Supporting Information

Isolation and Low-Temperature X-ray Analysis of Intramolecular TriarylmethaneTriarylmethylium Complex: Preference for a C-H Bridged Unsymmetric Structure Exhibiting a Facile 1,5-Hydride Shift and Charge-Transfer Interaction Hidetoshi Kawai, Takashi Takeda, Kenshu Fujiwara, and Takanori Suzuki* Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan

Experimental procedures		--- p. S2
VT-NMR data of $\mathbf{1 b}^{+}$OTf ${ }^{-}$salt in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$	(Figure S1)	--- p. S11
ORTEP drawing of $\mathbf{1 a}^{+}$OTf \cdot-acetone	(Figure S2)	--- p. S12
ORTEP drawing of $\mathbf{1 b}{ }^{+}$OTf \cdot •chloroform	(Figure S3)	--- p. S12
ORTEP drawing of 3a	(Figure S4)	--- p. S13
HOMO and LUMO of $\mathbf{1 a}{ }^{+}$and $\mathbf{1 b}{ }^{+}$	(Figure S5, S6)	--- p. S14
UV/Vis spectra of $\mathbf{1 a}^{+} \mathrm{OTf}{ }^{-}$and $\mathbf{1 b}^{+} \mathrm{OTf}$	(Figure S7, S8)	--- p. S15
Optimized geometry of $\mathbf{1 a}^{+}$at B3LYP/6-31	G(d)	--- p. S16
Optimized geometry of $\mathbf{1 b ^ { + }}$ at B3LYP/6-31	G(d)	--- p. S18
References		--- p. S20

Experimental procedures

General: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a JEOL AL300 or ECP-300 $\left({ }^{1} \mathrm{H} / 300 \mathrm{MHz}\right.$, $\left.{ }^{13} \mathrm{C} / 75 \mathrm{MHz}\right)$ spectrometer. VT NMR $\left({ }^{1} \mathrm{H}\right.$ and $\left.{ }^{13} \mathrm{C}\right)$ and ${ }^{2} \mathrm{H}$ NMR spectra were recorded on a JEOL AL300, $\alpha 400\left({ }^{1} \mathrm{H} / 400 \mathrm{MHz},{ }^{13} \mathrm{C} / 100 \mathrm{MHz}\right)$ or $\alpha 500\left({ }^{1} \mathrm{H} / 500 \mathrm{MHz},{ }^{2} \mathrm{H} / 77 \mathrm{MHz}\right.$ and ${ }^{13} \mathrm{C} / 125 \mathrm{MHz}$) spectrometer. ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ coupling constants were measured by a HSQC method on a $\alpha 500$ spectrometer at the High-Resolution NMR Laboratory (Hokkaido University). IR spectra were taken on a JASCO model FT/IR-230 infrared spectrophotometer. Mass spectra were recorded on JEOL JMS-600H (EI) and JMS-AX500 or JEOL JMS-SX102A (FAB) spectrometers. Column chromatography were performed on silica gel I-6-40 (YMG) of particle size $40-63 \mu \mathrm{~m}$ and aluminum oxide 90 standardized (Merck). Elemental analyses were taken on a Yanako MT-6 CHN corder at the Center for Instrumental Analysis of Hokkaido University. UV/Vis spectra were recorded on a Hitachi U-3500 spectrophotometer. 1,8-dibromonaphthalene ${ }^{1}$ and 5,6dibromoacenaphthene ${ }^{2}$ were prepared following the known procedures. Other reagents and solvents were obtained from commercial sources and purified prior to use.

Scheme. Preparation of $\mathbf{1 a}, \mathbf{b}^{+}$salts

Preparation of 9-Bromoacridine ${ }^{3}$

The mixture of N-phenylanthranilic acid $(5.50 \mathrm{~g}, 58.1 \mathrm{mmol})$ and $\mathrm{POBr}_{3}(50.0 \mathrm{~g}, 174 \mathrm{mmol})$ was heated without solvent at $120^{\circ} \mathrm{C}$. A violent fuming reaction occurred within 10 min (CAUTION! This reaction should be done in a hood). After heated for 2 h , the resulting solid was allowed to cool to room temperature, and carefully added to 25% aqueous ammonium hydroxide and chloroform. The mixture was extracted with chloroform. The organic layer was washed with 5% aqueous ammonium hydroxide and brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent gave 9 -bromoacridine ($14.1 \mathrm{~g}, 94 \%$) as a brown solid. This compound was used in the next reaction without purification; M.p. $\left(113-114{ }^{\circ} \mathrm{C}\right.$, lit. $\left.116{ }^{\circ} \mathrm{C}^{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.42(\mathrm{dd}, J=$ $8.4,1.2 \mathrm{~Hz}, 2 \mathrm{H}$), 8.22 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.80 (ddd, $J=8.4,6.6,1.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.64 (ddd, $J=8.4$, $6.6,1.2 \mathrm{~Hz}, 2 \mathrm{H})$.

