Chelation-Controlled Diasteroselective Reduction of α-Fluoroketones Pramod K. Mohanta,^a Todd A. Davis,^b Jeremy R. Gooch^b and Robert A. Flowers, II*,^a ^aDepartment of Chemistry, Lehigh University, Bethlehem, PA 18015 ^bDepartment of Chemistry and Biochemistry, Texas Tech University,Lubbock, TX 79409-1061

Supporting Information	Page Number
List of contents	S1
General experimental procedures	S2
Experimental procedure for synthesis of α -fluoropropiophenone, and GC-Mass data	S2
Experimental procedure for synthesis of α -fluoroindanone, and GC-Mass data	S3
Experimental procedure for synthesis of α -fluorotetralone and ¹ H, ¹³ C, ¹⁹ F-NMR and GC-Mass data	S3
General procedure for preparation of 3-fluoro-2-octanone and 4-fluoro-5-nonanone	83
¹ H, ¹³ C, ¹⁹ F-NMR and GC-Mass data of 3-fluoro-2-octanone and 4-fluoro-5-nonanone	S4
General experimental procedure for reduction of α -fluoroketones in the presence of Ti (IV) Lewis acids	S4
¹ H, ¹³ C, ¹⁹ F-NMR and GC-Mass data of 2-fluoro-1-phenyl-1- propanol	S5
¹ H, ¹³ C, ¹⁹ F-NMR and GC-Mass data of 2-fluoro-1-hydroxyindane	S5
¹ H, ¹⁹ F, ¹³ C-NMR and GC-Mass data of 2-fluoro-1-tetralol	S6
¹ H, ¹⁹ F and ¹³ C-NMR data of 3-fluoro-2-butanol	S7
¹ H and ¹⁹ F-NMR data of 3-fluoro-2-octanol	S7
¹ H and ¹⁹ F data of 4-fluoro-5-nonanol	S8
Table 1a: ¹ H-NMR data of α -fluoropropiophenone and α -fluoropropiophenone-Lewis acid (LA)-complexes at -78 ^o C	S8
Table 1b: ¹³ C-NMR data of α -fluoropropiophenone and α -fluoropropiophenone-Lewis acid (LA)-complexes at -78 ^o C	S9
Table 1c: ¹⁹ F-NMR data of α -fluoropropiophenone and α -fluoropropiophenone -Lewis acid (LA)-complexes at -78 ⁰ C	S9
Table 2a: 1H NMR data of propiophenone and TiCl_4-propiophenone in in CD_2Cl_2 at ~78 oC	S9

Table 2b: ^{13}C NMR data of propiophenone and TiCl_4-propiophenone in CD_2Cl_2 at ~78 $^{\circ}C$	S10
Figure 1: ¹ H, ¹³ C, and ¹⁹ F stacked NMR spectra of α -fluoroindanone and α -fluoroindanone-TiCl ₄ -complexe in CD ₂ Cl ₂ at -78 °C	S11
Table 3a: ¹ H-NMR Data of α -fluoroindanone and α -fluoroindanone- TiCl ₄ - complex in CD ₂ Cl ₂ at -78 °C	S12
Table 3b: $^{13}C\text{-}NMR$ Data of $\alpha\text{-}fluoroindanone$ and $\alpha\text{-}fluoroindanone- TiCl_4$ -complex in CD_2Cl_2 at -78 oC	S12
Table 3c: $^{19}F\text{-}NMR$ of Data $\alpha\text{-}fluoroindanone$ and $\alpha\text{-}fluoroindanone-TiCl_4-complex in CD_2Cl_2 at -78 °C$	S13
References	S13

