Supporting Information:

Erwin Reisner, Vladimir B. Arion,* Anna Eichinger, Norbert Kandler, Gerald Giester, Armando J. L. Pombeiro,* and Bernhard K. Keppler*

Tuning of Redox Properties for the Design of Ruthenium Anticancer Drugs: Part 2. Syntheses, Crystal Structures and Electrochemistry of Potentially Antitumor $[Ru^{III/II}Cl_{6-n}(azole)_n]^z$ (n = 3,4,6) Complexes

S1–S2: Geometrical Details of complexes B and C studied by X-ray diffraction methods

S3–S7: Selected Bond Distances and Angles for B and C

S8: UV-vis Absorption Bands for **B** and **C** in Methanol at 298K

S9–S10: Figures showing ORTEP views of B1b, B7b, packing details of B7, C2, C3 and C6

S11: UV-vis Absorption Bands against $E_{\frac{1}{2}}$ (Ru^{III}/Ru^{II}) for **B** and **C**.

S12: The Electronic Absorption Spectra of C2 and C6 in 0.2 M phosphate buffer at pH 7.0.

Crystal structures. Complex **B1**. The dihedral angles of mutually *trans* butylimidazole ligands are -30.6 and -9.9° in **B1a** and **B1b**, correspondingly. The butylimidazol ligands coordinated to ruthenium via N10 and N19 in **B1a** are tilted relative to the mean plane through Ru1N10N19Cl1Cl3, the corresponding angles being at 36.7 and 6.3°. In **B1b** the dihedral angles between imidazole rings bonded to ruthenium via N37 and N46, and the mean plane through Ru2N37N46Cl4Cl6 are at 45.2 and 35.6°, respectively. The imidazole rings ligated to ruthenium via N1 and N28 nearly bisect the angles Cl3Ru1N10 and Cl6Ru2N46, the torsion angles $\Theta_{C2N1Ru1Cl3}$ and $\Theta_{C29N28Ru2Cl6}$ being at -38.60(15) and $33.90(15)^{\circ}$, correspondingly.

Complex **B4**. The bond angles at the ruthenium center have almost idealized values; the largest deviations from 90 and 180° were found for Cl3–Ru–Cl2 at 92.67(3)° and N4–Ru–N10 at 176.94(7)°. The triazole ligands coordinated *via* N4 and N10 are tilted relative to the mean plane through RuN4N10Cl1Cl3, the corresponding angles being at 48.7 and 14.5°, while the triazole ligand ligated *via* N16 nearly bisects the angle Cl1–Ru–N4, the torsion angle $\Theta_{Cl1RuN16Cl5}$ being at 37.87(19)°.

Complex **B5**. The 4-methylpyrazole ligands linked to the Ru atom *via* N1 and N7 are nearly coplanar to the mean planes through RuCl1Cl2Cl3N1 and RuCl2N1N7N13, correspondingly. The torsion angles

 $\Theta_{N1RuN7C11}$ and $\Theta_{C13RuN1N2}$ are at -4.25(18) and 2.31(15)°, respectively. The third azole ring ligated to Ru atom *via* N13 is tilted to the RuCl2N7N1N13 mean plane by ~ 26°.

Complex **B6**·H₂O. The triazole ligand ligated *via* N2 bisects the angle Cl1–Ru–N3, the torsion angle $\Theta_{Cl1RuN2C3}$ being at -45.44(15)°. The other two torsion angles $\Theta_{Cl3RuN7N6}$ and $\Theta_{Cl3RuN12C13}$ indicating the position of triazole ligands coordinated *via* N7 and N12 are at 48.38(12) and -48.52(15)°, respectively.