Preparation of 9-Trimethylstannylacridine

To a suspension of 9 -bromoacridine $(5.50 \mathrm{~g}, 21.3 \mathrm{mmol})$ in dry ether (300 mL) was added n BuLi in n-hexane ($1.58 \mathrm{M}, 15.1 \mathrm{~mL}, 25.6 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$ under argon. After $15 \mathrm{~min}, \mathrm{Me}_{3} \mathrm{SnCl}$ in n-hexane ($1.0 \mathrm{M}, 26.0 \mathrm{~mL}, 26.0 \mathrm{mmol}$) was added. The mixture was allowed to warm to $23^{\circ} \mathrm{C}$ and stirred for 18 h . Then, the resulting suspension was filtered to remove the insoluble material. The yellow solid obtained by evaporation of the solvent was subjected to chromatography on SiO_{2} eluting with hexane/ $\mathrm{EtOAc} / \mathrm{Et}_{3} \mathrm{~N}(100: 10: 1$) to give 9-trimethylstannylacridine (6.25 g , 84%) as a yellow solid; M.p. $86-87{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.25(\mathrm{dd}, J=8.6,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.14$ (dd, $J=8.6,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.76$ (ddd, $J=8.6,6.6,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.53$ (ddd, $J=8.6,6.6,1.3 \mathrm{~Hz}, 2 \mathrm{H}$), $0.68(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 157.37,147.79,133.48,130.69,130.08,129.56,125.29,-4.58$; IR (KBr) 2360, 2337, 1533, 1515, 1460, 1394, 1196, 1141, 1127, 1011, 859, 832, 782, 761, 745, 670, 660, 604, 537, 523, $514 \mathrm{~cm}^{-1}$; LR-MS (EI) $\mathrm{m} / \mathrm{z}(\%): 343\left(\mathrm{M}^{+}, 22\right), 324$ (32), 298 (50), 296 (38), 178 (bp), 177 (49), 152 (37), 151 (55), 150 (32), 135 (33); Anal. Calcd (\%) for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NSn}$: C 56.19, H 5.10, N 4.10; found C 56.10, H 4.96, N 4.05.

Preparation of 9,9'-(Naphthalene-1,8-diyl)bisacridine 5a ${ }^{\mathbf{4}}$

To a solution of 1,8-dibromonaphthalene ${ }^{1}(399 \mathrm{mg}, 1.41 \mathrm{mmol})$ in dry DMF $(20 \mathrm{~mL})$ were added $\mathrm{CuO}(487 \mathrm{mg}, 2.81 \mathrm{mmol})$ and then $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(224 \mathrm{mg}, 422 \mu \mathrm{~mol}) .{ }^{5}$ After bubbling with argon for ca. 40 min , a portion $(5 \mathrm{~mL})$ of dry DMF solution $(20 \mathrm{~mL})$ of 9-trimethylstannylacridine (2.61 $\mathrm{g}, 7.63 \mathrm{mmol}$) was added. Then, the resulting mixture was heated at $100^{\circ} \mathrm{C}$ for 15 min and at $140^{\circ} \mathrm{C}$ for 50 min under argon. Then, the remaining 9-trimethylstannylacridine solution was added to the mixture at this temperature. After $21 \mathrm{~h}, 5 \%$ aqueous ammonium hydroxide (20 mL)
and chloroform $(20 \mathrm{~mL})$ were added to the reaction mixture, and then the precipitates were filtered. The solid was transferred on a thimble filter fitted in the Soxhlet apparatus, and extracted with refluxing chloroform (300 mL) for 3 h . The orange solid obtained by evaporation of the solvent mostly contains $9,9^{\prime}$-biacridinyl and was discarded. The remaining solid on the thimble filter was further extracted with refluxing chloroform (300 mL) in the Soxhlet apparatus for 48 h . The second extract was concentrated in vacuo to give $\mathbf{5 a}$ ($153 \mathrm{mg}, \mathbf{2 3 \%}$) as a yellow solid. Single crystals for the X-ray analysis were obtained by recrystalization from $\mathrm{CHCl}_{3} /$ hexane: M.p. 245$247^{\circ} \mathrm{C}$ (decomp.); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 8.24(\mathrm{dd}, J=8.4,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{dd}, J=8.4,6.9 \mathrm{~Hz}$, $2 \mathrm{H}), 7.52$ (dd, $4 \mathrm{H}, J=8.4,1.2 \mathrm{~Hz}$), 7.29 (ddd, $J=8.4,6.6,1.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.19(\mathrm{dd}, J=6.9,1.4 \mathrm{~Hz}$, $2 \mathrm{H}), 6.72(\mathrm{dd}, J=8.4,1.4 \mathrm{~Hz}, 4 \mathrm{H}), 6.61$ (ddd, $J=8.4,6.6,1.2 \mathrm{~Hz}, 4 \mathrm{H})$; The ${ }^{13} \mathrm{C}$ NMR could not be measured due to its low solubility. IR (KBr) 3045, 1558, 1540, 1517, 1436, 1145, 1014, 866, 827, 785, 752, $601 \mathrm{~cm}^{-1}$; UV/Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: $\lambda_{\max }\left(\varepsilon / \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)=347$ (12600), 360 (13400), 390 nm (6000, sh); Fluorescence $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \lambda_{\text {ex }}=360 \mathrm{~nm}\right) \lambda_{\text {max }}=536 \mathrm{~nm}$; LR-MS (EI) m / z (\%): 484 $\left(\mathrm{M}^{+}+2 \mathrm{H}, 57\right), 483(23), 482\left(\mathrm{M}^{+}, \mathrm{bp}\right), 241(87), 240(65), 207(66), 196$ (60), 171 (63), 166 (64), 138 (63), 122 (61), 121 (63), 93 (64), 80 (63), 52 (58); HR-MS (EI) found 482.1778, calcd. for $\mathrm{C}_{36} \mathrm{H}_{22} \mathrm{~N}_{2}$: 482.1783; Anal. Calcd (\%) for $\mathrm{C}_{36} \mathrm{H}_{22} \mathrm{~N}_{2}+0.50 \mathrm{CHCl}_{3}:$ C 80.84, H 4.18, N 5.17; found C 80.88 , H 4.48, N 5.20.