General Experimental Procedures

All reactions were performed in a flame-dried apparatus under an inert atmosphere of nitrogen. Solvents are dried by passing through a column in a solvent dry system and collected in dry box (Innovative Technology Inc.). MeOH was distilled over anhydrous MgSO₄. *N*-fluorobenzene sulfonamide (Accuflour[®]), 3-fluoro butan-2-one and 1-fluoro-4-hydroxy-1,4-diazoniabicyclo[2,2,2]octane bis(tetrafluoroborate) [Accufluor TM-NFTh] were purchased from Matrix Scientific and SynQuest Laboratories Inc..¹⁹F NMR, ¹³C NMR, ¹H NMR spectra were recorded on a 360 MHz (Brucker) or 500 MHz (Brucker) multinuclear spectrometer. ¹⁹F NMR spectra are referenced to external CFCl₃, ¹H NMR and ¹³C NMR spectra to TMS. All NMR solvents were stored overnight on 4⁰A-molecular sieves prior to use. Gas chromatography was performed on Shimadzu GC-14B. The diastereoselectivities were determined from ¹H, ¹⁹F NMR and GC.

NMR solutions used for low temperature experiments are 0.18M in CD_2Cl_2 with respect to substrate and 0.18-0.44M with respect to Ti(IV) Lewis acids. NMR spectra were stacked using MestReC software.

Synthesis of α-Fluoropropiophenone¹

Lithium diisopropylamide (2M solution) in THF/n-heptane (6.5 mL, 13 mM) was diluted with 6.5 mL THF at a -78° C and allowed to stir for 5 minutes. Propiophenone (1.34 g, 10 mM, dissolved in 5 mL of THF) was added drop wise and the enolate formation was monitored by the color change of the solution from brown to orange (approximately 30 minutes). After formation of the enolate was complete, Accuflour[®] (3.78 g, 12 mM, dissolved in THF) was injected by syringe and the reaction mixture was allowed to stir at $-78 \,^{\circ}$ C for 1 hour and then slowly warmed to room temperature and stirred overnight. Aqueous NH₄Cl solution was added to the reaction and the mixture was poured into water. The organic layer was extracted with Et₂O (3 x 15 mL) and dried over MgSO₄. The solvent was removed under vacuum and the product was purified by Kuglerohr distillation followed by column chromatography {neutral Al₂O₃; pentane:Et₂O (10:1)}. α -Fluoropropiophenone was obtained as clear liquid (yield: 1.06 g, 70%). GC-MS, m/z (%): 152 (M⁺, 6), 107 (43), 79 (100), 77 (96).

Preparation of \alpha-Fluoroindanone²

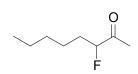
Indanone (2.64 g, 20 mM) and Accufluor[®] (6.95 g, 22 mM) were dissolved in methanol (50 mL) and attached to a water condenser. The reaction mixture was allowed to reflux for 2h (monitored by GC), cooled to rt and the solvent was removed under vacuum. The crude product was dissolved in CH_2Cl_2 (50 mL) and washed with water (1 × 25 mL). The organic layer was separated out and was dried over MgSO₄. After filtration the solvent was purified by silica gel-column chromatography (3% ethyl acetate in hexane) to produce a pale yellow solid (yield: 2.19 g, 73%).

GC-MS, m/z (%): 150 (M⁺, 100), 122 (87.3), 102 (28.7), 76 (37).

α-Fluorotetralone²

In a 50 mL round bottom flask α -tetralone (0.292 g, 2 mM) and Accufluor[®] (0.693 g, 2.2 mM) were dissolved in methanol (20 mL), attached to a water condenser and the reaction was refluxed overnight under nitrogen. The reaction was allowed to cool and the solvent was removed under vacuum. The crude product was dissolved in CH₂Cl₂ (50 mL), washed with water, and the organic layer was dried over MgSO₄. After filtration the solvent was again removed under vacuum to yield the crude product as a yellow solid, which was purified by column chromatography (SiO₂, 2.5% ethyl acetate in CH₂Cl₂) to produce a white solid (Yield: 0.272 g, 83%).

¹H NMR: (CDCl₃, 500 MHz): δ 2.22-2.32 (m, 1H), 2.48-2.55 (m, 1H), 3.06-3.08 (dd, J = 4.0, 5.2 Hz, 2H), 5.02-5.15 (ddd, J = 5.0, 12.5, 47.8 Hz, 1H), 7.22 (d, J = 7.6 Hz, 1H),

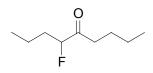

7.29 (t, J = 7.5 Hz, 1H), 7.45 (t, J = 7.5 Hz, 1H), 8.00 (d, J = 8.0 Hz, 1H).