Complex **B7**. The pyrazole ligands *trans* to each other are almost coplanar in both cases, the corresponding dihedral angle being at 1.7 (**B7a**) and 3.8° (**B7b**). Their position in respect to the Ru1N6N11Cl1Cl3 and Ru2N21N26Cl4Cl6 can be defined by torsion angles $\Theta_{N12N11Ru1Cl3}$ at -29.1(2) and $\Theta_{N7N6Ru1Cl3}$ at 30.14(18)° in molecule **B7a** and $\Theta_{Cl6Ru2N21C25}$ at 156.2(2) and $\Theta_{Cl6Ru2N26C30}$ at -154.6(2)° in **B7b**. The positions of the pyrazole rings bonded to ruthenium through N1 and N16 in respect to Ru1Cl1Cl2Cl3N1 and Ru2Cl4Cl5Cl6N16 are defined by the torsion angles $\Theta_{N2N1Ru1Cl3}$ at -18.63(18)° and $\Theta_{N17N16Ru2Cl6}$ at 40.75(18)°.

Complex C2. The orientation of the imidazole rings with respect to the Ru–Cl1 vector is almost staggered, the $\Theta_{C3N1RuCl1}$ and $\Theta_{C6N3RuCl1}$ torsion angles being at 45.63(11) and 50.48(11)°.

Complex C3·CH₃OH·(C₂H₅)₂O. The orientation of benzimidazole ligands in respect to Ru–Cl1 and Ru–Cl2 vectors is very similar, tending to minimize steric crowding between them and is determined by torsion angles $\Theta_{C1N1RuCl1}$ at -41.35(13), $\Theta_{C8N3RuCl1}$ at -44.66(12), $\Theta_{C21N5RuCl2}$ at -45.79(14) and $\Theta_{C28N7RuCl2}$ at -45.41(14)°.

Complex C6a·2H₂O. The orientation of the Htrz planes with respect to the Ru–Cl vector is almost staggered, the $\Theta_{C3N2RuCl}$ and $\Theta_{N6N7RuCl}$ torsion angles being at 31.8(3) and 30.3(3)°, respectively.

Complex **C7**. The *trans*-coordinated pyrazole ligands are parallel to each other. The dihedral angle between them is small and does not exceed 1°. The N–N bonds in *trans*-coordinated ligands are also *trans* to each other. The orientation of pyrazole ligands in respect to Ru–Cl1 and Ru–Cl2 vectors is described by the torsion angles $\Theta_{C5N1Ru1Cl1}$ at -17.61(16), $\Theta_{N7N6Ru1Cl1}$ at 24.20(13), $\Theta_{N12N11Ru2Cl2}$ at -33.33(14) and $\Theta_{N17-N16-Ru2-Cl2}$ at $21.67(14)^{\circ}$. Both the coordinated chloro ligands and the chloride counter anions are involved in hydrogen bonding interactions.

Atom1–Atom2	B1a	Atom1–Atom2	B1b
Ru1–N1	2.0623(15)	Ru2-N28	2.0670(15)
Ru1–N10	2.0768(14)	Ru2–N37	2.0763(15)
Ru1–N19	2.0886(14)	Ru2–N46	2.0744(15)
Ru1–Cl1	2.3602(6)	Ru2–Cl4	2.3597(6)
Ru1–Cl2	2.3696(6)	Ru2–Cl5	2.3800(6)
Ru1–Cl3	2.3603(6)	Ru2–Cl6	2.3522(6)
Atom1-Atom2-Atom3		Atom1-Atom2-Atom3	
N10-Ru1-N19	176.88(6)	N37-Ru2-N46	178.02(6)
N1-Ru1-Cl2	178.55(4)	N28-Ru2-C15	177.94(4)
Cl1-Ru1-Cl3	178.343(15)	Cl4–Ru2–Cl6	178.389(16)

Table S1. Selected Bond Distances (Å) and Angles (°) in Two Independent Molecules of B1

Table S2. Selected Interatomic Bond Distances (Å) and Angles (°) in B4

Atom1–Atom2	Å	Atom1–Atom2	Å
Ru1–N4	2.0691(18)	Ru1–Cl1	2.3627(7)
Ru1–N10	2.0864(18)	Ru1–Cl2	2.3541(8)
Ru1–N16	2.0748(19)	Ru1–Cl3	2.3395(6)
Atom1-Atom2-Atom3	deg	Atom1-Atom2-Atom3	deg
N4-Ru1-N10	176.94(7)	N16–Ru1–Cl2	177.30(5)
Cl1–Ru1–Cl3	177.37(2)		