Preparation of 9,9’-(Acenaphthene-5,6-diyl)bisacridine 5b

To a solution of 5,6-dibromoacenaphthene ${ }^{2}(1.15 \mathrm{~g}, 3.69 \mathrm{mmol})$ in dry DMF $(60 \mathrm{~mL})$ were added $\mathrm{CuO}(683 \mathrm{mg}, 8.59 \mathrm{mmol})$ and then $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(1.31 \mathrm{~g}, 1.13 \mathrm{mmol})$. After bubbling with argon for ca. 30 min , a portion (15 mL) of dry DMF solution (60 mL) of 9-trimethylstannylacridine $(4.99 \mathrm{~g}, 14.6 \mathrm{mmol})$ was added. Then, the resulting mixture was heated at $100^{\circ} \mathrm{C}$ for 30 min and at $140^{\circ} \mathrm{C}$ for 15 min under argon. Then, the remaining 9 -trimethylstannylacridine solution was added to the mixture at this temperature. After $21 \mathrm{~h}, 5 \%$ aqueous ammonium hydroxide (100 mL) was added and extracted with chloroform. The organic layer was washed with 5% aqueous ammonium hydroxide and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The black solid obtained by evaporation of the solvent was subjected to chromatography on SiO_{2} eluting with $\mathrm{CHCl}_{3} / \mathrm{Et}_{3} \mathrm{~N}(100: 1)$ to give $\mathbf{5 b}$ ($888 \mathrm{mg}, 48 \%$) as a yellow solid. Single crystals for the X-ray analysis were obtained by recrystalization from $\mathrm{CHCl}_{3} /$ AcOEt: M.p. $270-272^{\circ} \mathrm{C}$ (decomp.); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.69(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.55(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{ddd}, J=8.4,6.4,1.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.25(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 6.94(\mathrm{dd}, J=8.6,1.1 \mathrm{~Hz}, 4 \mathrm{H}), 6.68(\mathrm{ddd}, J=8.6,6.4,1.1 \mathrm{~Hz}, 4 \mathrm{H}), 3.74(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 147.55,146.71,145.89,140.28,131.92,131.76,128.93,128.79,126.25,124.94$, 124.57, 119.50, 30.51; IR (KBr) 3042, 2916, 1629, 1600, 1556, 1515, 1460, 1435, 1408, 1329, $1151,1013,868,745,647,626,603 \mathrm{~cm}^{-1}$; UV/Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }\left(\varepsilon / \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)=349$ (12200), 360 (12900), 390 nm (6200, sh); Fluorescence $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \lambda_{\mathrm{ex}}=360 \mathrm{~nm}\right) \lambda_{\max }=525 \mathrm{~nm}$; LR-MS
(EI) m / z (\%): 509 (42), $508\left(\mathrm{M}^{+}, \mathrm{bp}\right), 254$ (19); HR-MS (EI) found 508.1940, calcd. for $\mathrm{C}_{38} \mathrm{H}_{24} \mathrm{~N}_{2}$: 508.1939; Anal. Calcd (\%) for $\mathrm{C}_{38} \mathrm{H}_{24} \mathrm{~N}_{2}+0.33 \mathrm{H}_{2} \mathrm{O}: \mathrm{C} 88.69$, H 4.83, N 5.44; found C 88.42, H 4.75, N 5.41.

Preparation of 9-[8-(10-Methylacridan-9-yl)naphthalen-1-yl]acridine 3a and 3a- d

To a suspension of 9,9'-(naphthalene-1,8-diyl)bisacridine 5a (27.3 mg, $57 \mu \mathrm{~mol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(20 \mathrm{~mL})$ was added $\mathrm{MeOTf}(900 \mu \mathrm{~L}, 8.0 \mathrm{mmol})$. After stirring for 21 h at $23^{\circ} \mathrm{C}$ under argon, the mixture was diluted with ether and the resulting precipitates were filtered. The insoluble material was washed with ether to give a mixture of mono methylated dication salt 4a and a small amount of dimethylated dication 2a. The mixture was used in the next reaction without further purification.

To a solution of a mixture of $\mathbf{4 a}$ and $\mathbf{2 a}$ in ethanol (20 mL) was added $\mathrm{NaBH}_{4}(73 \mathrm{mg}, 193$ $\mu \mathrm{mol})$. After the mixture was stirred for 25 h at $23^{\circ} \mathrm{C}$, the solvent was evaporated. The obtained yellow solid was suspended with water and the mixture was extracted with AcOEt. The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. The yellow solid obtained by evaporation of the solvent was subjected to chromatography on $\mathrm{Al}_{2} \mathrm{O}_{3}$ eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane (1:1) to give 3a ($22 \mathrm{mg}, 77 \%$) as a yellow solid. Single crystals for the X-ray analysis were obtained by recrystalization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane: M.p. $280-285{ }^{\circ} \mathrm{C}$ (decomp.); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.16(\mathrm{dd}, J=8.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.03(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.65(\mathrm{dd}, J=8.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.49(\mathrm{dd}, J=7.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{dd}, J$ $=8.4,0.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{dd}, J=6.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{ddd}, J=8.4,6.6,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{td}, J$ $=7.5,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.48(\mathrm{dd}, J=7.5,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.40(\mathrm{dd}, J=7.5,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.10(\mathrm{dd}, J=7.5$, $1.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.52(\mathrm{~s}, 1 \mathrm{H}), 3.04(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 148.95,148.57,141.74,140.16$, $135.19,132.90,132.60,132.08,131.32,130.79,129.96,129.57,129.10,128.66,128.08,127.19$, 127.06, 126.36, 126.19, 125.19, 124.43, 119.41, 111.04, 43.07, 32.96; IR (KBr) 3059, 3037, 2960, 2926, 1589, 1503, 1477, 1456, 1359, 1322, 1273, 781, $744 \mathrm{~cm}^{-1}$; LR-MS (EI) $m / z(\%): 500(20)$, 499 (46), 498 ($\mathrm{M}^{+}, \mathrm{bp}$), 497 (24), 496 (22), 484 (27), 483 (55), 249 (28), 194 (48); HR-MS (EI) found 498.2096, calcd. for $\mathrm{C}_{37} \mathrm{H}_{26} \mathrm{~N}_{2}$: 498.2096; Anal. Calcd (\%) for $\mathrm{C}_{37} \mathrm{H}_{26} \mathrm{~N}_{2}+0.25 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}$ 88.33, H 5.31, N 5.57; found C 88.40 , H 5.55, N 5.35.