¹³C NMR: (CDCl₃,125 MHz): δ 26.96 (d), 29.98 (d), 91.08 (d), 127.12, 127.82, 128.62, 134.14, 142.97, 193.39 (d).

¹⁹F NMR: (CDCl₃, 338 MHz): δ -190.958 (dt, J = 6.8-9.8, 54.08 Hz) GC-MS, m/z (%): 164 (M⁺, 99.8), 133 (10.6), 118 (100), 90 (91.37).

General Procedure for Preparation of 3-Fluoro-2-octanone and 4-Fluoro-5nonanone³

A mixture of ketone (2 mM) and accufluor TM - NFTh (2.5 mM) in dry acetonitrile (35 mL) is stirred at 80°C until all reagent was dissolved and then heated to reflux 8-12h (reaction was monitored by GC). Heating was stopped, the reaction mixture was cooled to rt and solvent was removed under reduced pressure. The crude reaction mixture was dissolved in CH₂Cl₂ (40 mL), and insoluble materials was filtered off. The filtrate was washed with saturated sodium bicarbonate solution, water and dried over anhydrous MgSO₄. Solvent was removed under reduced pressure and the crude product was purified by silica gel-column chromatography using hexane-ether as eluent.



3-Fluoro-2-octanone

Clear liquid, yield: 41%

¹H NMR: (CDCl₃, 500 MHz): δ 0.81 (t, *J* = 6.0 Hz, 3H), 1.36-1.39 (m, 2H), 1.48-1.51(m, 4H), 2.06 (s, 3H), 2.18 (dd, *J* = 2.0, 5.0 Hz, 2H), 4.65 (dm, *J* = 48.9 Hz, 1H) ¹³C NMR: (CDCl₃,125 MHz): δ 13.78, 22.25, 24.0, 25.69, 31.19, 31.75 (d), 95.84 (d), 208.34 (d).

¹⁹F NMR: (CDCl₃, 338 MHz): δ - 189.77 (m) GC-MS, m/z (%): 146 (M⁺, 18.4), 99 (3.2), 85 (5.9), 76 (100), 55 (28.0).

4-Fluoro-5-nonanone

Clear Liquid, yield: 49 %

¹H NMR: (CDCl₃, 500 MHz): δ 0.92 (m, 6H), 1.22-1.32 (m, 4H), 1.42-1.49 (m, 2H), 1.69-1.75 (m, 2H), 2.54-2.56 (dm, J = 8.5 Hz, 2H), 4.70 (dq, J = 6.0, 50.1 Hz, 1H). ¹³C NMR: (CDCl₃,125 MHz): δ 13.79, 13.82, 17.89, 22.36, 24.73, 34.01 (d), 37.68, 95.83 (d), 212.5 (d). ¹⁹F NMR: (CDCl₃, 338MHz): δ -192.3 (m) GC-MS, m/z (%): 160 (M⁺, 14.8), 118 (3.7), 85 (100), 76 (8.3), 57 (81.6).

General Procedure for Reduction of α -Fluoroketones in the presence of a Ti(IV) Lewis Acids

 α -Fluoroketone (30 mM, 1.0 equiv) was dissolved in dry diethyl ether (or dichloromethane) and cooled to -78 °C under N₂. Lewis Acid (38 mM to 100 mM, 1.25 to 3.5 equiv of LA) was added and the reaction mixture was allowed to stir at -78 °C for 15 minutes. Metal reducing agent (2.0 equiv) was added and the reaction mixture was allowed to stir for 4-7h at -78 °C. [In the case of TiCl₄ with diethyl ether solvent, after the addition of TiCl₄ the reaction mixture turns a brown color. When this occurred, an additional amount of diethyl ether (5 mL) was added to the reaction followed by the metal reducing agent. The change in color had no impact on the outcome of the reaction]. The reaction was quenched with saturated NH₄Cl and then slowly warmed to room temperature. The suspension was poured into water and the organic layer was extracted with Et₂O (or CH₂Cl₂). The combined organic layer was washed with brine, and was dried over MgSO₄. After filtration the solvent was removed under vacuum to yield the α -fluoroalcohols.

