Supporting Information

Isolation and Low-Temperature X-ray Analysis of Intramolecular Triarylmethane-Triarylmethylium Complex: Preference for a C-H Bridged Unsymmetric Structure Exhibiting a Facile 1,5-Hydride Shift and Charge-Transfer Interaction

Hidetoshi Kawai, Takashi Takeda, Kenshu Fujiwara, and Takanori Suzuki*

Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan

Experimental procedures		p. S2
VT-NMR data of $\mathbf{1b}^+$ OTf ⁻ salt in CD ₂ Cl ₂	(Figure S1)	p. S11
ORTEP drawing of 1a ⁺ OTf ⁻ •acetone	(Figure S2)	p. S12
ORTEP drawing of 1b ⁺ OTf ⁻ •chloroform	(Figure S3)	p. S12
ORTEP drawing of 3a	(Figure S4)	p. S13
HOMO and LUMO of $\mathbf{1a}^+$ and $\mathbf{1b}^+$	(Figure S5, S6)	p. S14
UV/Vis spectra of $1a^+$ OTf ⁻ and $1b^+$ OTf	(Figure S7, S8)	p. S15
Optimized geometry of $1a^+$ at B3LYP/6-3	1G(d)	p. S16
Optimized geometry of $\mathbf{1b}^+$ at B3LYP/6-3	1G(d)	p. S18
References		p. S20

Experimental procedures

General: ¹H and ¹³C NMR spectra were recorded on a JEOL AL300 or ECP-300 (¹H/300 MHz, ¹³C/75 MHz) spectrometer. VT NMR (¹H and ¹³C) and ²H NMR spectra were recorded on a JEOL AL300, α 400 (¹H/400 MHz, ¹³C/100 MHz) or α 500 (¹H/500 MHz, ²H/77 MHz and ¹³C/125 MHz) spectrometer. ¹³C–¹H coupling constants were measured by a HSQC method on a α 500 spectrometer at the High-Resolution NMR Laboratory (Hokkaido University). IR spectra were taken on a JASCO model FT/IR-230 infrared spectrophotometer. Mass spectra were recorded on JEOL JMS-600H (EI) and JMS-AX500 or JEOL JMS-SX102A (FAB) spectrometers. Column chromatography were performed on silica gel I-6-40 (YMG) of particle size 40-63 μ m and aluminum oxide 90 standardized (Merck). Elemental analyses were taken on a Yanako MT-6 CHN corder at the Center for Instrumental Analysis of Hokkaido University. UV/Vis spectra were recorded on a Hitachi U-3500 spectrophotometer. 1,8-dibromonaphthalene¹ and 5,6-dibromoacenaphthene² were prepared following the known procedures. Other reagents and solvents were obtained from commercial sources and purified prior to use.

Scheme. Preparation of **1a**,**b**⁺ salts

a: R = H; b: R, $R = -CH_2CH_2$ -

Preparation of 9-Bromoacridine³

The mixture of *N*-phenylanthranilic acid (5.50 g, 58.1 mmol) and POBr₃ (50.0 g, 174 mmol) was heated without solvent at 120°C. A violent fuming reaction occurred within 10 min (CAUTION! This reaction should be done in a hood). After heated for 2 h, the resulting solid was allowed to cool to room temperature, and carefully added to 25% aqueous ammonium hydroxide and chloroform. The mixture was extracted with chloroform. The organic layer was washed with 5% aqueous ammonium hydroxide and brine, and dried over Na₂SO₄. Evaporation of the solvent gave 9-bromoacridine (14.1 g, 94%) as a brown solid. This compound was used in the next reaction without purification; M.p. (113-114 °C, *lit.* 116 °C³); ¹H NMR (CDCl₃) δ 8.42 (dd, *J* = 8.4, 1.2 Hz, 2H), 8.22 (d, *J* = 8.6 Hz, 2H), 7.80 (ddd, *J* = 8.4, 6.6, 1.2 Hz, 2H), 7.64 (ddd, *J* = 8.4, 6.6, 1.2 Hz, 2H).

Preparation of 9-Trimethylstannylacridine

To a suspension of 9-bromoacridine (5.50 g, 21.3 mmol) in dry ether (300 mL) was added *n*-BuLi in *n*-hexane (1.58 M, 15.1 mL, 25.6 mmol) at -78° C under argon. After 15 min, Me₃SnCl in *n*-hexane (1.0 M, 26.0 mL, 26.0 mmol) was added. The mixture was allowed to warm to 23°C and stirred for 18 h. Then, the resulting suspension was filtered to remove the insoluble material. The yellow solid obtained by evaporation of the solvent was subjected to chromatography on SiO₂ eluting with hexane/EtOAc/Et₃N (100:10:1) to give 9-trimethylstannylacridine (6.25 g, 84%) as a yellow solid; M.p. 86-87°C; ¹H NMR (CDCl₃) δ 8.25 (dd, *J* = 8.6, 1.3 Hz, 2H), 8.14 (dd, *J* = 8.6, 1.3 Hz, 2H), 7.76 (ddd, *J* = 8.6, 6.6, 1.3 Hz, 2H), 7.53 (ddd, *J* = 8.6, 6.6, 1.3 Hz, 2H), 0.68 (s, 9H); ¹³C NMR (CDCl₃) δ 157.37, 147.79, 133.48, 130.69, 130.08, 129.56, 125.29, -4.58; IR (KBr) 2360, 2337, 1533, 1515, 1460, 1394, 1196, 1141, 1127, 1011, 859, 832, 782, 761, 745, 670, 660, 604, 537, 523, 514 cm⁻¹; LR-MS (EI) *m/z* (%): 343(M⁺, 22), 324 (32), 298 (50), 296 (38), 178 (bp), 177 (49), 152 (37), 151 (55), 150 (32), 135 (33); Anal. Calcd (%) for C₁₆H₁₇NSn: C 56.19, H 5.10, N 4.10; found C 56.10, H 4.96, N 4.05.