Compound 3a-d was prepared from 5a by using NaBD_{4} in place of NaBH_{4} following the same protocol to 3a (2 steps, 41% yield): M.p. $270-271{ }^{\circ} \mathrm{C}$ (decomp.); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.16(\mathrm{dd}, J=8.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.03(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{dd}$, $J=8.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.53(\mathrm{~m}, 3 \mathrm{H}), 7.49(\mathrm{dd}, J=7.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.40(\mathrm{dd}, J=6.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{ddd}, J=8.6,6.6,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{td}, J=7.51 .5 \mathrm{~Hz}, 2 \mathrm{H})$, $6.48(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.40(\mathrm{dt}, J=7.5,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.10(\mathrm{dd}, J=7.5,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.04(\mathrm{~s}$,
$3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 148.91,148.62,141.78,140.07,135.22,132.90,132.56,132.13$, 131.30, 130.78, 129.92, 129.16, 128.66, 128.03, 127.19, 127.05, 126.36, 126.20, 125.24, 125.19, 124.44, 119.42, 111.05, 32.95; IR (KBr) 3056, 2958, 2926, 2872, 1625, 1605, 1589, 1556, 1539, $1514,1459,1439,1343,1301,1261,1209,1200,1160,1144,1129,1045,862,783,776,746$, 651, 638, 618, $601 \mathrm{~cm}^{-1}$; LR-MS (EI) m / z (\%): 500 (43), 499(M ${ }^{+}$, bp), 498 (20), 484 (29), 250 (27), 195 (30); HR-MS (EI) found 499.2163, calcd. for $\mathrm{C}_{37} \mathrm{H}_{25} \mathrm{DN}_{2}$: 499.2158.

Preparation of 9-[6-(10-Methylacridan-9-yl)acenaphthen-5-yl]acridine 3b and 3b- d

Compound $\mathbf{3 b}$ was prepared from $\mathbf{5 b}(41.0 \mathrm{mg}, 81 \mu \mathrm{~mol})$ following the same protocol to $\mathbf{3 a}$ [$\operatorname{MeOTf}(860 \mu \mathrm{~L}, 7.6 \mathrm{mmol})$ and $\mathrm{NaBH}_{4}(144 \mathrm{mg}, 3.8 \mu \mathrm{~mol})$] as a yellow solid ($40 \mathrm{mg}, 95 \%$): M.p. 220-223 ${ }^{\circ} \mathrm{C}$ (decomp.); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.16(\mathrm{dd}, J=8.6,1.2 \mathrm{~Hz}, 2 \mathrm{H})$, 7.65-7.58 (m, $4 \mathrm{H}), 7.46(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.24(\mathrm{dd}, J=8.6,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{tt}, J=8.1,0.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.54(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $6.39(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.07(\mathrm{~d}, J=7.5,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.35(\mathrm{~s}, 1 \mathrm{H}), 3.60-3.48(\mathrm{~m}, 4 \mathrm{H}), 3.10(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 148.58$ (br), 148.19, 145.58, 141.24, 139.97, 132.23, 132.69, 132.22, 129.77, 129.35 (br), $127.90,127.70,127.40,127.28,126.15,125.61,125.25,120.47,119.11$, $118.31,111.51,41.80,32.65,30.05,29.76$; IR (KBr) 1606, 1590, 1461, 1346, 1266, 1131, 866, $752 \mathrm{~cm}^{-1}$; LR-MS (EI) m / z (\%): 525 (64), 524 ($\left.\mathrm{M}^{+}, \mathrm{bp}\right), 523$ (49), 510 (52), 509 (69), 328 (53), 262 (40), 194 (51), 179 (50); HR-MS (EI) found 524.2257, calcd. for $\mathrm{C}_{39} \mathrm{H}_{28} \mathrm{~N}_{2}$: 524.2252; Anal. Calcd. (\%) for $\mathrm{C}_{39} \mathrm{H}_{28} \mathrm{~N}_{2}+0.50 \mathrm{H}_{2} \mathrm{O}$: C 86.32, H 5.57, N5.16; found C 86.06, H 5.43, N 5.12.

Compound $\mathbf{3 b}$ - d was prepared from $\mathbf{5 b}$ by using NaBD_{4} in place of NaBH_{4} following the same protocol to 3a (2 steps, 77% yield): M.p. 233-235 ${ }^{\circ} \mathrm{C}$ (decomp.); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.14(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.67-7.58(\mathrm{~m}, 4 \mathrm{H}), 7.47(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.36(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~m}, 2 \mathrm{H}), 6.88(\mathrm{td}, J=7.8,1.5 \mathrm{~Hz}, 2 \mathrm{H})$, $6.54(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.40(\mathrm{td}, J=7.8,0.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.08(\mathrm{dd}, J=7.8,1.5 \mathrm{~Hz}), 3.61-3.52(\mathrm{~m}$, $4 \mathrm{H}), 3.12(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 148.82,148.74,148.06,145.46,141.64,140.19,137.87$, 133.11, 132.50, 130.67, 129.97, 129.38, 128.06, 127.76, 127.51, 126.23, 125.86, 125.26, 120.84, $119.40,118.46,111.35,32.94,30.32,30.07$; IR (KBr) 3070, 3037, 2924, 2854, 1605, 1592, 1514, $1470,1435,1345,1278,1269,1132,874,757,751 \mathrm{~cm}^{-1}$; LR-MS (EI) $m / z(\%): 526(50), 525\left(\mathrm{M}^{+}\right.$, bp), 524 (28), 510 (28), 278 (39), 263 (36), 195 (28); HR-MS (EI) found 525.2318, calcd. for $\mathrm{C}_{39} \mathrm{H}_{27} \mathrm{DN}_{2}: 525.2314$.

