-2-cyanohex-2-enoic acid methyl ester (2c):

The title compound was obtained according to the general procedure after FC in Et₂O/*n*-hexane as a viscous colorless oil (84% yield). ¹H NMR (CDCl₃, 60 °C) δ 7.65 (d, *J* 9.2 Hz, 1H), 6.12 (br s, 1H), 4.93 (q, *J* 8.1 Hz, 1H), 3.87 (s, 3H), 1.87 (m, 1H), 1.66 (m, 1H), 1.49 (s, 18H), 0.99 (t, *J* 9.2 Hz, 3H). ¹³C NMR (CDCl₃, 60 °C)⁵ δ 161.5, 160.2, 156.0, 154.3, 113.1, 109.1, 82.5, 82.0, 60.3, 53.1, 53.0, 28.2 (3C), 28.1 (3C), 24.8, 10.4. HRMS calc.: C₁₈H₂₉N₃NaO₆ 406.1954; Found: 406.1942. The ee was determined by HPLC using a Chiralpak AD column [hexane/*i*PrOH (75:25)]; flow rate 1.0 mL/min; $\tau_{major} = 6.4 \text{ min}$, $\tau_{minor} = 14.3 \text{ min}$ (98% ee).

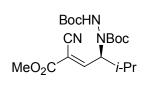

(*R*)-(*E*)-4-[*N*,*N*'-Bis(*tert*-butoxycarbonyl)-hydrazino]-2-cyanohex-2-enoic acid ethyl ester (2d):


The title compound was obtained according to the general procedure, but using $(DHQD)_2PYR$ as the catalyst, after FC in Et₂O/*n*-hexane as a viscous colorless oil (71% yield). ¹H NMR (CDCl₃, 60 °C) δ 7.63 (d, *J* 9.2 Hz, 1H), 6.11 (br, s, 1H), 4.94 (q, *J* 8.1 Hz, 1H), 4.33 (q, *J* 7.1 Hz, 2H), 1.88 (m, 1H), 1.66 (m, 1H),

1.49 (s, 9H), 1.49 (s, 9H), 1.37 (t, *J* 7.1 Hz, 3H), 0.99 (t, *J* 7.4 Hz, 3H). ¹³C NMR (CDCl₃, 60 °C) δ 161.0, 159.7, 156.0, 154.3, 113.1, 109.5, 82.5, 81.9, 62.5, 60.3, 28.2 (3C), 28.1 (3C), 24.8, 14.0, 10.4. HRMS calc.: C₁₉H₃₁N₃NaO₆ 420.2111; found: 420.2127. The ee was determined by HPLC using a Chiralpak AD column [hexane/*i*PrOH (75:25)]; flow rate 1.0 mL/min; $\tau_{major} = 12.2 \text{ min}$, $\tau_{minor} = 6.3 \text{ min}$ (90% ee).

(*R*)-(*E*)-4-[*N*,*N*'-Bis(*tert*-butoxycarbonyl)-hydrazino]-2-cyanohex-2-enoic acid *i*-propyl ester (2e):

(*R*)-(*E*)-4-[*N*,*N*'-Bis(*tert*-butoxycarbonyl)-hydrazino]-2-cyanohex-2-enoic acid *t*-butyl ester (2f):


The title compound was obtained according to the general procedure, but using $(DHQD)_2PYR$ as the catalyst, after FC in Et₂O/*n*-hexane as a viscous colorless oil (21% yield). ¹H NMR (CDCl₃, 60 °C) δ 7.53 (d, *J* 9.1 Hz, 1H), 6.12 (br s, 1H), 4.93 (q, *J* 7.8 Hz, 1H), 1.86 (m, 1H), 1.64 (m, 1H), 1.54 (s, 9H), 1.49 (s,

