Supporting Information

Calix[4]pyrrole Schiff base macrocycles. Novel binucleating ligands for Cu(I) and Cu(II).

Jacqueline M. Veauthier, Elisa Tomat, Vincent M. Lynch, and Jonathan L. Sessler* and Utkir Mirsaidov and John T. Markert*

Page

I. Magnetic data for complex **4**.

S2

I. Magnetic Measurements for complexes 4 and 5.

Evans Method. Solution magnetic measurements were made using the Evans method. Solutions of the metal complex were prepared in $CDCl_3$ and placed in 5 mm NMR tubes, while pure $CDCl_3$ was placed in a concentric capillary tubes within the NMR tubes. Calculations of the magnetic moments (μ) were based on the difference in chemical shift observed (400.269 MHz) for the residual CHCl₃ signal in neat solvent and in the solution containing the paramagnetic species.

Complex 4, [C₃₈H₃₂N₈)Cu^{II}₂].

- 1) Concentration of **4** = 0.0066 M, $\Delta \delta$ = 19.2129 Hz, μ_{eff} = 2.06 μ_B
- 2) Concentration of 4 = 0.0026 M, $\Delta \delta = 6.8046$ Hz, $\mu_{eff} = 1.95 \mu_B$

Complex 5, $[(C_{42}H_{40}N_8O_4)Cu^{II}_2]$.

- 1) Concentration of **5** = 0.0027 M, $\Delta \delta$ = 6.8046 Hz, μ_{eff} = 1.92 μ_B
- 2) Concentration of **5** = 0.0032 M, $\Delta \delta$ = 8.8059 Hz, μ_{eff} = 1.99 μ_B

SQUID. Solid State magnetic susceptibilities were measured using a Quantum Design MPMS SQUID system in the temperature range of 4-300 K in a field of 1 kOE. The crystalline sample was placed inside a gelatin capsule. The susceptibility contribution from the capsule was measured separately and subtracted from the data.

Complex 3, [C₃₈H₃₂N₈)Cu^{II}₂]

The molar magnetic susceptibility data for 3 were fitted to a modified Bleaney-Bowers equation:

$$\chi_{molar} = (1-p)\frac{2Ng^2\beta^2}{kT} \left(\frac{1}{3+e^{\frac{-J}{kT}}}\right) + p\frac{2Ng^2\beta^2}{3kT}S(S+1) + \chi_0$$

Where,

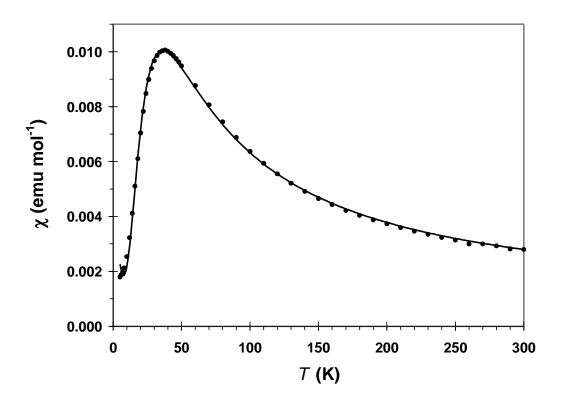
p = molar fraction of paramagnetic impurity

N = Avogadro's Number

g = g-factor

 β = Bohr magneton

k = Boltzmann constant


J = exchange coupling constant

S = spin quantum number

 χ_0 = temperature independent susceptibility (sum of a negative contribution from Langevin diamagnetism and a positive contribution from Van Vleck paramagnetism).

A reasonable fit (R = $\sum_i [(\chi_{obs})_i - (\chi_{calc})_i]^2 / \sum_i (\chi_{obs})^2 = 0.00037$) was obtained using the following parameters:

 $\begin{array}{l} p = 0.0118 \pm 0.0007 \\ g = 1.9 \pm 0.1 \\ J = -41.0 \pm 0.2 \ cm^{-1} \\ S = \frac{1}{2} \\ \chi_0 = 0.00065 \pm 0.00005 \end{array}$