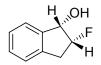
2-Fluoro-1-phenyl-1-propanol

Syn: ¹H NMR (CDCl₃, 500 MHz) δ 1.15-1.21 (dd, *J* = 6.0, 24.0 Hz, 3H), 2.73 (brs, 1H, OH), 4.72-4.78 (ddm, *J* = 6.0-7.0, 45.0 Hz, 1H), 4.83-4.87 (ddd, *J* = 4.0, 6.0, 10.5 Hz, 1H), 7.28-7.33 (Ar, 5H).

¹³C NMR: (CDCl₃,125 MHz): δ 16.95 (d), 77.68 (d), 93.76 (d), 127.04, 128.4, 128.56, 139.

¹⁹F-NMR (CDCl₃, 338.86 Hz) δ -180.53 (m).

GC-MS, m/z (%): 154 (M⁺, 11), 107 (80.5), 79 (100), 77 (75).

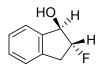


Anti: ¹H NMR (CDCl₃, 500 MHz) δ 1.21-1.27 (dd, *J* = 6.0, 24.0 Hz, 3H), 2.40 (brs, 1H, OH), 4.58-4.67 (dm, *J* = 45.0 Hz, 1H), 4.86-4.89 (brdd, *J* = 3.5, 13.5 Hz, 1H), 7.34-7.36 (ArH, 5H).

¹³C NMR: (CDCl₃,125 MHz): δ 14.56 (d), 75.57 (d), 92.96 (d), 126.45, 127.96, 128.44, 138.95.

¹⁹ F NMR (CDCl₃, 338.86 Hz) δ -180.90 (m).

GC-MS, m/z (%): 154 (M⁺, 6), 107 (43), 79 (100), 77 (96).

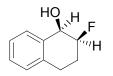

2-Fluoro-1-hydroxyindane⁴

Syn:¹H NMR (CDCl₃, 500 MHz) δ 2.43 (brs, 1H, O*H*), 2.98 (ddd, *J* = 34.0, 17.3, 4.4 Hz, 1H), 3.14 (dd, *J* = 22.4, 17.3 Hz, 1H), 5.09 (dd, *J* = 4.2, 18.6 Hz, 1H), 5.30 (dm, *J* = 55.5 Hz, 1H), 7.21-7.23 (ArH, 2H), 7.37-7.39 (ArH, 2H).

¹³C NMR: (CDCl₃, 125 MHz): δ 36.23 (d), 79.72 (d), 100.22 (d), 124.64, 125.14, 127.62, 129.21, 138.63, 141.44.

¹⁹ F NMR (CDCl₃, 338.86 Hz) δ -186.53 (m).

GC-MS, m/z (%): 152 (M⁺, 100), 151 (49), 134 (21), 131 (53), 104 (74), 78 (28), 77 (32).

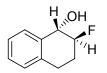


Anti: ¹H NMR (CDCl₃, 500 MHz) δ 2.26 (brs, 1H, OH), 3.30 (dt, J = 6.7, 16.0 Hz, 1H), 2.82 (m, 1H), 5.12 (dd, J = 20.0, 2.5, Hz, 1H), 5.33 (dm, J = 56.0 Hz, 1H), 7.15-7.18 (ArH, 2H), 7.30-7.33 (ArH, 2H).

¹⁹ F NMR (CDCl₃, 338.86 Hz) δ -201.44 (m).

¹³C NMR: (CDCl₃,125 MHz): δ 36.6 (d), 76.36 (d), 94.8 (d), 124.56, 125.2, 127.45, 128.79, 138.31, 140.76.

GC-MS, m/z (%): 152 (M⁺, 100), 151 (48), 134 (20), 131 (61), 104 (100), 103 (91), 78 (38), 77 (65).