Atom1–Atom2	Å	Atom1–Atom2	Å
Ru1–N1	2.0793(17)	Ru1–Cl1	2.3468(6)
Ru1–N7	2.0576(16)	Ru1–Cl2	2.3912(6)
Ru1–N13	2.0504(16)	Ru1–Cl3	2.3413(6)
Atom1-Atom2-Atom3	deg	Atom1-Atom2-Atom3	deg
N7-Ru1-N13	178.50(7)	N1–Ru1–Cl2	178.66(5)
Cl1–Ru1–Cl3	178.654(19)		

Table S3. Selected Bond Distances (Å) and Angles (°) in B5

Table S4. Selected Bond Distances (Å) and Angles (°) in $B6 \cdot H_2O$

Atom1–Atom2	Å	Atom1–Atom2	Å
Ru1–N2	2.0764(15)	Ru1–Cl1	2.3434(7)
Ru1–N7	2.0734(16)	Ru1–Cl2	2.3469(6)
Ru1–N12	2.0667(16)	Ru1–Cl3	2.3427(8)
Atom1-Atom2-Atom3	deg	Atom1-Atom2-Atom3	deg
N7-Ru1-N12	178.66(6)	N2-Ru1-Cl2	179.51(4)
Cl1–Ru1–Cl3	178.539(16)		

Atom1–Atom2	B7a	Atom1–Atom2	B7b
Ru1–N1	2.073(2)	Ru2-N16	2.0630(19)
Ru1–N6	2.0527(19)	Ru2–N21	2.0665(19)
Ru1–N11	2.0600(19)	Ru2–N26	2.0641(19)
Ru1–Cl1	2.3584(8)	Ru2–Cl4	2.3536(8)
Ru1–Cl2	2.3552(9)	Ru2–Cl5	2.3539(8)
Ru1–Cl3	2.3777(8)	Ru2–Cl6	2.3820(8)
Atom1-Atom2-Atom3		Atom1-Atom2-Atom3	
N6–Ru1–N11	177.54(8)	N21-Ru2-N26	179.28(7)
N1-Ru1-Cl2	178.37(5)	N16-Ru2-Cl5	179.06(5)
Cl1-Ru1-Cl3	179.41(2)	Cl4–Ru2–Cl6	177.61(2)

Table S5. Selected Bond Distances (Å) and Angles (°) in Two Independent Molecules in B7

Table S6. Selected Bond Distances (Å) and Angles (°) in C2

Atom1–Atom2	Å	Atom1–Atom2	Å
Ru1–N1	2.0687(12)	Ru1–N3	2.0682(12)
Ru1–Cl1	2.3379(6)	Ru1–Cl2	2.3458(6)
Atom1-Atom2-Atom3	deg	Atom1-Atom2-Atom3	deg
N3–Ru1–N1	90.19(5)	N3–Ru1–Cl1	90.43(3)
N1–Ru1–Cl1	90.34(3)	N3-Ru1-Cl2	89.57(3)
N1–Ru1–Cl2	89.66(3)	Cl1–Ru1–Cl2	180.0

Atom1–Atom2	Å	Atom1–Atom2	Å
Ru1–N1	2.0862(15)	Ru1–N7	2.0792(14)
Ru1–N3	2.0697(14)	Ru1–Cl1	2.3570(8)
Ru1–N5	2.0732(15)	Ru1–Cl2	2.3232(8)
Atom1-Atom2-Atom3	deg	Atom1-Atom2-Atom3	deg
N1–Ru1–N5	177.14(5)	N3–Ru1–N7	178.09(5)
Cl1–Ru1–Cl2	178.601(15)		

Table S7. Selected Bond Distances (Å) and Angles (°) in C3·CH₃OH·(C₂H₅)₂O

Table S8. Selected Bond Distances (Å) and Angles (°) in C6 $2H_2O$

Atom1–Atom2	Å	Atom1–Atom2	Å
Ru1–N2	2.073(3)	Ru1–N7	2.074(3)
Ru1–Cl1	2.3289(10)		
Atom1-Atom2-Atom3	deg	Atom1-Atom2-Atom3	deg
N2-Ru1-N7	86.84(12)	N2–Ru1–Cl1	89.58(9)
N7–Ru1–Cl1	91.07(9)		