Preparation of 10-Methyl-9-[8-(10-methylacridan-9-yl)naphthalen-1-yl]acridinium Triflate $\mathbf{1 a}^{+} \mathbf{O T f}^{-}$and 1a- $d^{+} \mathbf{O T f}^{-}$

To a solution of $\mathbf{3 a}(34.3 \mathrm{mg}, 69 \mu \mathrm{~mol})$ and 2,6-di-tert-butyl-4-methylpyridine ($20.0 \mathrm{mg}, 97$ $\mu \mathrm{mol})$ in dry benzene $(10 \mathrm{~mL})$ was added $\mathrm{MeOTf}(100 \mu \mathrm{~L}, 884 \mu \mathrm{~mol})$. The mixture was stirred for 80 min at $23{ }^{\circ} \mathrm{C}$ under argon, and the resulting black precipitates were filtered. The insoluble material was washed with ether to give $\mathbf{1 a}^{+} \mathbf{O T f}^{-}$($35.5 \mathrm{mg}, 78 \%$) as a dark orange solid. Single crystals for the X-ray analysis were obtained by recrystallizing from acetone: M.p. 193-195 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}\right.$, acetone- $\left.d_{6},-30^{\circ} \mathrm{C}\right), 8.46(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.87(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.72-$ $7.53(\mathrm{~m}, 10 \mathrm{H}), 7.08(\mathrm{t}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 6.98(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 4 \mathrm{H}), 4.11(\mathrm{~s}, 1 \mathrm{H}), 4.06(\mathrm{~s}, 6 \mathrm{H})$; IR (KBr) 3107, 3034, 2919, 1609, 1589, 1579, 1549, 1479, 1461, 1342, 1275, 1262, 1224, 1193, 1160, 1030, 774, 753, 713, 691, 655, 637, 629, $517 \mathrm{~cm}^{-1}$; LR-MS (FAB) $m / z(\%): 515$ (22), 514 (44), $513\left(\mathrm{M}^{+}, \mathrm{bp}\right), 194(51)$; $\mathrm{HR}-\mathrm{MS}(\mathrm{FAB})$ found 513.2324, calcd. for $\mathrm{C}_{38} \mathrm{H}_{29} \mathrm{~N}_{2}$: 513.2325; Anal. Calcd (\%) for $\mathrm{C}_{39} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}+0.33 \mathrm{C}_{6} \mathrm{H}_{6}$: C 71.50, H 4.54, N 4.07; found: C 71.24, H 4.79, N 3.92.

Salt $\mathbf{1 a}-d^{+} \mathrm{OTf}^{-}$was prepared from $\mathbf{3 a -} d$ with MeOTf following the same protocol to $\mathbf{1 a}^{+} \mathbf{O T f}^{-}$ (68% yield): M.p. $193-194{ }^{\circ} \mathrm{C}$ (decomp.); ${ }^{1} \mathrm{H}$ NMR (300 MHz , acetone $-d_{6}, 20^{\circ} \mathrm{C}$) $\delta 8.46(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.89 (br t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.70-7.50(\mathrm{~m}, 10 \mathrm{H}), 7.08$ (br. t, $J=7.0 \mathrm{~Hz}, 4 \mathrm{H}$), 7.00 (d, $J=8.1 \mathrm{~Hz}, 4 \mathrm{H}), 4.07(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{2} \mathrm{D}$ NMR (77 MHz , acetone $-d_{6},-30^{\circ} \mathrm{C}$) $\delta 4.10(\mathrm{br} . \mathrm{s})$; IR (KBr) 3069, 3034, 1609, 1589, 1579, 1549, 1461, 1385, 1341, 1276, 1262, 1224, 1194, 1162, 1030, 753, $713,691,654,637,626,602,573,517 \mathrm{~cm}^{-1}$; LR-MS (FAB) m / z (\%): 517 (32), 516 (26), 515 (85), $514\left(\mathrm{M}^{+}, \mathrm{bp}\right), 513$ (29), 195 (48), 136 (27); HR-MS (FAB) found 514.2388, calcd. for $\mathrm{C}_{38} \mathrm{H}_{28} \mathrm{DN}_{2}: 514.2392$.

Preparation of 10-Methyl-9-[6-(10-methylacridan-9-yl)acenaphthen-5-yl]acridinium Triflate $\mathbf{1 b}^{+} \mathbf{O T f}{ }^{-}$and $\mathbf{1 b}-d^{+} \mathbf{O T f}^{-}$

To a solution of $\mathbf{3 b}(28.5 \mathrm{mg}, 54 \mu \mathrm{~mol})$ and 2,6-di-tert-butyl-4-methylpyridine ($11.1 \mathrm{mg}, 54$ $\mu \mathrm{mol})$ in dry benzene $(10 \mathrm{~mL})$ was $\mathrm{MeOTf}(90 \mu \mathrm{~L}, 823 \mu \mathrm{~mol})$ and stirred for 60 min at $23{ }^{\circ} \mathrm{C}$ under argon, and the resulting black precipitates were filtered. The insoluble material was washed with ether to give $\mathbf{1 b}^{+} \mathbf{O T f}^{-}(25.4 \mathrm{mg}, 68 \%)$ as a dark brown solid. Single crystals for the X-ray analysis were obtained by recrystallizing from CHCl_{3} : M.p. 248-249 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , acetone- $\left.d_{6,}-10^{\circ} \mathrm{C}\right) \delta 7.81-7.57(\mathrm{br} \mathrm{s}, 8 \mathrm{H}), 7.64(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, 7.18-6.94 (br s, 8H), $4.10(\mathrm{br} \mathrm{s}, 6 \mathrm{H}), 4.00(\mathrm{~s}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 4 \mathrm{H}),{ }^{1} \mathrm{H}$ NMR (300 MHz , acetone- d_{6}, $\left.85^{\circ} \mathrm{C}\right) \delta 8.98(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.55(\mathrm{br} . \mathrm{dd}, J=9.4,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.15(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.99$ (br. dd, $J=8.6,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}$), 7.45 (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.03$ (br. dd, $J=8.3,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, $6.50(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.96(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.16(\mathrm{~s}, 3 \mathrm{H}), 4.19(\mathrm{~s}, 1 \mathrm{H}), 3.66(\mathrm{~d}, J=8.3 \mathrm{~Hz}$,