2-Fluoro-1-tetralol⁵

Syn:¹H NMR: (CDCl₃, 500 MHz): δ 2.02-2.07 (m, 1H), 2.32-2.39 (m, 1H), 2.44 (brs, 1H, OH), 2.75-2.78 (m, 1H), 3.02-3.05 (m, 1H), 4.77 (dd, *J* = 6.0-7.0, 18.0 Hz, 1H), 4.9-5.03 (ddt, *J* = 49.69, 8.5, 2.9 Hz, 1H), 7.11 (t, 1H), 7.22 (d, *J* = 7.5 Hz, 1H), 7.24 (d, *J* = 7.5 Hz, 1H), 7.48 (t, 1H).

¹³C NMR: (CDCl₃,125 MHz): δ 24.34 (d), 25.54 (d), 68.91(d), 91.02 (d), 126.5, 128.07, 128.27, 129.14, 135.43, 135.57.

¹⁹F NMR: (CDCl₃ 338MHz): δ -185.15 (m).

GC-MS, m/z (%): 166 (M⁺, 37.2), 148 (85.14), 147 (17.0), 120 (71.9), 119 (100), 91 (44.0).

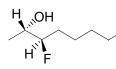
Anti: ¹H NMR: (CDCl₃, 500 MHz): δ 1.95-2.01 (m, 1H) , 2.18-2.25 (m, 1H), 2.59 (brs, 1H, OH), 2.80-2.84 (m, 1H), 2.98-3.01 (m, 1H), 4.7 (dm, *J* = 46.9 Hz, 1H), 4.79-4.81 (dm, *J* = 16-20 Hz, 1H), 7.09 (t, 1H), 7.19 (d, *J* = 7.5 Hz, 1H), 7.25 (d, *J* = 7.5 Hz, 1H), 7.53 (t, 1H).

¹³C NMR: (CDCl₃,125 MHz): δ 25.91(d), 26.28 (d), 71.6 (d), 93.15 (d), 126.6, 127.94, 128.11, 135.18, 135.46, 135.53.

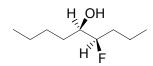
¹⁹F NMR: (CDCl₃, 338MHz): δ -197.79 (m).

GC-MS, m/z (%): 166 (M⁺, 32.0), 148 (80.2), 147 (17.0), 120 (70.3), 119 (100), 91 (41.3).

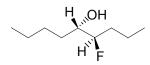
3-Fluoro-2-butanol


Syn: ¹H NMR: (CDCl₃, 500 MHz): δ 1.1 (d, *J* = 1.0 Hz, 3H), 1.22 (dd, *J* = 2.24, 6.37 Hz, 3H), 2.54 (brs, 1H, OH), 3.65 (ddq, *J* = 4.5, 7.5, 21.5Hz, 1H), 4.35 (dpentate, *J* = 6.0-7.0, 49.0 Hz, 1H). ¹³C NMR: (CDCl₃,125 MHz): δ 15.5 (d), 17.11 (d), 69.28 (d), 93.35 (d). ¹⁹F NMR: (CDCl₃, 338 MHz): δ -183.18 (m)

Anti: ¹H NMR: (CDCl₃, 500 MHz): δ 1.11 (d, *J* = 1.0 Hz, 3H) , 1.26 (dd, *J* = 2.0, 6.5 Hz, 3H), 2.43 (brs, 1H, OH), 3.82 (ddq, *J* = 2.5, 4.5, 22.6 Hz, 1H), 4.49 (ddq, *J* = 2.5, 3.5, 43.8 Hz, 1H). ¹³C NMR: (CDCl₃,125 MHz): δ 16.73 (d), 17.92 (d), 70.95 (d), 94.16 (d). ¹⁹F NMR: (CDCl₃, 338 MHz): δ -183.54 (m)


3-Fluoro-2-octanol

Syn: ¹H NMR: (CDCl₃, 500 MHz): δ 0.79 (t, *J* = 7.0 Hz, 3H) , 1.12 (d, *J* = 6.4 Hz, 3H), 1.25 (m, 4H), 1.3-1.34 (m, 2H), 1.5-1.52 (m, 2H), 3.24 (brs, 1H), 4.08 (dm, *J* = 12.5 Hz, 1H) 4.3 (ddt, *J* = 5.2, 6.4, 50.0 Hz, 1H). ¹⁹F NMR: (CDCl₃, 338 MHz): δ -192.96 (m)


Anti: ¹H NMR: (CDCl₃, 500 MHz): δ 0.83 (t, J = 6.8 Hz, 3H), 1.15 (d, J = 7.2 Hz, 3H), 1.28 (m, 4H), 1.39-1.49 (m, 4H), 3.05 (brs, 1H), 4.11 (dm, J = 10.8 Hz, 1H) 4.35 (dt, J = 29.5, 6.7 Hz, 1H).