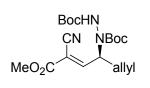
9H), 1.48 (s, 9H), 0.99 (t, *J* 7.4 Hz, 3H). ¹³C NMR (CDCl₃, 60 °C) δ 159.9, 158.6, 156.0, 154.4, 113.5, 111.1, 83.8, 82.5, 82.0, 60.2, 28.2 (3C), 28.1 (3C), 28.0 (3C), 24.9, 10.6. HRMS calc.: C₂₁H₃₅N₃NaO₆ 448.2424; found: 448.2427. The ee was determined by HPLC using a Chiralpak AD column [hexane/*i*PrOH (75:25)]; flow rate 1.0 mL/min; $\tau_{major} = 8.2 \text{ min}, \tau_{minor} = 5.5 \text{ min} (91\% \text{ ee}).$

(*S*)-(*E*)-4-[*N*,*N*'-Bis(*tert*-butoxycarbonyl)-hydrazino]-2-cyanodec-2-enoic acid methyl ester (2g):

 $\begin{array}{l} \text{BocHN} \\ \text{MeO}_{2}\text{C} & \text{NBoc} \\ \text{MeO}_{2}\text{C} & \text{NHe} \\ \text{MeO}_{2}\text{C} & \text{NHe} \\ \text{MeO}_{2}\text{C} & \text{NHe} \\ \text{MeO}_{2}\text{C} & \text{NHe} \\ \text{New} & \text{NHe} \\ \text{ND}_{2}\text{C} & \text{NHe} \\ \text{MeO}_{2}\text{C} & \text{NHe} \\ \text{NH} & \text{NDR} & (\text{CDCl}_{3}, 60 \, ^{\circ}\text{C}) \, ^{5} 5 \, 161.5, 160.4, 156.0, 154.2, 113.0, 108.8, 82.5, \\ 82.0, 58.7, 53.1, 53.0, 31.5, 31.4, 28.8, 28.2 (3C), 28.1 (3C), 25.7, 22.4, 13.8. \text{HRMS} \\ \text{calc.:} \text{C}_{22}\text{H}_{37}\text{N}_{3}\text{NaO}_{6} & \text{462.2580}; \text{found: 462.2590.} \left[\alpha_{]_{D}^{20} + 70 \ (c = 1.0, \text{CHCl}_{3}, 99\% \text{ ee}). \\ \text{The ee was determined by HPLC using a Chiralpak AD column [hexane/iPrOH (75:25)]; \\ \text{flow rate 1.0 mL/min; } \tau_{major} = 5.2 \text{ min}, \tau_{minor} = 9.9 \text{ min} (99\% \text{ ee}). \\ \end{array}$

(*S*)-(*E*)-4-[*N*,*N*'-Bis(*tert*-butoxycarbonyl)-hydrazino]-2-cyano-5-methylhex-2-enoic acid methyl ester (2h):

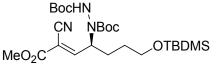
The title compound was obtained according to the general procedure, but at a temperature of 4 $^{\circ}$ C, after FC in Et₂O/*n*-hexane as a viscous colorless oil (87% yield). ¹H NMR (CDCl₃, 60 $^{\circ}$ C) δ 7.57 (d, *J* 10.4, 1H), 6.01 (br s, 1H), 4.71 (t, *J* 10.3 Hz,


1H), 3.88 (s, 3H), 2.08 (m, 1H), 1.50 (s, 9H), 1.48 (s, 9H), 1.05

(d, *J* 6.6 Hz, 3H), 0.93 (d, *J* 6.8 Hz, 3H). ¹³C NMR (CDCl₃, 60 °C)⁵ δ 161.5, 158.6, 156.0, 154.3, 113.3, 110.2, 82.6, 82.0, 64.7, 53.1, 53.0, 30.0, 28.2 (3C), 28.0 (3C), 19.7, 18.7. HRMS calc.: C₁₉H₃₁N₃NaO₆ 420.2111; found: 420.2110. [α]_D²⁰ +103 (*c* = 1.0, CHCl₃, 96% ee). The ee was determined by HPLC using a Chiralpak AD column [hexane/*i*PrOH (80:20)]; flow rate 1.0 mL/min; $\tau_{major} = 7.8 \text{ min}$, $\tau_{minor} = 18.7 \text{ min}$ (90% ee).