Preparation of 9,9'-(Naphthalene-1,8-diyl)bisacridine 5a⁴

To a solution of 1,8-dibromonaphthalene¹ (399 mg, 1.41 mmol) in dry DMF (20 mL) were added CuO (487 mg, 2.81 mmol) and then Pd(PPh₃)₄ (224 mg, 422 μ mol).⁵ After bubbling with argon for ca. 40 min, a portion (5 mL) of dry DMF solution (20 mL) of 9-trimethylstannylacridine (2.61 g, 7.63 mmol) was added. Then, the resulting mixture was heated at 100°C for 15 min and at 140°C for 50 min under argon. Then, the remaining 9-trimethylstannylacridine solution was added to the mixture at this temperature. After 21 h, 5% aqueous ammonium hydroxide (20 mL)

Hokkaido University

and chloroform (20 mL) were added to the reaction mixture, and then the precipitates were filtered. The solid was transferred on a thimble filter fitted in the Soxhlet apparatus, and extracted with refluxing chloroform (300 mL) for 3 h. The orange solid obtained by evaporation of the solvent mostly contains 9,9'-biacridinyl and was discarded. The remaining solid on the thimble filter was further extracted with refluxing chloroform (300 mL) in the Soxhlet apparatus for 48 h. The second extract was concentrated in vacuo to give 5a (153 mg, 23%) as a yellow solid. Single crystals for the X-ray analysis were obtained by recrystalization from CHCl₃/hexane: M.p. 245-247°C (decomp.); ¹H NMR (CD₂Cl₂) δ 8.24 (dd, J = 8.4, 1.4 Hz, 2H), 7.67 (dd, J = 8.4, 6.9 Hz, 2H), 7.52 (dd, 4H, J = 8.4, 1.2 Hz), 7.29 (ddd, J = 8.4, 6.6, 1.4 Hz, 4H), 7.19 (dd, J = 6.9, 1.4 Hz, 2H), 6.72 (dd, J = 8.4, 1.4 Hz, 4H), 6.61 (ddd, J = 8.4, 6.6, 1.2 Hz, 4H); The ¹³C NMR could not be measured due to its low solubility. IR (KBr) 3045, 1558, 1540, 1517, 1436, 1145, 1014, 866, 827, 785, 752, 601 cm⁻¹; UV/Vis (CH₂Cl₂): λ_{max} (ϵ / M^{-1} cm⁻¹) = 347 (12600), 360 (13400), 390 nm (6000, sh); Fluorescence (CH₂Cl₂, λ_{ex} = 360 nm) λ_{max} = 536 nm; LR-MS (EI) *m/z* (%): 484 $(M^{+} + 2H, 57), 483(23), 482(M^{+}, bp), 241(87), 240 (65), 207 (66), 196 (60), 171 (63), 166 (64), 100 (64), 10$ 138 (63), 122 (61), 121 (63), 93 (64), 80 (63), 52 (58); HR-MS (EI) found 482.1778, calcd. for $C_{36}H_{22}N_2$: 482.1783; Anal. Calcd (%) for $C_{36}H_{22}N_2 + 0.50$ CHCl₃: C 80.84, H 4.18, N 5.17; found C 80.88, H 4.48, N 5.20.

Preparation of 9,9'-(Acenaphthene-5,6-diyl)bisacridine 5b

To a solution of 5,6-dibromoacenaphthene² (1.15 g, 3.69 mmol) in dry DMF (60 mL) were added CuO (683 mg, 8.59 mmol) and then Pd(PPh₃)₄ (1.31 g, 1.13 mmol). After bubbling with argon for ca. 30 min, a portion (15 mL) of dry DMF solution (60 mL) of 9-trimethylstannylacridine (4.99 g, 14.6 mmol) was added. Then, the resulting mixture was heated at 100°C for 30 min and at 140°C for 15min under argon. Then, the remaining 9-trimethylstannylacridine solution was added to the mixture at this temperature. After 21 h, 5% aqueous ammonium hydroxide (100 mL) was added and extracted with chloroform. The organic layer was washed with 5% aqueous ammonium hydroxide and brine, dried over Na₂SO₄. The black solid obtained by evaporation of the solvent was subjected to chromatography on SiO₂ eluting with CHCl₃/Et₃N (100:1) to give **5b** (888 mg, 48%) as a yellow solid. Single crystals for the X-ray analysis were obtained by recrystalization from CHCl₃/AcOEt: M.p. 270-272°C (decomp.); ¹H NMR (CDCl₃) δ 7.69 (d, J = 8.4 Hz, 4H), 7.55 (d, J = 7.0 Hz, 2H), 7.34 (ddd, J = 8.4, 6.4, 1.1 Hz, 4H), 7.25 (d, J = 7.0 Hz, 2H), 6.94 (dd, J = 8.6, 1.1 Hz, 4H), 6.68 (ddd, J = 8.6, 6.4, 1.1 Hz, 4H), 3.74 (s, 4H); ¹³C NMR (CDCl₃) & 147.55, 146.71, 145.89, 140.28, 131.92, 131.76, 128.93, 128.79, 126.25, 124.94, 124.57, 119.50, 30.51; IR (KBr) 3042, 2916, 1629, 1600, 1556, 1515, 1460, 1435, 1408, 1329, 1151, 1013, 868, 745, 647, 626, 603 cm⁻¹; UV/Vis (CH₂Cl₂): λ_{max} ($\epsilon / M^{-1} cm^{-1}$) = 349 (12200), 360 (12900), 390 nm (6200, sh); Fluorescence (CH₂Cl₂, λ_{ex} = 360 nm) λ_{max} = 525 nm; LR-MS

Hokkaido University

(EI) m/z (%): 509 (42), 508 (M⁺, bp), 254 (19); HR-MS (EI) found 508.1940, calcd. for C₃₈H₂₄N₂: 508.1939; Anal. Calcd (%) for C₃₈H₂₄N₂ + 0.33 H₂O: C 88.69, H 4.83, N 5.44; found C 88.42, H 4.75, N 5.41.

Preparation of 9-[8-(10-Methylacridan-9-yl)naphthalen-1-yl]acridine 3a and 3a-d

To a suspension of 9,9'-(naphthalene-1,8-diyl)bisacridine **5a** (27.3 mg, 57 μ mol) in dry CH₂Cl₂ (20 mL) was added MeOTf (900 μ L, 8.0 mmol). After stirring for 21h at 23°C under argon, the mixture was diluted with ether and the resulting precipitates were filtered. The insoluble material was washed with ether to give a mixture of mono methylated dication salt **4a** and a small amount of dimethylated dication **2a**. The mixture was used in the next reaction without further purification.