¹⁹F NMR: (CDCl₃, 338 MHz): δ -195.51 (m)

4-Fluoro-5-nonanol

Syn: ¹H NMR: (CDCl₃, 500 MHz): δ 0.89 (t, *J* = 7.0 Hz, 6H) , 1.25-1.56 (m, 8H), 1.69 (m, 2H), 2.0 (brs, 1H), 3.49 (m, 1H), 4.26 (ddm, *J* = 5.5, 50.0 Hz, 1H). ¹⁹F NMR: (CDCl₃, 338 MHz): δ -191.25 (m)

Anti: ¹H NMR: (CDCl₃, 500 MHz): δ 0.93 (t, *J* = 7.0 Hz, 6H) , 1.17-1.51 (m, 8H), 1.65 (m, 2H), 2.4 (brs, 1H), 3.53 (m, 1H), 4.38 (ddm, *J* = 2.0, 48.5 Hz, 1H) ¹⁹F NMR: (CDCl₃, 338 MHz): δ -195.55 (m)

Table 1a.

¹H-NMR of α-Fluoropropiophenone and TiCl₄-Complexes

LA/Solvent	Н	δ	Δδ	mult	J/Hz
No LA/CD ₂ Cl ₂	CH ₃	1.58		dd	$J_{\rm HH} = 6.7, J_{\rm HF} = 24.4$
	CHF	5.96		dq	$J_{\rm HH} = 6.7, J_{\rm HF} = 49.0$
	Ar <i>H</i>	7.50		t	$J_{\rm HH} = 7.2$
		7.60		t	$J_{\rm HH}$ =7.5
		7.87		d	$J_{\rm HH} = 7.9$
TiCl ₄ /CD ₂ Cl ₂					
	CH_3	2.15	0.57	dd	$J_{\rm HH} = 6.4, J_{\rm HF} = 28.8$
	CHF	6.82	0.86	brdd	$J_{\rm HH} = 5.8, J_{\rm HF} = 50.4$
	Ar <i>H</i>	7.74	0.24	t	$J_{\rm HH} = 7.2$
		8.00	0.40	t	$J_{\rm HH} = 6.9$
		8.15	0.28	d	$J_{ m HH} = 7.00$
$Ti(O^iPr) / CD_2Cl_2$					
	CH ₃	1.66	0.08	dd	$J_{\rm HH} = 6.8, J_{\rm HH} = 23.7$
	CHF	5.89	-0.07	dq	$J_{\rm HH} = 6.7, J_{\rm HF} = 48.4$
	ArH	7.52	0.02	t	$J_{\rm HH} = 7.6$
		7.65	0.05	t	$J_{\rm HH} = 7.6$
		7.99	0.12	d	$J_{\rm HH} = 7.6$

¹³ C-NMR of α-Fluoropropiophenone and TiCl ₄ -Complexes						
LA/Solvent	С	δ	Δδ	mult	<i>J</i> /Hz	
No LA / CD ₂ Cl ₂	CH_3	18.11		d	J = 22.76	
	CHF	90.93		d	J = 178.84	
	CO	196.17		d	J = 19.1	
	Ar	129.0, 129	.12, 134.07	7, 134.47	7	
TiCl ₄ /CD ₂ Cl ₂						
	CH_3	20.12	2.01	d	J = 21.87	
	CHF	98.36	7.43	d	J = 173.16	
	CO	205.8	9.64	brs		
	Ar	129.0, 130	.7, 132.23,	140.33		
Ti(O ⁱ Pr) ₄ /CD ₂ Cl ₂						
	CH_3	18.15	0.04	d	J = 22.76	
	CHF	90.5	-0.43	d	J = 178.95	
	CO	196.47	0.3	d	J = 19.24	
	Ar	128.89, 12	.9.11, 129.	15, 134.0	09, 134.51	