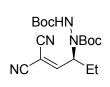
(*S*)-(*E*)-4-[*N*,*N*'-Bis(*tert*-butoxycarbonyl)-hydrazino]-2-cyano-5-phenylpent-2-enoic acid methyl ester (2i):

The title compound was obtained according to the general procedure after FC in Et₂O/*n*-hexane as a viscous colorless oil (89% yield). ¹H NMR (CDCl₃, 60 °C) δ 7.75 (d, *J* 8.9 Hz, 1H), 7.32 (m, 2H), 7.23 (m, 3H), 6.03 (br s, 1H), 5.34 (m, 1H), 3.86 (s, 3H), 3.16 (m, 1H), 2.96 (m, 1H), 1.49 (s, 9H), 1.41 (s, 9H). ¹³C NMR (CDCl₃, 60 °C)⁵ δ 161.3, 159.4, 156.0, 153.9, 135.9, 129.1 (2C), 128.8 (2C), 127.2, 112.9, 109.3, 82.6, 82.2, 60.5, 53.1, 53.0, 37.8, 28.1 (6C). HRMS calc.: C₂₃H₃₁N₃NaO₆ 468.2111; found: 468.2103. [α]_D²⁰ +101 (*c* = 1.0, CH₂Cl₂, 98% ee). The ee was determined by HPLC using a Chiralpak AD column [hexane/*i*PrOH (80:20)]; flow rate 1.0 mL/min; $\tau_{major} = 8.3 \text{ min}, \tau_{minor} = 21.1 \text{ min} (98\% ee).$


(*S*)-(*E*)-4-[*N*,*N*'-Bis(*tert*-butoxycarbonyl)-hydrazino]-2-cyanoocta-2,7-dienoic acid methyl ester (2j):

The title compound was obtained according to the general procedure after FC in Et₂O/*n*-hexane as a viscous colorless oil (85% yield). ¹H NMR (CDCl₃, 60 °C) δ 7.67 (d, *J* 8.9 Hz, 1H), 6.12 (br s, 1H), 5.77 (ddt, *J* 17.1, 10.1, 7.0 Hz, 1H), 5.21-5.06 (m, 3H), 3.87 (s, 3H), 2.63 (m, 1H), 2.42 (m, 1H), 1.49 (s, 9H),

1.49 (s, 9H).¹³C NMR (CDCl₃, 60 °C)⁵ δ 161.4, 159.6, 155.9, 154.0, 132.6, 119.0, 113.0, 109.2, 82.6, 82.0, 58.5, 53.1, 53.0, 35.8, 28.1 (3C), 28.1 (3C). HRMS calc.: C₁₉H₂₉N₃NaO₆ 418.1954; found: 418.1958. [α]_D²⁰ +69 (c = 1.0, CHCl₃, 96% ee). The ee was determined by HPLC using a Chiralpak AD column [hexane/*i*PrOH (80:20)]; flow rate 1.0 mL/min; $\tau_{major} = 7.6 \text{ min}, \tau_{minor} = 19.4 \text{ min} (96\% \text{ ee}).$

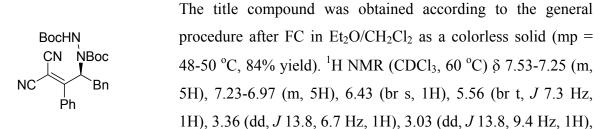

(*S*)-(*E*)-4-[*N*,*N*'-Bis(*tert*-butoxycarbonyl)-hydrazino]-7-(*tert*-butyldimethyl-silanyloxy)-2-cyanohept-2-enoic acid methyl ester (2k):

The title compound was obtained according to the general procedure after FC in Et_2O/CH_2Cl_2 as a viscous colorless oil (80% yield). ¹H NMR (CDCl₃, 60 °C) δ 7.66 (d, J 9.1 Hz, 1H), 6.24 (br s, 1H) 5.04