To a solution of a mixture of 4a and 2a in ethanol (20 mL) was added NaBH₄ (73 mg, 193 µmol). After the mixture was stirred for 25h at 23 °C, the solvent was evaporated. The obtained yellow solid was suspended with water and the mixture was extracted with AcOEt. The combined organic layer was washed with brine, dried over Na_2SO_4 , and filtered. The yellow solid obtained by evaporation of the solvent was subjected to chromatography on Al_2O_3 eluting with CH₂Cl₂/hexane (1:1) to give **3a** (22 mg, 77%) as a yellow solid. Single crystals for the X-ray analysis were obtained by recrystalization from CH₂Cl₂/hexane: M.p. 280-285 °C (decomp.); ¹H NMR (CDCl₃) δ 8.16 (dd, J = 8.4, 1.2 Hz, 1H), 8.08 (d, J = 8.8 Hz, 2H), 8.03 (dd, J = 8.0, 1.5 Hz, 1H), 7.65 (dd, J = 8.0, 7.2 Hz, 1H), 7.61-7.54 (m, 3H), 7.49 (dd, J = 7.2, 1.5 Hz, 1H), 7.45 (dd, J = 7.2, 1H), 7 = 8.4, 0.6 Hz, 2H), 7.41 (dd, J = 6.6, 1.2 Hz, 1H), 7.15 (ddd, J = 8.4, 6.6, 1.2 Hz, 2H), 6.87 (td, J= 7.5, 1.2 Hz, 2H), 6.48 (dd, J = 7.5, 1.2 Hz, 2H), 6.40 (dd, J = 7.5, 1.2 Hz, 2H), 6.10 (dd, J = 7.5, 1.2 1.2 Hz, 2H), 4.52 (s, 1H), 3.04 (s, 3H); ¹³C NMR (CDCl₃) δ 148.95, 148.57, 141.74, 140.16, 135.19, 132.90, 132.60, 132.08, 131.32, 130.79, 129.96, 129.57, 129.10, 128.66, 128.08, 127.19, 127.06, 126.36, 126.19, 125.19, 124.43, 119.41, 111.04, 43.07, 32.96; IR (KBr) 3059, 3037, 2960, 2926, 1589, 1503, 1477, 1456, 1359, 1322, 1273, 781, 744 cm⁻¹; LR-MS (EI) *m/z* (%): 500 (20), 499 (46), 498 (M⁺, bp), 497 (24), 496 (22), 484 (27), 483 (55), 249 (28), 194 (48); HR-MS (EI) found 498.2096, calcd. for C₃₇H₂₆N₂: 498.2096; Anal. Calcd (%) for C₃₇H₂₆N₂ + 0.25 H₂O: C 88.33, H 5.31, N 5.57; found C 88.40, H 5.55, N 5.35.

Compound **3a**-*d* was prepared from **5a** by using NaBD₄ in place of NaBH₄ following the same protocol to **3a** (2 steps, 41% yield): M.p. 270-271 °C (decomp.); ¹H NMR (300 MHz, CDCl₃) δ 8.16 (dd, *J* = 8.4, 1.2 Hz, 1H), 8.07 (d, *J* = 8.8 Hz, 2H), 8.03 (dd, *J* = 8.0, 1.5 Hz, 1H), 7.64 (dd, *J* = 8.0, 7.2 Hz, 1H), 7.60-7.53 (m, 3H), 7.49 (dd, *J* = 7.2, 1.5 Hz, 1H), 7.44 (d, *J* = 8.6 Hz, 2H), 7.40 (dd, *J* = 6.6, 1.2 Hz, 1H), 7.14 (ddd, *J* = 8.6, 6.6, 1.1 Hz, 2H), 6.86 (td, *J* = 7.5 1.5 Hz, 2H), 6.48 (d, *J* = 7.5 Hz, 2H), 6.40 (dt, *J* = 7.5, 1.1 Hz, 2H), 6.10 (dd, *J* = 7.5, 1.5 Hz, 2H), 3.04 (s,

3H); ¹³C NMR (CDCl₃) δ 148.91, 148.62, 141.78, 140.07, 135.22, 132.90, 132.56, 132.13, 131.30, 130.78, 129.92, 129.16, 128.66, 128.03, 127.19, 127.05, 126.36, 126.20, 125.24, 125.19, 124.44, 119.42, 111.05, 32.95; IR (KBr) 3056, 2958, 2926, 2872, 1625, 1605, 1589, 1556, 1539, 1514, 1459, 1439, 1343, 1301, 1261, 1209, 1200, 1160, 1144, 1129, 1045, 862, 783, 776, 746, 651, 638, 618, 601 cm⁻¹; LR-MS (EI) *m/z* (%): 500 (43), 499(M⁺, bp), 498 (20), 484 (29), 250 (27), 195 (30); HR-MS (EI) found 499.2163, calcd. for C₃₇H₂₅DN₂: 499.2158.