Table 1b. $^{13}\text{C-NMR}$ of $\alpha\text{-Fluoropropiophenone}$ and TiCl4-Complexes

Table 1c

¹⁹F-NMR of α-Fluoropropiophenone and TiCl₄-Complexes

LA/Solvent	F	δ	Δδ	mult
No LA / CD ₂ Cl ₂	CHF	-187.0		m
TiCl ₄ /CD ₂ Cl ₂	CHF	-174.82	13.18	m
$Ti(O^iPr)_4/CD_2Cl_2$	CHF	-186.54	0.46	m

Table 2a

 $^1\text{H-NMR}$ of Propiophenone and TiCl4-Complexes $^\tau$

LA/Solvent	Н	δ	Δδ	mult	$J/{ m Hz}$
No LA/CD ₂ Cl ₂	CH_3	1.1		t	$J_{\rm HH} = 7.0$
	CH_2	3.03		q	$J_{\rm HH} = 7.1$
	ArH	7.46		t	$J_{\rm HH} = 6.8$
		7.56		t	$J_{ m HH} = 7.0$
		7.96		d	$J_{\rm HH} = 7.5$

table 2a continued

 $TiCl_4/CD_2Cl_2$

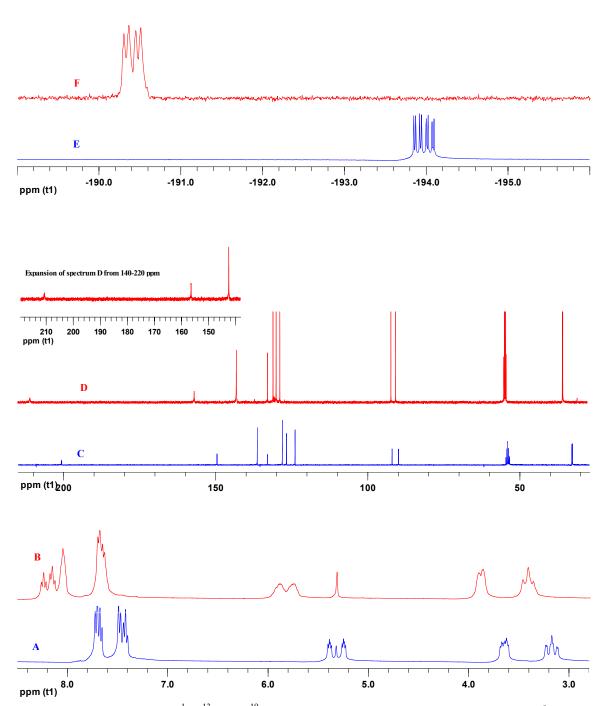

CH ₃	1.49	0.39	t	$J_{\rm HH} = 7.5$
CH_2	3.49	0.46	q	$J_{ m HH} = 7.5$
Ar <i>H</i>	7.69	0.23	t	$J_{\rm HH} = 6.4$
	7.87	0.21	t	$J_{\rm HH} = 7.5$
	8.27	0.31	d	$J_{\rm HH} = 8.0$

Table 2b.

$^{13}\text{C-NMR}$ of Propiophenone and TiCl₄-Complexes^ $^{\tau}$

LA/Solvent	С	δ	Δδ
No LA / CD ₂ Cl ₂	CH_3	8.31	
	CH_2	32.08	
	CO	200.81	
	Ar	128.2, 128.88	, 133.12, 137.44
TiCl ₄ /CD ₂ Cl ₂			
	CH_3	11.93	3.62
	CH_2	33.01	0.93
	CO	217.84	17.03
	Ar	130.23, 132.7	1, 133.67, 139.02

^{τ} ¹H-NMR of propiophenone and propiophenone-TiCl₄ complex are recorded at -78°C.