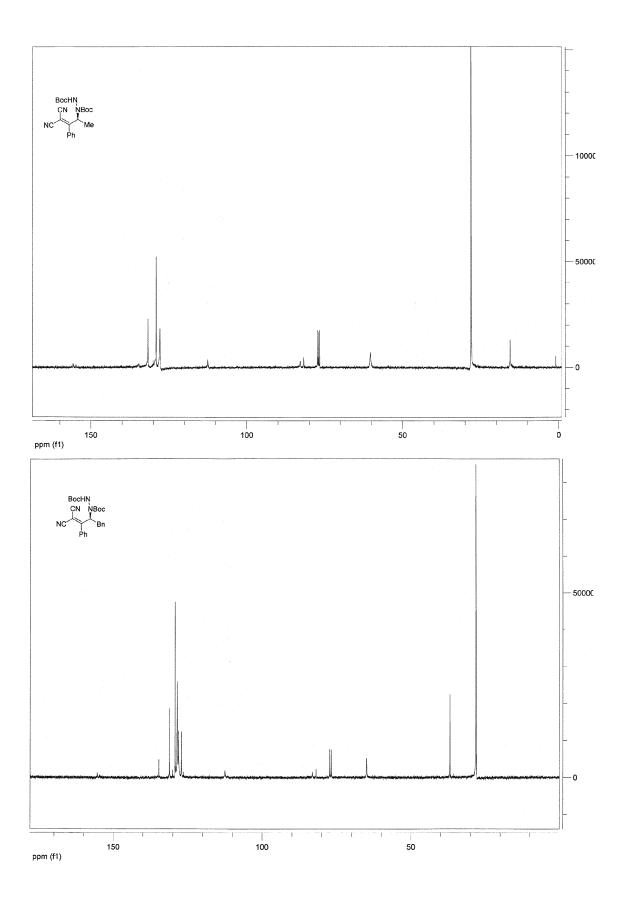
(br m, 1H), 3.87 (s, 3H), 3.66 (t, *J* 6.4 Hz, 2H), 1.94 (m, 1H), 1.70-1.55 (m, 3H), 1.49 (br s, 18H), 0.91 (s, 9H), 0.07 (s, 6H). ¹³C NMR (CDCl₃, 60 °C)⁵ δ 161.5, 160.3, 155.9, 154.2, 113.0, 108.9, 82.5, 81.9, 62.3, 58.6, 53.1, 53.0, 29.2, 28.2 (3C), 28.1 (3C), 27.8, 26.0 (3C), 18.3, -5.3, -5.4. HRMS calc.: C₂₅H₄₅N₃NaO₇Si 550.2924; found: 550.2928. [α]_D²⁰ +60 (*c* = 0.33, CHCl₃, 97% ee). The ee was determined by HPLC using a Chiralpak AD column [hexane/*i*PrOH (90:10)]; flow rate 1.0 mL/min; $\tau_{major} = 7.7$ min, $\tau_{minor} = 13.2$ min (97% ee).

(S)-4-[N,N'-Bis(tert-butoxycarbonyl)-hydrazino]-2-cyanohex-2-en nitrile (21):

The title compound was obtained according to the general procedure after FC in Et₂O/*n*-hexane as a viscous colorless oil (65% yield). ¹H NMR (CDCl₃, 60°C) δ 7.44 (br d, *J* 9.5 Hz, 1H), 6.16 (br s, 1H), 4.84 (q, *J* 8.0 Hz, 1H), 1.89 (m, 1H), 1.67 (m, 1H), 1.50 (s, 9H), 1.50 (s, 9H), 1.00 (t, *J* 7.4 Hz, 3H). ¹³C NMR


(CDCl₃, 60°C) δ 166.5, 156.2, 154.1, 111.9, 110.3, 88.6, 83.2, 82.4, 60.9, 28.2, 28.1, 24.5, 10.3. HRMS calc.: C₁₇H₂₆N₄O₄ 373.1852; found: 373.1841. [α]_D²⁰ +90 (*c* = 1.0, CHCl₃, 91% ee). The ee was determined by HPLC using a Chiralpak AD column [hexane/*i*PrOH (75:25)]; flow rate 1.0 mL/min; $\tau_{major} = 4.0 \text{ min}$, $\tau_{minor} = 6.3 \text{ min}$ (91% ee).