4H), 3.25 (s, 3H); IR (KBr) 3111, 3070, 3037, 2921, 2888, 1607, 1590, 1577, 1547, 1462, 1385, 1343, 1277, 1262, 1224, 1187, 1155, 1045, 1032, 866, 752, 638, 574, $517 \mathrm{~cm}^{-1}$; LR-MS (FAB) $m / z(\%): 540(45), 539\left(\mathrm{M}^{+}, b p\right), 194(51)$; HR-MS (FAB) found 539.2484, calcd. for $\mathrm{C}_{40} \mathrm{H}_{31} \mathrm{~N}_{2}$: 539.2482.; Anal. calcd(\%) for $\mathrm{C}_{39} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}+0.50 \mathrm{H}_{2} \mathrm{O}$ C 70.57, H 4.62, N 4.01; found C 70.69, H 4.61, N 4.09.

Salt $\mathbf{1 b}-d^{+} \mathrm{OTf}^{-}$was prepared from $\mathbf{3 b}-d$ with MeOTf following the same protocol to $\mathbf{1 b}^{+} \mathrm{OTf}^{-}$ (63% yield): M.p. $265-267{ }^{\circ} \mathrm{C}$ (decomp.); ${ }^{1} \mathrm{H}$ NMR (300 MHz , acetone- $d_{6},-85{ }^{\circ} \mathrm{C}$) $\delta 8.98(\mathrm{~d}, J=$ $9.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.55(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.17(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.99(\mathrm{t}, J=8.0,2 \mathrm{H}), 7.78(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{t}, J$ $=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.50(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.96(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.16(\mathrm{~s}$, $3 \mathrm{H}), 3.67(\mathrm{br} \mathrm{s}, 4 \mathrm{H}), 3.25(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{2} \mathrm{D}$ NMR (77 MHz , acetone- $d_{6},-10^{\circ} \mathrm{C}$) $\delta 3.99$ (br. s); IR (KBr) 3113, 3070, 3037, 2932, 2883, 1607, 1591, 1577, 1547, 1464, 1344, 1279, 1262, 1224, 1189, 1157, 1029, 874, 751, 636, $516 \mathrm{~cm}^{-1}$; LR-MS (FAB) $m / z(\%): 541(45), 514\left(\mathrm{M}^{+}, \mathrm{bp}\right), 195(47)$; HR-MS (FAB) found 540.2568, calcd. for $\mathrm{C}_{40} \mathrm{H}_{30} \mathrm{DN}_{2}$: 540.2549.

X-ray Analyses

Crystal data for $\mathbf{1 a}^{+}$OTf \cdot acetone: Crystals were obtained by recrystallizing from acetone. $\mathrm{C}_{39} \mathrm{H}_{29} \mathrm{~N}_{2} \cdot \mathrm{CO}_{3} \mathrm{~F}_{3} \mathrm{~S} \cdot \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}, M 720.80$, dark orange plates, $0.60 \times 0.03 \times 0.02 \mathrm{~mm}^{3}$, triclinic P 1bar, $a=8.407(4) \AA, b=13.578(7) \AA, c=15.815(8) \AA, \alpha=72.28(2)^{\circ}, \beta=80.88(2)^{\circ}, \gamma=89.70(3)^{\circ}, V$ $=1695.9(14) \AA^{3}, \rho(Z=2)=1.411 \mathrm{~g} \mathrm{~cm}^{-1}$. A total of 6566 unique data $\left(2 \theta_{\max }=55^{\circ}\right)$ were measured at $T=133 \mathrm{~K}$ by a Rigaku Mercury CCD apparatus (Mo K α radiation, $\lambda=0.71070 \AA$). Numerical absorption correction was applied ($\mu=1.60 \mathrm{~cm}^{-1}$). The structure was solved by the Patterson method and the following expansion (DIRDIF99) and refined by the full-matrix leastsquares method on F^{2} with anisotropic temperature factors for non-hydrogen atoms. All the hydrogen atoms except for the methine proton (H1) at the C11 carbon were located at the calculated positions and refined with riding. The methine proton (H1) at the C11 carbon was located in the D map and refined with isotropic temperature factors. The final $R 1$ and $w R 2$ values are 0.081 ($\mathrm{I}>2 \sigma \mathrm{I}$) and 0.197 (all data) for 6555 reflections and 508 parameters. Estimated standard deviations are $0.004-0.01 \AA$ for bond lengths and $0.3-0.7^{\circ}$ for bond angles, respectively.

Crystal data for $\mathbf{1 b}^{+}$OTf \cdot chloroform: Crystals were obtained by recrystallizing from chloroform. $\mathrm{C}_{41} \mathrm{H}_{31} \mathrm{~N}_{2} \cdot \mathrm{CO}_{3} \mathrm{~F}_{3} \mathrm{~S} \cdot \mathrm{CHCl}_{3}, M 808.14$, dark brown plates, $0.60 \times 0.20 \times 0.02 \mathrm{~mm}^{3}$, triclinic P1bar, $a=8.208(2) \AA, b=14.152(4) \AA, c=16.716(5) \AA, \alpha=109.750(5)^{\circ}, \beta=$ $97.638(5)^{\circ}, \gamma=90.402(3)^{\circ}, V=1808.4(9) \AA^{3}, \rho(Z=2)=1.484 \mathrm{~g} \mathrm{~cm}^{-1}$. A total of 7678 unique data $\left(2 \theta_{\max }=55^{\circ}\right)$ were measured at $T=103 \mathrm{~K}$ by a Rigaku Mercury CCD apparatus (Mo K α radiation, $\lambda=0.71070 \AA$). Numerical absorption correction was applied $\left(\mu=3.71 \mathrm{~cm}^{-1}\right)$. The structure was solved by the direct method (SIR97) and refined by the full-matrix least-squares method on F^{2} with anisotropic temperature factors for non-hydrogen atoms. All the hydrogen atoms except for the methine proton (H1) at the C13 carbon were located at the calculated positions and refined with riding. The methine proton $(\mathrm{H} 1)$ at the C 13 carbon was located in the D map and refined with isotropic temperature factors. The final $R 1$ and $w R 2$ values are 0.054 (I > $2 \sigma I)$ and 0.128 (all data) for 7678 reflections and 522 parameters. Estimated standard deviations are $0.002-0.005 \AA$ for bond lengths and $0.1-0.3^{\circ}$ for bond angles, respectively.