Preparation of 9-[6-(10-Methylacridan-9-yl)acenaphthen-5-yl]acridine 3b and 3b-d

Compound **3b** was prepared from **5b** (41.0 mg, 81 µmol) following the same protocol to **3a** [MeOTf (860 µL, 7.6 mmol) and NaBH₄ (144 mg, 3.8 µmol)] as a yellow solid (40 mg, 95%): M.p. 220-223 °C (decomp.); ¹H NMR (CDCl₃) δ 8.16 (dd, J = 8.6, 1.2 Hz, 2H), 7.65-7.58 (m, 4H), 7.46 (d, J = 7.2 Hz, 1H), 7.40 (d, J = 7.5 Hz, 1H), 7.36 (d, J = 7.2 Hz, 1H), 7.32 (d, J = 7.5 Hz, 1H), 7.24 (dd, J = 8.6, 7.2 Hz, 2H), 6.87 (tt, J = 8.1, 0.6 Hz, 2H), 6.54 (d, J = 8.1 Hz, 2H), 6.39 (t, J = 7.5 Hz, 2H), 6.07 (d, J = 7.5, 1.1 Hz, 2H), 4.35 (s, 1H), 3.60-3.48 (m, 4H), 3.10 (s, 3H); ¹³C NMR (CD₂Cl₂) δ 148.58 (br), 148.19, 145.58, 141.24, 139.97, 132.23, 132.69, 132.22, 129.77, 129.35 (br), 127.90, 127.70, 127.40, 127.28, 126.15, 125.61, 125.25, 120.47, 119.11, 118.31, 111.51, 41.80, 32.65, 30.05, 29.76; IR (KBr) 1606, 1590, 1461, 1346, 1266, 1131, 866, 752 cm⁻¹; LR-MS (EI) *m/z* (%): 525 (64), 524 (M⁺, bp), 523 (49), 510 (52), 509 (69), 328 (53), 262 (40), 194 (51), 179 (50); HR-MS (EI) found 524.2257, calcd. for C₃₉H₂₈N₂: 524.2252; Anal. Calcd. (%) for C₃₉H₂₈N₂ + 0.50 H₂O: C 86.32, H 5.57, N5.16; found C 86.06, H 5.43, N 5.12.

Compound **3b**-*d* was prepared from **5b** by using NaBD₄ in place of NaBH₄ following the same protocol to **3a** (2 steps, 77% yield): M.p. 233-235 °C (decomp.); ¹H NMR (300 MHz, CDCl₃) δ 8.14 (d, *J* = 8.6 Hz, 2H), 7.67-7.58 (m, 4H), 7.47 (d, *J* = 6.9 Hz, 1H), 7.41 (d, *J* = 7.2 Hz, 1H), 7.36 (d, *J* = 7.2 Hz, 1H), 7.32 (d, *J* = 6.9 Hz, 1H), 7.24 (m, 2H), 6.88 (td, *J* = 7.8, 1.5 Hz, 2H), 6.54 (d, *J* = 7.8 Hz, 2H), 6.40 (td, *J* = 7.8, 0.6 Hz, 2H), 6.08 (dd, *J* = 7.8, 1.5 Hz), 3.61-3.52 (m, 4H), 3.12 (s, 3H); ¹³C NMR (CDCl₃) δ 148.82, 148.74, 148.06, 145.46, 141.64, 140.19, 137.87, 133.11, 132.50, 130.67, 129.97, 129.38, 128.06, 127.76, 127.51, 126.23, 125.86, 125.26, 120.84, 119.40, 118.46, 111.35, 32.94, 30.32, 30.07; IR (KBr) 3070, 3037, 2924, 2854, 1605, 1592, 1514, 1470, 1435, 1345, 1278, 1269, 1132, 874, 757, 751 cm⁻¹; LR-MS (EI) *m*/*z* (%): 526 (50), 525 (M⁺, bp), 524 (28), 510 (28), 278 (39), 263 (36), 195 (28); HR-MS (EI) found 525.2318, calcd. for C₃₉H₂₇DN₂: 525.2314.

Preparation of 10-Methyl-9-[8-(10-methylacridan-9-yl)naphthalen-1-yl]acridinium Triflate 1a⁺OTf⁻ and 1a-*d*⁺OTf⁻

To a solution of **3a** (34.3 mg, 69 µmol) and 2,6-di-*tert*-butyl-4-methylpyridine (20.0 mg, 97 µmol) in dry benzene (10 mL) was added MeOTf (100 µL, 884 µmol). The mixture was stirred for 80 min at 23 °C under argon, and the resulting black precipitates were filtered. The insoluble material was washed with ether to give **1a⁺OTf**⁻ (35.5mg, 78%) as a dark orange solid. Single crystals for the X-ray analysis were obtained by recrystallizing from acetone: M.p. 193-195°C; ¹H NMR (300 MHz, acetone- d_6 , -30 °C), 8.46 (d, J = 8.1 Hz, 2H), 7.87 (t, J = 7.5 Hz, 2H), 7.72-7.53 (m, 10H), 7.08 (t, J = 7.5 Hz, 4H), 6.98 (d, J = 8.1 Hz, 4H), 4.11 (s, 1H), 4.06 (s, 6H); IR (KBr) 3107, 3034, 2919, 1609, 1589, 1579, 1549, 1479, 1461, 1342, 1275, 1262, 1224, 1193, 1160, 1030, 774, 753, 713, 691, 655, 637, 629, 517 cm⁻¹; LR-MS (FAB) m/z (%): 515 (22), 514 (44), 513 (M⁺, bp), 194 (51); HR-MS (FAB) found 513.2324, calcd. for C₃₈H₂₉N₂: 513.2325; Anal. Calcd (%) for C₃₉H₂₉F₃N₂O₃S + 0.33C₆H₆: C 71.50, H 4.54, N 4.07; found: C 71.24, H 4.79, N 3.92.

Salt **1a**-*d*⁺OTf⁻ was prepared from **3a**-*d* with MeOTf following the same protocol to **1a**⁺OTf⁻ (68% yield): M.p. 193-194 °C (decomp.); ¹H NMR (300 MHz, acetone-*d*₆, 20 °C) δ 8.46 (d, *J* = 8.3 Hz, 2H), 7.89 (br t, *J* = 7.5 Hz, 2H), 7.70-7.50 (m, 10H), 7.08 (br. t, *J* = 7.0 Hz, 4H), 7.00 (d, *J* = 8.1 Hz, 4H), 4.07 (s, 6H); ²D NMR (77 MHz, acetone-*d*₆, -30 °C) δ 4.10 (br. s); IR (KBr) 3069, 3034, 1609, 1589, 1579, 1549, 1461, 1385, 1341, 1276, 1262, 1224, 1194, 1162, 1030, 753, 713, 691, 654, 637, 626, 602, 573, 517 cm⁻¹; LR-MS (FAB) *m/z* (%): 517 (32), 516 (26), 515 (85), 514 (M⁺, bp), 513 (29), 195 (48), 136 (27); HR-MS (FAB) found 514.2388, calcd. for C₃₈H₂₈DN₂: 514.2392.