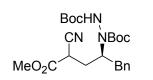
(*S*)-4-[*N*,*N*'-Bis(*tert*-butoxycarbonyl-hydrazino]-2-cyano-3-phenylpent-2-en nitrile (2m):


Bochn
NC
Ph
The title compound was obtained according to the general
procedure after FC in Et₂O/CH₂Cl₂ as a viscous colorless oil
(85% yield). ¹H NMR (CDCl₃, 60 °C)
$$\delta$$
 7.69-7.47 (m, 5H), 6.41
(br s, 1H), 5.19 (m, 1H), 1.51 (s, 9H), 1.50 (s, 9H), 1.35 (br d, J
6.2 Hz, 3H). ¹³C NMR Due to severe rotameric broadening of
many of the signals, the spectrum is attached below. HRMS

calc.: C₂₂H₂₈N₄NaO₄ 435.2008; found: 435.2010. $[\alpha]_D^{20}$ + 250 (c = 0.50, CHCl₃, 86% ee). The ee was determined by HPLC using two Chiralpak AS columns coupled in series [hexane/*i*PrOH (98:2)]; flow rate 1.0 mL/min; τ_{major} = 12.5 min, τ_{minor} = 10.8 min (86% ee).

(*S*)-4-(*N*,*N*'-Bis(*tert*-butoxycarbonyl-hydrazino)-2-cyano-3,5-diphenylpent-2-en nitrile (2n):

1.52 (s, 9H), 1.50 (s, 9H).¹³C NMR Due to severe rotameric broadening of many of the signals, the spectrum is attached below. HRMS calc.: $C_{28}H_{32}N_4NaO_4$ 511.2321; found: 511.2320. $[\alpha]_D^{20}$ + 346 (c = 0.49, CHCl₃, 88% ee). The ee was determined by HPLC using a Chiralpak AD column [hexane/*i*PrOH (90:10)]; flow rate 1.0 mL/min; $\tau_{major} = 9.1$ min, $\tau_{minor} = 13.3$ min (88% ee).

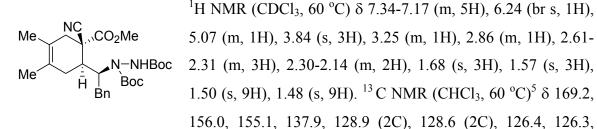

(*S*)-(*E*)-4-[*N*,*N*'-Bis(*tert*-butoxycarbonyl)-hydrazino]-2-cyano-5-phenylpent-2-enoic acid benzyl ester (20):

The title compound was obtained according to the general procedure after FC in Et₂O/*n*-hexane as a viscous colorless oil (85% yield). ¹H NMR (CDCl₃, 60 °C) δ 7.7 (d, *J* 8.9 Hz, 1H), 7.42-7.20 (m, 10H), 6.11 (br s, 1H), 5.36 (m, 1H), 5.28 (s, 2H), 3.15 (m, 1H), 2.94 (dd, *J* 13.4, 6.2 Hz, 1H), 1.46 (s, 9H), 1.40 (s, 9H). ¹³C NMR (CDCl₃, 60 °C) δ 160.7, 159.5, 156.0, 153.9, 135.9, 134.9, 129.1 (2C), 128.8 (2C), 128.6 (2C), 128.5 (2C), 128.2, 127.2, 112.8, 109.5, 82.5, 82.1, 68.0, 60.5, 37.7, 28.0 (6C). HRMS calc.: C₂₉H₃₅N₃NaO₆ 524.2424; found: 524.2410. [α]_D²⁰ +95 (*c* = 0.49, CH₂Cl₂, 98% ee). The ee was determined by HPLC using a Chiralpak AD column [hexane/*i*PrOH (80:20)]; flow rate 1.0 mL/min; $\tau_{major} = 13.7$ min, $\tau_{minor} = 26.7$ min (98% ee).