Crystal data for 3a: Crystals were obtained by recrystallizing from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane. $\mathrm{C}_{37} \mathrm{H}_{26} \mathrm{~N}_{2}$, M 498.63, orange prism, $0.80 \times 0.15 \times 0.10 \mathrm{~mm}^{3}$, monoclinic $C \mathrm{c}, a=9.057(2) \AA, b=19.794$ (3) $\AA, c=14.905(3) \AA, \beta=104.157(3)^{\circ}, V=2590.8(7) \AA^{3}, \rho(Z=4)=1.278 \mathrm{~g} \mathrm{~cm}^{-1}$. A total of 5151 unique data $\left(2 \theta_{\max }=55^{\circ}\right)$ were measured at $T=103 \mathrm{~K}$ by a Rigaku Mercury CCD apparatus (Mo $K \alpha$ radiation, $\lambda=0.71070 \AA$). Numerical absorption correction was applied $\left(\mu=3.71 \mathrm{~cm}^{-1}\right)$. The structure was solved by the direct method (SIR97) and refined by the full-matrix least-squares method on F^{2} with anisotropic temperature factors for non-hydrogen atoms. All the hydrogen atoms except for the methine proton (H1) at the C24 carbon were located at the calculated positions and refined with riding. The methine proton $(\mathrm{H} 1)$ at the C 24 carbon was located in the D map and refined with isotropic temperature factors. The final $R 1$ and $w R 2$ values are 0.042 (I > $2 \sigma \mathrm{I}$) and 0.096 (all data) for 5151 reflections and 382 parameters. Estimated standard deviations are 0.002-0.004 \AA for bond lengths and 0.2° for bond angles, respectively.

Computational Methods

The DFT calculations were performed with the Gaussian 98 program package. ${ }^{6}$ The geometries of the compounds were optimized by using the B3LYP method in combination with the 6-31G* basis set.

Redox Potential Measurements

Redox potentials ($E^{0 \mathrm{x}}$ and $E^{\text {red }}$) were measured by cyclic voltammetry in dry MeCN containing $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{Et}_{4} \mathrm{NClO}_{4}$ as a supporting electrolyte. Ferrocene undergoes 1e-oxidation at +0.38 V under the same conditions. All of the values shown in the text are in E / V vs SCE measured at the scan rate of $100 \mathrm{mV} \mathrm{s}^{-1}$. A Pt disk electrode was used as the working and counter electrodes, respectively. The working electrode was polished using a water suspension of $\mathrm{Al}_{2} \mathrm{O}_{3}(0.05 \mu \mathrm{~m})$ before use. The irreversible half-wave potentials were estimated from the anodic peak potentials $\left(E^{\mathrm{pa}}\right)$ as $E^{\mathrm{ox}}=E^{\mathrm{pa}}-0.03$ or the cathodic peak potentials $\left(E^{\mathrm{pc}}\right)$ as $E^{\mathrm{red}}=E^{\mathrm{pa}}+0.03$.

VT-NMR data of $\mathbf{1 b}{ }^{+}$OTf ${ }^{-}$salt in $\mathbf{C D}_{2} \mathbf{C l}_{2}$

Figure S1. VT-NMR spectra of $\mathbf{1 b}^{+} \mathrm{OTf}^{-}$at a) $0^{\circ} \mathrm{C}$, b) $-40^{\circ} \mathrm{C}$, c) $\left.-60^{\circ} \mathrm{C}, \mathrm{d}\right)-70^{\circ} \mathrm{C}$, and e) $-90^{\circ} \mathrm{C}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$
a)

Figure S2. ORTEP drawing of $\mathbf{1 a}^{+}$in $\mathbf{1 a}^{+} \mathrm{OTf} \cdot a$ acetone solvate determined by X-ray analysis at 133 K : (a) top view and (b) side view.
a)

b)

Figure S3. ORTEP drawing of $\mathbf{1 b}^{+}$in $\mathbf{1 b}^{+}$OTf \bullet •chloroform solvate determined by X-ray analysis at 103 K : (a) top view and (b) side view.

Figure S4. ORTEP drawing of 3a determined by X-ray analysis at 113 K : (a) top view and (b) side view.

Figure S5. (a) HOMO (-7.4066 eV) and (b) LUMO (-5.9623 eV) of $\mathbf{1 a}{ }^{+}$calculated by B3LYP/631G*.
a)

b)

Figure S6. (a) HOMO (-7.2908 eV) and (b) LUMO (-5.9265 eV) of $\mathbf{1 b}^{+}$calculated by B3LYP/631G*.

Figure $S 7$. UV/Vis spectrum of $\mathbf{1 a}^{+} \mathrm{OTf}^{-}$in $\mathrm{CH}_{3} \mathrm{CN}$. Inset: a magnified spectra in a long wavelength absorption band.

Figure S8. UV/Vis spectrum of $\mathbf{1 b}^{+} \mathrm{OTf}^{-}$in $\mathrm{CH}_{3} \mathrm{CN}$. Inset: a magnified spectra in a long wavelength absorption band.