Figure 1. A, C, and **E** are the ¹H, ¹³C, and ¹⁹F nmr spectra of α -fluoroindanone in CD₂Cl₂ at -78 °C. **B**, **D**, and **F** are the respective ¹H, ¹³C, and ¹⁹F nmr spectra of α -fluoroindanone containing 1.25 equiv of TiCl₄ in CD₂Cl₂ at -78°C. In ¹H-NMR spectra, the peak at δ 5.32 is due to trace amounts of CHDCl₂ in CD₂Cl₂ where as in ¹³C-NMR spectra, the peak at δ 54.0 is due to CD₂Cl₂.

LA/Solvent	Н	δ	Δδ	mult	J/Hz
No LA/CD ₂ Cl ₂	CH_2	3.17		m	
	CH_2	3.65		m	
	C <i>H</i> F	5.31		dq	$J_{\rm HH} = 4.8, J_{\rm HF} = 50.4$
	ArH	7.42		t	$J_{\rm HH} = 7.2$
		7.48		d	$J_{\rm HH} = 7.6$
		7.66		t	$J_{\rm HH} = 7.6$
		7.71		d	$J_{\rm HH} = 7.9$
TiCl ₄ /CD ₂ Cl ₂					
	CH_2	3.42	0.25	t	$J_{\rm HF} = 18.0$
	CH_2	3.89	0.24	brdd	$J_{\rm HF} = 10.8, J_{\rm HH} = 3.6$
	CHF	5.82	0.31	brdq	$J_{\rm HH} = 3.2, J_{\rm HF} = 46.8$
	Ar <i>H</i>	7.67	0.25	brm	
		8.05	0.57	brs	
		8.12	0.28	t	$J_{\rm HH} = 7.9$
		8.24	0.53	t	$J_{\rm HH} = 8.28$

Table 3a	
¹ H-NMR of α-Fluoroindanone and TiCl ₄ -Complexes	

Table	3b.
-------	-----

¹³C-NMR of α-Fluoroindanone and TiCl₄-Complexes

LA/Solvent	С	δ	Δδ	mult	J/Hz
No LA / CD ₂ Cl ₂	CH_2	32.85		d	<i>J</i> = 28.55
	<i>C</i> HF	90.97		d	J = 263.33
	CO	200.65		d	J = 20.86
	Ar	123.91, 126.7	2, 128.	l, 133.01,	136.33, 149.53 (d, <i>J</i> = 8.8
		Hz)			
TiCl ₄ /CD ₂ Cl ₂					
	CH_2	35.22	2.37	d	<i>J</i> = 21.38
	<i>C</i> HF	91.06	0.09	d	J = 195.82
	CO	210.86	10.21	brs	
	Ar	128.42, 129.6	5, 130.6	57, 132.45	, 142.78, 156.66 (d, <i>J</i> = 2.6
		Hz)			

Table 3c ¹⁹F-NMR of α- α-Fluoroindanone and TiCl₄-Complexes

LA/Solvent	F	δ	Δδ	mult/Hz
No LA / CD ₂ Cl ₂	CHF	-194.03		ddd ($J_{\rm HH}$ = 7.45, $J_{\rm HF}$ = 50.79, 23.7)
TiCl ₄ /CD ₂ Cl ₂	CHF	-190.41	3.92	dd ($J_{\rm HF}$ = 49.1, 20.32)

References

- 1. Enders, D.; Faure, S.; Potthoff, M.; Rundsink, J. Synthesis 2001, 2307-2319.
- 2. Stavber, S.; Jereb, M.; Zupan, M. Synthesis 2002, 2609-2615.
- 3. Stavber, S.; Zupan, M. Tetrahedron Lett. 1996, 37, 3591-3594.
- Shellhamer, D. F.; Carter, D. L.; Chiaco, M. C.; Harris, T. E.; Henderson, R. D.; Low, W. S. C.; Metcalf, B. T.; Willis, M. C.; Heasley, V. L.; Chapman, R. D. J. *Chem. Soc, Perkin Trans 2*, 1991, 401-403.
- 5. Baur, M.A; Riahi, A.; He'nina, F.; Muzarta, J. *Tetrahedron Asymmetry* **2003**, *14*, 2755-2761.