Procedure for reduction of 2i to 3.

To an oven-dried flask equipped with a magnetic stirring bar were added **2i** (215 mg, 0.480 mmol, 98% ee), 10% Pd/C (50 mg), and EtOH (5 mL). The resulting mixture was cooled to 0 °C and stirred for 45 min under H₂ (1 atm). The mixture was filtered and the solvent was removed *in vacuo*. The pure product (193 mg, 0.432 mmol, 90%, 1:1.5 mixture of diastereomers) was obtained after FC on SiO₂ eluting with EtOAc/*n*-hexane (20:80).

(2*S*,4*S*) and (2*R*,4*S*)-4-[*N*,*N*'-Bis(*tert*-butoxycarbonyl)-hydrazino]-2-cyano-5phenylpentanoic acid methyl ester (3i):


¹H NMR (benzene-d₆, 60 °C) δ 7.08-6.82 (m, 10H), 5.79 (br s, 2H), 4.75 (m, 2H), 3.24 (s, 3H), 3.22 (s, 3H), 2.78-2.22 (m, 6H), 2.02 (m, 2H), 1.75 (m, 2H), 1.39 (s, 9H), 1.36 (s, 9H), 1.33 (s, 9H), 1.28 (s, 9H). ¹³C NMR (benzene-d₆, 60 °C)

δ 166.9 (2C), 156.7 (2C), 154.9 (2C), 138.1 (2C), 129.1 (4C), 128.9 (2C), 128.8 (2C), 126.9, 126.8, 117.1, 116.9, 81.6 (2C), 81.4 (2C), 57.8, 56.3, 52.7, 52.7, 39.1 (2C), 35.0, 33.9, 32.4 (2C), 28.2 (3C), 28.1 (3C), 28.0 (6C). HRMS calc.: C₂₃H₃₃N₃NaO₆ 470.2267; Found: 470.2269. The ee was determined by HPLC using a Chiralcel OD column

[hexane/*i*PrOH (99:1)]; flow rate 1.0 mL/min; $\tau_{major} = 17.3 \text{ min}$, $\tau_{minor} = 19.9 \text{ min}$ (98% ee). The stereocenter at C2 equilibrates so rapidly during the HPLC analysis that only one set of peaks is observed.

Procedure for Diels-Alder reaction of 2i with 2,3-dimethyl-1,3-butadiene. To a screw capped vial equipped with a magnetic stirrer bar were added **2i** (106 mg, 0.237 mmol, 98% ee) and 2,3-dimethyl-1,3-butadiene (288 μ L, 2.5 mmol) and 3.5 mL of toluene. The mixture was stirred at 80 °C for 23 h and was then cooled to room temperature, concentrated *in vacuo* and subjected to FC on SiO₂ eluting with Et₂O in *n*-hexane (10:90 to 20:80) to afford the Diels-Alder cycloadduct **4** as a white solid (108 mg, 0.204 mmol, 86%). The compound was obtained as a >15:1 ratio of diastereomers favoring the isomer shown below (the diastereomers can be separated under the chromatographic conditions mentioned above).

(1*S*,6*S*)-6-{(*S*)-1-[*N*,*N*'-Bis(*tert*-butoxycarbonyl)-hydrazino]-2-phenylethyl}-1-cyano-3,4-dimethylcyclohex-3-ene carboxylic acid methyl ester (4):

120.3, 119.2, 81.5, 81.1, 54.4, 53.4, 53.3, 46.8, 42.4, 40.7, 35.2, 29.1, 28.2 (3C), 28.1 (3C), 18.9, 18.1. HRMS calc.: $C_{29}H_{41}N_3NaO_6$ 550.2893; Found: 550.2892. $[\alpha]_D^{20}$ +17 (*c* = 0.55, CHCl₃, 98% ee). The ee was determined by HPLC using a Chiralpak AD column [hexane/*i*PrOH (97:3)]; flow rate 1.0 mL/min; $\tau_{minor} = 6.2 \text{ min}$, $\tau_{major} = 6.9 \text{ min}$ (98% ee).