Preparation of 10-Methyl-9-[6-(10-methylacridan-9-yl)acenaphthen-5-yl]acridinium Triflate 1b⁺OTf⁻ and 1b-*d*⁺OTf⁻

To a solution of **3b** (28.5 mg, 54 µmol) and 2,6-di-*tert*-butyl-4-methylpyridine (11.1 mg, 54 µmol) in dry benzene (10 mL) was MeOTf (90 µL, 823 µmol) and stirred for 60 min at 23 °C under argon, and the resulting black precipitates were filtered. The insoluble material was washed with ether to give **1b**⁺**OTf**⁻ (25.4 mg, 68%) as a dark brown solid. Single crystals for the X-ray analysis were obtained by recrystallizing from CHCl₃: M.p. 248-249 °C; ¹H NMR (300 MHz, acetone- d_6 , -10 °C) δ 7.81-7.57 (br s, 8H), 7.64 (d, J = 7.0 Hz, 2H), 7.50 (d, J = 7.0 Hz, 2H), 7.18-6.94 (br s, 8H), 4.10 (br s, 6H), 4.00 (s, 1H), 3.65 (s, 4H); ¹H NMR (300 MHz, acetone- d_6 . 85 °C) δ 8.98 (d, J = 9.4 Hz, 2H), 8.55 (br. dd, J = 9.4, 7.3 Hz, 2H), 8.15(d, J = 8.6 Hz, 2H), 7.99 (br. dd, J = 8.6, 7.3 Hz, 2H), 7.78 (d, J = 7.2 Hz, 1H), 7.68 (d, J = 7.2 Hz, 1H), 7.53 (d, J = 7.3 Hz, 1H), 7.03 (br. dd, J = 8.3, 7.3 Hz, 2H), 6.82 (d, J = 8.3 Hz, 2H), 6.50 (t, J = 7.3 Hz, 2H), 5.96 (d, J = 7.3 Hz, 2H), 5.16 (s, 3H), 4.19 (s, 1H), 3.66 (d, J = 8.3 Hz, 2H),

4H), 3.25 (s, 3H); IR (KBr) 3111, 3070, 3037, 2921, 2888, 1607, 1590, 1577, 1547, 1462, 1385, 1343, 1277, 1262, 1224, 1187, 1155, 1045, 1032, 866, 752, 638, 574, 517 cm⁻¹; LR-MS (FAB) m/z (%): 540 (45), 539 (M⁺, bp), 194 (51); HR-MS (FAB) found 539.2484, calcd. for C₄₀H₃₁N₂: 539.2482.; Anal. calcd(%) for C₃₉H₂₉F₃N₂O₃S + 0.50H₂O C 70.57, H 4.62, N 4.01; found C 70.69, H 4.61, N 4.09.

Salt **1b**-*d*⁺OTf⁻ was prepared from **3b**-*d* with MeOTf following the same protocol to **1b**⁺OTf⁻ (63% yield): M.p. 265-267 °C (decomp.); ¹H NMR (300 MHz, acetone-*d*₆, -85 °C) δ 8.98 (d, *J* = 9.4 Hz, 2H), 8.55 (t, *J* = 8.0 Hz, 2H), 8.17 (d, *J* = 8.6 Hz, 2H), 7.99 (t, *J* = 8.0, 2H), 7.78 (d, *J* = 7.2 Hz, 1H), 7.68 (d, *J* = 7.2 Hz, 1H), 7.53 (d, *J* = 7.3 Hz, 1H), 7.45 (d, *J* = 7.3 Hz, 1H), 7.03 (t, *J* = 7.7 Hz, 2H), 6.82 (d, *J* = 8.3 Hz, 2H), 6.50 (t, *J* = 7.3 Hz, 2H), 5.96 (d, *J* = 7.2 Hz, 2H), 5.16 (s, 3H), 3.67 (br s, 4H), 3.25 (s, 3H); ²D NMR (77 MHz, acetone-*d*₆, -10 °C) δ 3.99 (br. s); IR (KBr) 3113, 3070, 3037, 2932, 2883, 1607, 1591, 1577, 1547, 1464, 1344, 1279, 1262, 1224, 1189, 1157, 1029, 874, 751, 636, 516 cm⁻¹; LR-MS (FAB) *m*/*z* (%): 541 (45), 514 (M⁺, bp), 195 (47); HR-MS (FAB) found 540.2568, calcd. for C₄₀H₃₀DN₂: 540.2549.

X-ray Analyses

Crystal data for $1a^+OTf^-$ acetone: Crystals were obtained by recrystallizing from acetone. C₃₉H₂₉N₂•CO₃F₃S•C₃H₆O, *M* 720.80, dark orange plates, 0.60 × 0.03 × 0.02 mm³, triclinic *P*1bar, *a* = 8.407(4) Å, *b* = 13.578(7) Å, *c* = 15.815(8) Å, α = 72.28(2)°, β = 80.88(2)°, γ = 89.70(3)°, *V* = 1695.9(14) Å³, $\rho(Z = 2) = 1.411$ g cm⁻¹. A total of 6566 unique data ($2\theta_{max} = 55^{\circ}$) were measured at *T* = 133 K by a Rigaku Mercury CCD apparatus (Mo K α radiation, λ = 0.71070 Å). Numerical absorption correction was applied (μ = 1.60 cm⁻¹). The structure was solved by the Patterson method and the following expansion (DIRDIF99) and refined by the full-matrix leastsquares method on *F*² with anisotropic temperature factors for non-hydrogen atoms. All the hydrogen atoms except for the methine proton (H1) at the C11 carbon were located at the calculated positions and refined with riding. The methine proton (H1) at the C11 carbon was located in the D map and refined with isotropic temperature factors. The final *R1* and *wR2* values are 0.081 (I > 2 σ I) and 0.197 (all data) for 6555 reflections and 508 parameters. Estimated standard deviations are 0.004-0.01 Å for bond lengths and 0.3-0.7° for bond angles, respectively. Crystal data for **1b**⁺OTf•chloroform: Crystals were obtained by recrystallizing from chloroform. C₄₁H₃₁N₂ •CO₃F₃S•CHCl₃, *M* 808.14, dark brown plates, 0.60 × 0.20 × 0.02 mm³, triclinic *P*1bar, a = 8.208(2) Å, b = 14.152(4) Å, c = 16.716(5) Å, $\alpha = 109.750(5)^{\circ}$, $\beta = 97.638(5)^{\circ}$, $\gamma = 90.402(3)^{\circ}$, V = 1808.4(9) Å³, $\rho(Z = 2) = 1.484$ g cm⁻¹. A total of 7678 unique data ($2\theta_{max} = 55^{\circ}$) were measured at T = 103 K by a Rigaku Mercury CCD apparatus (Mo K α radiation, $\lambda = 0.71070$ Å). Numerical absorption correction was applied ($\mu = 3.71$ cm⁻¹). The structure was solved by the direct method (SIR97) and refined by the full-matrix least-squares method on F^2 with anisotropic temperature factors for non-hydrogen atoms. All the hydrogen atoms except for the methine proton (H1) at the C13 carbon was located in the D map and refined with riding. The methine proton (H1) at the C13 carbon was located in the D map and refined with isotropic temperature factors. The final *R1* and *wR2* values are 0.054 (I > 2σ I) and 0.128 (all data) for 7678 reflections and 522 parameters. Estimated standard deviations are 0.002-0.005 Å for bond lengths and 0.1-0.3° for bond angles, respectively.