Optimized geometry of $1 a^{+}$at B3LYP/6-31G(d)

```
# B3LYP/6-31G(d) Opt Pop=Full FChk=All
    Stoichiometry C38H29N2(1+)
    Framework group C1[X(C38H29N2)]
    Deg. of freedom 201
```

SCF Done: $\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})$	$=$	-1574.83945271	A.U.	
	Item	Value	Threshold	Converged?
Maximum Force	0.000076	0.000450	YES	
RMS	Force	0.000012	0.000300	YES
Maximum	Displacement	0.000120	0.001800	YES
RMS	Displacement	0.000027	0.001200	YES

Predicted change in Energy=-3.433154D-07
Optimization completed.
-- Stationary point found.

15	6	0	0.353265	-1.887391	-1.249909
16	6	0	0.359632	-1.882758	1.256483
17	6	0	-0.589526	1.691431	-2.482771
18	6	0	0.067805	1.934588	-3.663625
19	6	0	1.371210	2.473327	-3.632230
20	6	0	1.990295	2.786860	-2.438332
21	6	0	1.323481	2.570303	-1.209194
22	6	0	-0.330610	-2.031726	2.463064
23	6	0	0	0	0
2	6	0	0	0	0

Optimized geometry of $\mathbf{1 b}^{+}$at B3LYP/6-31G(d)

15	6	0	-0.450101	2.036624	-1.221170
16	6	0	-0.450091	2.037123	1.220984
17	6	0	-0.562323	-1.940711	1.252645
18	6	0	-0.562648	-1.940755	-1.252341
19	6	0	0.168952	1.772906	2.477351
20	6	0	-0.501707	1.972825	3.658342
21	6	0	-1.833318	2.439090	3.628736
22	6	0	-2.469239	2.722702	2.436489
23	6	0	-1.791691	2.546101	1.206523
24	6	0	0.142176	-2.052635	-2.453596
25	6	0	-0.457315	-2.558777	-3.606723
26	6	0	-1.788959	-2.967852	-3.558536
27	6	0	-2.511613	-2.877309	-2.370974
28	6	0	-1.912601	-2.358482	-1.210416
29	6	0	0.142779	-2.052495	2.453744
30	6	0	-0.456421	-2.558639	3.607027
31	6	0	-1.788029	-2.967856	3.559148
32	6	0	-2.510961	-2.877389	2.371745
33	6	0	-1.912260	-2.358507	1.211060
34	7	0	-2.622519	-2.250220	0.000421
35	6	0	-1.791641	2.545721	-1.206840
36	6	0	-2.469187	2.722184	-2.436822
37	6	0	-1.833327	2.438147	-3.629007
38	6	0	-0.501799	1.971648	-3.658495
39	6	0	0.168884	1.771989	-2.477467
40	7	0	-2.391533	2.854326	-0.000217
41	6	0	-3.687135	3.558657	-0.000606
42	6	0	-4.063151	-2.455870	0.000657
43	1	0	4.212143	-3.328520	-0.000462
44	1	0	1.747005	-3.280934	-0.000219
45	1	0	4.565559	3.311095	0.000305
46	1	0	6.483886	1.069470	0.877305
47	1	0	6.483941	1.069815	-0.877418
48	1	0	6.362924	-1.299957	0.876908
49	1	0	6.362689	-1.299573	-0.878127
50	1	0	-0.390693	-0.264593	0.000089
51	1	0	2.111844	3.525354	0.000389
52	1	0	1.186258	1.401184	2.475465
53	1	0	-0.020525	1.760976	4.607143
54	1	0	-2.377678	2.572239	4.558796
55	1	0	-3.500534	3.046821	2.463490
56	1	0	1.180433	-1.739079	-2.484342
57	1	0	0.112386	-2.638047	-4.527687
58	1	0	-2.269106	-3.379985	-4.441623
59	1	0	-3.531276	-3.243138	-2.346683
60	1	0	1.181019	-1.738856	2.484255
61	1	0	0.113487	-2.637780	4.527873
62	1	0	-2.267946	-3.380030	4.442339
63	1	0	-3.530586	-3.243341	2.347660
64	1	0	-3.500386	3.046602	-2.463835
65	1	0	-2.377654	2.571186	-4.559102
66	1	0	-0.020665	1.759475	-4.607248
67	1	0	1.186161	1.400186	-2.475507
68	1	0	-3.747284	4.201931	-0.875449
69	1	0	-3.748988	4.200037	0.875455
70	1	0	-4.522396	2.851461	-0.002157
71	1	0	-4.493597	-1.979229	-0.882660
72	1	0	-4.493277	-1.979305	0.884166
73	1	0	-4.350714	-3.517458	0.000630

References

(1) a) Hodgson, H. H.; Whitehurst, J. S. J. Chem. Soc. 1948, 80. b) Seyferth, D.; Vick, S. C. J. Organomet. Chem. 1977, 141, 173. c) Vyskočil, Š.; Meca, L.; Tišlerová, I.; Císařová, I.; Polášek, M.; Harutyunyan, S. R.; Belokon, Y. N.; Stead, R. M. J.; Farrugia, L.; Lockhart, S. C.; Mitchell, W. L.; Kočovský, P. Chem. Eur. J. 2002, 8, 4633.
(2) a) N. Tanaka, T. Kasai, Bull. Chem. Soc. Jpn. 1981, 54, 3020. b) Neudorff, W. D.; Lentz, D.; Anibarro, M.; Schlüter, A. D. Chem. Eur. J. 2003, 9, 2745.
(3) Acheson, R. M.; Adcock, B.; Glover, G. M.; Sutton, L. E. J. Chem. Soc. 1960, 3367.
(4) Kawai, H.; Takeda, T.; Fujiwara, K.; Suzuki, T. Tetrahedron Lett. 2004, 45, 8289.
(5) Wolf, C.; Mei, X. J. Am. Chem. Soc. 2003, 125, 10651.
(6) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian, Pittsburg, PA, 1998.