The relative configuration of the Diels-Alder cycloadduct was determined by X-ray crystallography (Figure 1).

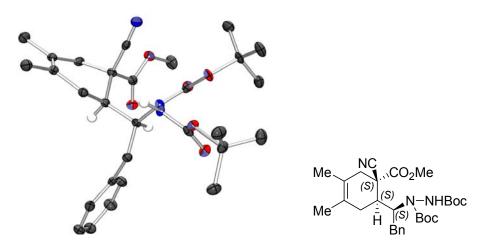


Figure 1. X-ray crystal structure of Diels-Alder cycloadduct (4). Most hydrogens have been omitted for clarity.

Procedure for reduction and decarboxylation of 20.

A flask equipped with a magnetic stirring bar was loaded with **2o** (418 mg, 0.801 mmol, 98% ee). Then EtOH (10 mL) and 10% Pd/C (80 mg) were added. The resulting mixture was stirred at ambient temperature under H₂ (1 atm). After 2 h the mixture was filtered and the solvent was removed *in vacuo*. Then DMF (4 mL) was added and the solution was placed in an oil bath (preheated to 150 °C). After stirring at 150 °C for 2 h the solution was cooled to room temperature and H₂O (10 mL) was added. The mixture was extracted with Et₂O (4 x 25 mL) and the combined organic extracts were washed with brine (10 mL) and dried over MgSO₄. After removal of the drying agent, the solvent was evaporated and the pure product **5** (237 mg, 0.609 mmol, 76% yield) was isolated by FC on SiO₂ eluting with Et₂O in CH₂Cl₂ (0:100 to 15:85) as a colorless viscous oil.

(R)-4-(N,N'-Bis(tert-butoxycarbonyl-hydrazino)-5-phenylpentannitrile

BocHN CN NBoc Bn (s, 9H). ¹H NMR (CDCl₃, 60 °C) § 7.34-7.14 (m, 5H), 5.78 (br s, 1H), 4.52 (m, 1H), 2.95-2.60 (m, 4H), 1.93 (m, 1H), 1.78 (m, 1H), 1.50 (s, 9H), 1.39 (s, 9H). ¹³C NMR (CDCl₃, 60 °C) § 155.0, 154.3, 137.8, 128.7 (4C), 126.7, 119.9, 81.7 (2C), 58.6, 38.9, 28.4, 28.2 (3C), 28.1 (3C), 14.6.

HRMS calc.: C₂₁H₃₁N₃NaO₄ 412.2212; found: 412.2224. $[\alpha]_D^{20}$ +14 (c = 1.0, CHCl₃, 98% ee). The ee was determined by HPLC using a Chiralcel AD column [hexane/*i*PrOH (90:10)]; flow rate 1.0 mL/min; $\tau_{major} = 8.6 \text{ min}$, $\tau_{minor} = 11.7 \text{ min}$ (98% ee).

Procedure for N-N bond cleavage of 5.

Compound **5** (237 mg, 0.609 mmol) was placed in an oven-dried flask equipped with a magnetic stirring bar. Ac₂O (980 μ L, 10.4 mmol), pyridine (510 μ L, 6.1 mmol), and DMAP (10 mol%, 0.061 mmol, 9 mg) were added and the mixture was stirred under an argon atmosphere at 50 °C for 49 h. The mixture was then cooled to room temperature and diluted with Et₂O (ca. 7 mL). To the diluted mixture was added 1M NaHCO₃ (aq.) (10 mL) and stirring was continued at ambient temperature for 30 min. The layers were then separated and the aqueous layer was extracted with Et₂O (2 x 15 mL) and EtOAc (1 x 15 mL). The combined organic extracts were washed successively with 1M NaHCO₃ (aq.) (10 mL), 1M HCl (aq.) (10 mL), and brine (10 mL). The solution was dried over Na₂SO₄ and the solvent was evaporated. FC on SiO₂ eluting with Et₂O in CH₂Cl₂ (0:100 to 5:95) afforded the *N*-acetylated product (192 mg, 0.445 mmol, 73%) and recovered starting material (47 mg, 0.122 mmol, 20%).