Atom1–Atom2	Å	Atom1-Atom2	Å
Ru1–N1	2.0557(15)	Ru2-N11	2.0624(15)
Ru1–N6	2.0571(15)	Ru2-N16	2.0659(18)
Ru1–Cl1	2.3767(9)	Ru2–Cl2	2.3565(7)
Atom1-Atom2-Atom3	deg	Atom1-Atom2-Atom3	deg
Atom1-Atom2-Atom3 N1–Ru1–N6	deg 89.14(6)	Atom1-Atom2-Atom3 N11–Ru2–N16	deg 93.03(6)
	0		8
N1–Ru1–N6	89.14(6)	N11-Ru2-N16	93.03(6)

Table S9. Selected Bond Distances (Å) and Angles (°) in C7

Table S10. UV-vis Absorption Bands [Wavelength and Molar Absorptivity (in Brackets)] for Complexes **B** and **C** in Methanol at 298K used for the establishment of equations (3) and (4). The metal-centered Ru^{III}/Ru^{II} redox potential increases with the increase of the absorption wavelengths λ (Fig. S7)

Complex	$\lambda_{\rm max}$ (nm) /	Complex	λ_{max} (nm) /
	$\mathcal{E}(\mathrm{mM}^{-1}\mathrm{cm}^{-1})$		ε (mM ⁻¹ cm ⁻¹)
B1	347	C2	346
	(3.29)		(2.71)
B3	358	C3	363
	(3.12)		(2.67)
B4	371	C6	400
	(3.55)		(2.77)
B5	369	C7	401
	(3.08)		$(3.71)^{a}$
B6 ·H ₂ O	376	C8	452
	(3.35)		(2.69)
B7	376		
	(3.18)		
B8	381		
	(3.71)		
^a overlap	ped band		

Fig. S1. ORTEP view of the second independent molecule of $[Ru^{III}Cl_3(buim)_3]$ (**B1b**), showing the atom-numbering scheme. Thermal displacement ellipsoids are drawn at the 50% probability level.

Fig. S2. ORTEP view of the second independent molecule of [Ru^{III}Cl₃(Hpz)₃] (**B7b**), showing the atomnumbering scheme. Thermal displacement ellipsoids are drawn at the 50% probability level.

Fig. S3. Infinite chains in **B7** formed by the two independent molecules **B7a** (A) and **B7b** (B), which are stabilized by stacking π - π interactions between *trans*-coordinated pyrazole ligands of adjacent molecules and *inter*molecular hydrogen bonding.

Fig. S4. N–H…Cl hydrogen bonding interactions of [Ru^{III}Cl₂(Him)₄]Cl (C2) parallel to ac cell planes.

Fig. S5. A part of the crystal structure of $C3 \cdot CH_3OH \cdot (C_2H_5)_2O$ showing the formation of multiple hydrogen bonds between the complex cations, counter anion and solvent molecules.

Fig. S6. Parallel chains in the structure of **C6a**·2H₂O, which are stabilized by strong *intra*chain hydrogen bonding interactions between $[Ru^{III}Cl_2(Htrz)_4]^+$.

Fig. S7. Plot of the UV-vis absorption bands against $E_{\frac{1}{2}} (Ru^{II}/Ru^{I})$ for complexes **B** (•) and **C** (•). The electrochemical data is shown in Table 3 and the optical data in Table S10: λ (nm) = 55.9 $E_{\frac{1}{2}}$ (V) + 378.6 (r = 0.97) (**B**) and λ (nm) = 136.1 $E_{\frac{1}{2}}$ (V) + 365.2 (r = 0.99) (**C**).

Fig. S8. The electronic absorption spectra of **C2** [measured directly after dissolution (upper line) and after 24 h (lower line)] and **C6** [measured directly after dissolution (upper line) and after 3 h (lower line)] in 0.2 M phosphate buffer at pH 7.0 at room temperature.