Crystal data for **3a**: Crystals were obtained by recrystallizing from CH₂Cl₂/hexane. C₃₇H₂₆N₂, *M* 498.63, orange prism, 0.80 × 0.15 × 0.10 mm³, monoclinic *C*c, *a* = 9.057(2) Å, *b* = 19.794(3) Å, *c* = 14.905(3) Å, β = 104.157(3)°, *V* = 2590.8(7) Å³, ρ (*Z* = 4) = 1.278 g cm⁻¹. A total of 5151 unique data ($2\theta_{max} = 55^{\circ}$) were measured at *T* = 103 K by a Rigaku Mercury CCD apparatus (Mo K α radiation, λ = 0.71070 Å). Numerical absorption correction was applied (μ = 3.71 cm⁻¹). The structure was solved by the direct method (SIR97) and refined by the full-matrix least-squares method on *F*² with anisotropic temperature factors for non-hydrogen atoms. All the hydrogen atoms except for the methine proton (H1) at the C24 carbon were located at the calculated positions and refined with riding. The methine proton (H1) at the C24 carbon was located in the D map and refined with isotropic temperature factors. The final *R1* and *wR2* values are 0.042 (I > 2σ I) and 0.096 (all data) for 5151 reflections and 382 parameters. Estimated standard deviations are 0.002-0.004 Å for bond lengths and 0.2° for bond angles, respectively.

Computational Methods

The DFT calculations were performed with the Gaussian 98 program package.⁶ The geometries of the compounds were optimized by using the B3LYP method in combination with the 6-31G* basis set.

Redox Potential Measurements

Redox potentials (E^{ox} and E^{red}) were measured by cyclic voltammetry in dry MeCN containing 0.1 mol dm⁻³ Et₄NClO₄ as a supporting electrolyte. Ferrocene undergoes 1e-oxidation at +0.38 V under the same conditions. All of the values shown in the text are in E/V vs SCE measured at the scan rate of 100 mV s⁻¹. A Pt disk electrode was used as the working and counter electrodes, respectively. The working electrode was polished using a water suspension of Al₂O₃ (0.05 µm) before use. The irreversible half-wave potentials were estimated from the anodic peak potentials (E^{pa}) as $E^{\text{ox}} = E^{\text{pa}}$ -0.03 or the cathodic peak potentials (E^{pc}) as $E^{\text{red}} = E^{\text{pa}}$ +0.03.

•

VT-NMR data of $1b^+OTf^-$ salt in CD_2Cl_2

Figure S1. VT-NMR spectra of $\mathbf{1b}^+$ OTf⁻ at a) 0 °C, b) -40° C, c) -60° C, d) -70° C, and e) -90° C in CD₂Cl₂

Figure S2. ORTEP drawing of $1a^+$ in $1a^+$ OTf⁻•acetone solvate determined by X-ray analysis at 133 K: (a) top view and (b) side view.

Figure S3. ORTEP drawing of $\mathbf{1b}^+$ in $\mathbf{1b}^+$ OTf⁻•chloroform solvate determined by X-ray analysis at 103 K: (a) top view and (b) side view.

Figure S4. ORTEP drawing of **3a** determined by X-ray analysis at 113 K: (a) top view and (b) side view.

Figure S5. (a) HOMO (-7.4066 eV) and (b) LUMO (-5.9623 eV) of $1a^+$ calculated by B3LYP/6-31G*.

Figure S6. (a) HOMO (-7.2908 eV) and (b) LUMO (-5.9265 eV) of **1b**⁺ calculated by B3LYP/6-31G*.

Figure S7. UV/Vis spectrum of $1a^+OTf^-$ in CH₃CN. Inset: a magnified spectra in a long wavelength absorption band.

Figure S8. UV/Vis spectrum of $\mathbf{1b}^+$ OTf⁻ in CH₃CN. Inset: a magnified spectra in a long wavelength absorption band.

Optimized geometry of 1a⁺ at B3LYP/6-31G(d)

B3LYP/6-31G(d) Opt Pop=Full FChk=All

Stoichiometry C38H29N2(1+) Framework group C1[X(C38H29N2)] Deg. of freedom 201 SCF Done: E(RB+HF-LYP) = -1574.83945271A.U. Value Threshold Converged? Item 0.000076 Maximum Force 0.000450 YES RMS Force 0.000012 0.000300 YES Maximum Displacement 0.000120 0.001800 YES Displacement 0.000027 0.001200 RMS YES Predicted change in Energy=-3.433154D-07 Optimization completed. -- Stationary point found. _____ Coordinates (Angstroms) Center Atomic Atomic Number Number Туре Х Y Ζ _____ _ _ _ _ _ _ _ _ _ -0.237043 6 0 -4.025852 0.001659 1 2 0 6 -4.877727 0.898987 -0.005447 3 6 0 -4.609109 -1.529999 0.008997 4 6 0 -3.822223 -2.654812 0.015231 5 б 0 -2.421172 -2.516164 0.013797 6 б 0 -4.365063 2.170768 -0.013099 7 6 0 -1.791499 -1.282046 0.007043 0.001117 -2.587479 -0.084355 8 б 0 0.003761 9 6 0 -0.269043 -1.283622 10 б 0 -2.088448 1.271553 -0.005749 11 б 0 -2.966593 2.345605 -0.013042 12 б 0 -0.646499 1.691628 -0.004016 13 б 0 1.989072 0.009156 1.219143 6 0 14 0.013515 1.985217 -1.225719