The acetylated product (71.2 mg, 0.165 mmol) was dissolved in dry and deoxygenated THF (2 mL) under an Ar-atmosphere. Deoxygenated HMPA (0.3 mL) was added, followed by addition of 8 mL of SmI₂-solution (0.1M in THF) dropwise at room temperature. The resulting purple solution was stirred for 30 min at room temperature and was then quenced by addition of 5 mL 1M NaHCO₃ (aq). The solution was diluted with EtOAc and placed in a separating funnel. The layers were separated and the aqueous phase was extracted with EtOAc (2 x 20 mL). The combined organic extracts were washed with brine and dried (MgSO₄) and concentrated *in vacuo*. The pure product (42.3

mg, 0.154 mol, 93%) was obtained as an off-white solid (mp = 93-95 °C) by FC on SiO₂ eluting with Et₂O in CH₂Cl₂ (0:100 to 10:90).

(R)-(1-Benzyl-3-cyano-propyl)-carbamic acid tert-butyl ester

¹H NMR (CDCl₃) δ 7.31 (m, 2H), 7.25 (m, 1H), 7.16 (m, 2H), 4.37 (br d, J 9.2 Hz, 1H), 3.85 (m, 1H), 2.87 (dd, J, 6.0, 13.7 Hz, 1H), 2.76 (dd, J 6.9, 13.4 Hz, 1H), 2.47-2.31 (m, 2H), 1.92 (m 1H), 1.70 (m, 1H), 1.41 (s, 9H). ¹³C NMR (CDCl₃) δ 155.4, 137.0, 129.3 (2C), 128.6 (2C), 126.8, 119.6, 79.9, 51.2, 41.3, 30.4, 28.3 (3C), 14.4. HRMS calc.: C₁₆H₂₂N₂NaO₂ 297.1579; found: 297.1578. [α]_D²⁰+13 (c = 1.0, CHCl₃, 98% ee). The ee was determined by HPLC using a Chiralcel OJ column [hexane/*i*PrOH (90:10)]; flow rate 1.0 mL/min; $\tau_{major} = 14.2 \text{ min}, \tau_{minor} = 11.9 \text{ min} (98\% ee)$

Determination of the Absolute Configuration of the Allylic Amination Products:

The absolute configuration was established by correlation with α -hydrazino aldehydes obtained by L-proline catalyzed α -amination.⁴ When using (DHQ)₂PYR as the catalyst the configuration of the products was found to be (*S*).

References

1. Belle, D. D.; Tolvanen, A.; Lounasmaa, M. Tetrahedron, 1996, 52, 11361.

 Hoffman, J. M.; Smith, A. M.; Rooney, C. S.; Fisher, T. E.; Wai, J. S.; Thomas, C. M.; Bamberger, D. L.; Barnes, J. L.; Williams, T. M.; Jones, J. H.; Olson, B. D.; O'Brien, J. A.; Goldman, M. E.; Nunberg, J. H.; Quintero, J. C.; Schleif, W. A.; Emini, E. A.; Anderson, P. S. *J. Med. Chem.* **1993**, *36*, 953.

3. Sammelson, R. E.; Allen, M. J.; Synthesis, 2005, 543.

4. (a) Bøgevig, A.; Juhl, K.; Kumaragurubaran, N.; Zhuang, W.; Jørgensen, K. A. Angew. Chem. Int. Ed. 2002, 41, 1790; (b) List, B. J. Am. Chem. Soc. 2002, 124, 5656.

5. Due to the presence of distinct rotameric isomers, the ¹³C NMR spectrum contain extra peaks.