15	6	0	0.353265	-1.887391	-1.249909
15	6	0	0.359632	-1.882758	1.256483
10	6	0	-0.589526	1.691431	-2.482771
18	6	0	0.067805	1.934588	-3.663625
19	6	0	1.371210	2.473327	-3.632230
	6				
20		0	1.990295	2.786860	-2.438332
21	6	0	1.323481	2.570303	-1.209194
22	6	0	-0.330610	-2.031726	2.463064
23	6	0	0.306535	-2.486316	3.616730
24	6	0	1.662991	-2.804838	3.564946
25	6	0	2.372783	-2.674475	2.373847
26	6	0	1.735456	-2.206487	1.211545
27	6	0	-0.343249	-2.041059	-2.452281
28	6	0	0.288025	-2.499804	-3.607527
29	6	0	1.644886	-2.817530	-3.561666
30	6	0	2.360880	-2.682551	-2.374788
31	6	0	1.729354	-2.210804	-1.210842
32	7	0	2.432659	-2.059893	-0.001680
33	6	0	1.319015	2.574348	1.205364
34	6	0	1.981411	2.795469	2.436078
35	6	0	1.358172	2.485837	3.628832
36	6	0	0.054826	1.946786	3.657355
37	6	0	-0.598290	1.699470	2.475021
38	7	0	1.904045	2.912053	-0.001414
39	6	0	3.156083	3.690855	0.000087
40	6	0	3.884590	-2.164918	-0.005358
41	1	0	-5.952145	0.736546	-0.004963
42	1	0	-5.692794	-1.608691	0.009355
43	1	0	-4.267414	-3.645048	0.020769
44	1	0	-1.802503	-3.409116	0.017780
45	1	0	-5.016989	3.038582	-0.018754
46	1	0	0.056821	-0.230872	0.001048
47	1	0	-2.564093	3.355210	-0.018246
48	1	0	-1.584484	1.263317	-2.484210
49	1	0	-0.402181	1.701222	-4.612961
50	1	0	1.907307	2.640586	-4.561558
51	1	0	3.001957	3.167826	-2.463956
52	1	0	-1.387739	-1.789920	2.497286
53	1	0	-0.252528	-2.596893	4.540880
54	1	0	2.173574	-3.177192	4.448558
55	1	0	3.414660	-2.970859	2.348013
56	1	0	-1.400581	-1.799544	-2.481881
57	1	0	-0.275827	-2.614233	-4.528291
58	1	0	2.150997	-3.192821	-4.446612
59	1	0	3.403077	-2.978110	-2.353415
60	1	0	2.992769	3.177075	2.463858
61	1	0	1.890826	2.656536	4.559511
62	1	0	-0.418508	1.716573	4.605802
63	1	0	-1.593121	1.271079	2.474436
64	1	0	3.175753	4.340400	0.872227
65	1	0	3.183688	4.331578	-0.878217
66	1	0	4.031644	3.034178	0.007333
67	1	0	4.282952	-1.658515	0.876222
68	1	0	4.278323	-1.660283	-0.890139
69	1	0	4.243734	-3.204182	-0.005246

Optimized geometry of 1b⁺ at B3LYP/6-31G(d)

B3LYP/6-31G(d) Opt Pop=Full FChk=All

```
Stoichiometry
                 C40H31N2(1+)
Framework group C1[X(C40H31N2)]
Deg. of freedom 213
SCF Done: E(RB+HF-LYP) = -1652.26840660
                                              A.U.
                            Value
                                     Threshold Converged?
         Item
                          0.00009
Maximum Force
                                       0.000450
                                                     YES
RMS
        Force
                          0.000001
                                       0.000300
                                                     YES
Maximum Displacement
                          0.000519
                                       0.001800
                                                     YES
        Displacement
                          0.000098
                                       0.001200
RMS
                                                     YES
Predicted change in Energy=-2.509643D-09
Optimization completed.
    -- Stationary point found.
                                               ------
          Atomic
                     Atomic
                                       Coordinates (Angstroms)
Center
                                      Х
                                          Y
Number
          Number
                    Туре
                                                            Ζ
  _ _ _ _ _
                                                 _ _ _ _ _ _
   1
             6
                          0
                                  3.644807
                                           0.027913 -0.000205
   2
                          0
             6
                                  4.503387
                                            1.152707
                                                      -0.000074
   3
             6
                          0
                                            -1.178077
                                                       -0.000351
                                  4.382219
   4
                          0
                                            -2.371486
                                                       -0.000371
             6
                                  3.697839
   5
             б
                          0
                                            -2.336763
                                                       -0.000241
                                  2.284985
   6
             6
                          0
                                  3.954523
                                             2.413104
                                                        0.000163
   7
             6
                          0
                                  5.947051
                                             0.690809
                                                        -0.000148
                                            -1.166156
                                                       -0.000130
   8
             6
                          0
                                  1.533247
                                                       -0.000132
                                  2.220949
   9
             б
                         0
                                            0.093625
  10
                         0
                                           -0.869887
             6
                                  5.866222
                                                      -0.000447
                         0
             6
  11
                                  0.016189 -1.288942 0.000063
                         0
  12
             6
                                  1.683526 1.433643 0.000039
  13
             б
                          0
                                  2.544682 2.527810 0.000226
  14
             6
                          0
                                  0.228422 1.792138 -0.000043
```

15 16 17 18 19 20 21 22 23 24 25 26	6 6 6 6 6 6 6 6 6 6 6 6	0 0 0 0 0 0 0 0 0	$\begin{array}{c} -0.450101 \\ -0.450091 \\ -0.562323 \\ -0.562648 \\ 0.168952 \\ -0.501707 \\ -1.833318 \\ -2.469239 \\ -1.791691 \end{array}$	2.036624 2.037123 -1.940711 -1.940755 1.772906 1.972825 2.439090 2.722702	-1.221170 1.220984 1.252645 -1.252341 2.477351 3.658342 3.628736
17 18 19 20 21 22 23 24 25 26	6 6 6 6 6 6 6 6 6	0 0 0 0 0 0 0 0	-0.562323 -0.562648 0.168952 -0.501707 -1.833318 -2.469239	-1.940711 -1.940755 1.772906 1.972825 2.439090	1.252645 -1.252341 2.477351 3.658342 3.628736
18 19 20 21 22 23 24 25 26	6 6 6 6 6 6 6 6	0 0 0 0 0 0 0	-0.562648 0.168952 -0.501707 -1.833318 -2.469239	-1.940755 1.772906 1.972825 2.439090	-1.252341 2.477351 3.658342 3.628736
19 20 21 22 23 24 25 26	6 6 6 6 6 6 6 6	0 0 0 0 0 0	0.168952 -0.501707 -1.833318 -2.469239	1.772906 1.972825 2.439090	2.477351 3.658342 3.628736
20 21 22 23 24 25 26	6 6 6 6 6 6 6 6	0 0 0 0	-0.501707 -1.833318 -2.469239	1.972825 2.439090	3.658342 3.628736
20 21 22 23 24 25 26	6 6 6 6 6 6	0 0 0 0	-0.501707 -1.833318 -2.469239	1.972825 2.439090	3.658342 3.628736
21 22 23 24 25 26	6 6 6 6 6	0 0 0 0	-1.833318 -2.469239	2.439090	3.628736
22 23 24 25 26	6 6 6 6 6	0 0 0	-2.469239		
23 24 25 26	6 6 6	0 0		2./22/02	2.436489
24 25 26	6 6 6	0	-1./91691		
25 26	6 6			2.546101	1.206523
26	6		0.142176	-2.052635	-2.453596
		0	-0.457315	-2.558777	-3.606723
		0	-1.788959	-2.967852	-3.558536
27	6	0	-2.511613	-2.877309	-2.370974
28	6	0	-1.912601	-2.358482	-1.210416
29	6	0	0.142779	-2.052495	2.453744
30	6	0	-0.456421	-2.558639	3.607027
31	6	0	-1.788029	-2.967856	3.559148
32	6	0	-2.510961	-2.877389	2.371745
33	6	0	-1.912260	-2.358507	1.211060
34	7	0	-2.622519	-2.250220	0.000421
35	6	0	-1.791641	2.545721	-1.206840
36		0	-2.469187	2.722184	-2.436822
	6				
37	6	0	-1.833327	2.438147	-3.629007
38	6	0	-0.501799	1.971648	-3.658495
39	6	0	0.168884	1.771989	-2.477467
40	7	0	-2.391533	2.854326	-0.000217
41	6	0	-3.687135	3.558657	-0.000606
42	6	0	-4.063151	-2.455870	0.000657
43	1	0	4.212143	-3.328520	-0.000462
44	1	0	1.747005	-3.280934	-0.000219
45	1	0	4.565559	3.311095	0.000305
46	1	0	6.483886	1.069470	0.877305
47	1	0	6.483941	1.069815	-0.877418
48	1	0	6.362924	-1.299957	0.876908
49	1	0	6.362689	-1.299573	-0.878127
50	1	0	-0.390693	-0.264593	0.000089
51	1	0	2.111844	3.525354	0.000389
52	1	0	1.186258	1.401184	2.475465
		0			
53	1		-0.020525	1.760976	4.607143
54	1	0	-2.377678	2.572239	4.558796
55	1	0	-3.500534	3.046821	2.463490
56	1	0	1.180433	-1.739079	-2.484342
57	1	0	0.112386	-2.638047	-4.527687
58	1	0	-2.269106	-3.379985	-4.441623
59	1	0	-3.531276	-3.243138	-2.346683
60	1	0	1.181019	-1.738856	2.484255
61	1	0	0.113487	-2.637780	4.527873
62	1	0	-2.267946	-3.380030	4.442339
63	1	0	-3.530586	-3.243341	2.347660
64	1	0	-3.500386	3.046602	-2.463835
65	1	0	-2.377654	2.571186	-4.559102
66	1	0	-0.020665	1.759475	-4.607248
67	1	0	1.186161	1.400186	-2.475507
	1			4.201931	-0.875449
68 60		0	-3.747284		
69 70	1	0	-3.748988	4.200037	0.875455
70	1	0	-4.522396	2.851461	-0.002157
71	1	0	-4.493597	-1.979229	-0.882660
72	1	0	-4.493277	-1.979305	0.884166
73	1	0	-4.350714	-3.517458	0.000630

References

- a) Hodgson, H. H.; Whitehurst, J. S. J. Chem. Soc. 1948, 80. b) Seyferth, D.; Vick, S. C. J. Organomet. Chem. 1977, 141, 173. c) Vyskočil, Š.; Meca, L.; Tišlerová, I.; Císařová, I.; Polášek, M.; Harutyunyan, S. R.; Belokon, Y. N.; Stead, R. M. J.; Farrugia, L.; Lockhart, S. C.; Mitchell, W. L.; Kočovský, P. Chem. Eur. J. 2002, 8, 4633.
- (2) a) N. Tanaka, T. Kasai, *Bull. Chem. Soc. Jpn.* **1981**, *54*, 3020. b) Neudorff, W. D.; Lentz, D.; Anibarro, M.; Schlüter, A. D. Chem. Eur. J. **2003**, *9*, 2745.
- (3) Acheson, R. M.; Adcock, B.; Glover, G. M.; Sutton, L. E. J. Chem. Soc. 1960, 3367.
- (4) Kawai, H.; Takeda, T.; Fujiwara, K.; Suzuki, T. Tetrahedron Lett. 2004, 45, 8289.
- (5) Wolf, C.; Mei, X. J. Am. Chem. Soc. 2003, 125, 10651.
- (6) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian, Pittsburg, PA, 1998.