Supporting Information:

Erwin Reisner, Vladimir B. Arion,* Anna Eichinger, Norbert Kandler, Gerald Giester, Armando J. L. Pombeiro,* and Bernhard K. Keppler*

Tuning of Redox Properties for the Design of Ruthenium Anticancer Drugs: Part 2. Syntheses, Crystal Structures and Electrochemistry of Potentially Antitumor $\left[\mathbf{R u}^{\mathbf{I I I} / \mathrm{II}} \mathbf{C l}_{6-\mathrm{n}}(\text { azole })_{n}\right]^{\mathbf{Z}}(\mathrm{n}=3,4,6)$ Complexes

S1-S2: Geometrical Details of complexes B and C studied by X-ray diffraction methods
S3-S7: Selected Bond Distances and Angles for B and C
S8: UV-vis Absorption Bands for \mathbf{B} and \mathbf{C} in Methanol at 298 K
S9-S10: Figures showing ORTEP views of B1b, B7b, packing details of B7, C2, C3 and C6
S11: UV-vis Absorption Bands against $\mathrm{E}_{1 / 2}\left(\mathrm{Ru}^{\mathrm{III}} / \mathrm{Ru}^{\mathrm{II}}\right)$ for \mathbf{B} and \mathbf{C}.
S12: The Electronic Absorption Spectra of C2 and C6 in 0.2 M phosphate buffer at pH 7.0 .

Crystal structures. Complex B1. The dihedral angles of mutually trans butylimidazole ligands are 30.6 and -9.9° in B1a and B1b, correspondingly. The butylimidazol ligands coordinated to ruthenium via N10 and N19 in B1a are tilted relative to the mean plane through Ru1N10N19Cl1Cl3, the corresponding angles being at 36.7 and 6.3°. In B1b the dihedral angles between imidazole rings bonded to ruthenium via N37 and N46, and the mean plane through Ru2N37N46C14Cl6 are at 45.2 and 35.6°, respectively. The imidazole rings ligated to ruthenium via N 1 and N 28 nearly bisect the angles Cl3Ru1N10 and C16Ru2N46, the torsion angles $\Theta_{\mathrm{C} 2 \mathrm{~N} 1 \mathrm{Ru} 1 \mathrm{Cl} 3}$ and $\Theta_{\mathrm{C} 29 \mathrm{~N} 28 \mathrm{Ru} 2 \mathrm{Cl6}}$ being at $-38.60(15)$ and $33.90(15)^{\circ}$, correspondingly.

Complex B4. The bond angles at the ruthenium center have almost idealized values; the largest deviations from 90 and 180° were found for $\mathrm{Cl} 3-\mathrm{Ru}-\mathrm{Cl} 2$ at $92.67(3)^{\circ}$ and $\mathrm{N} 4-\mathrm{Ru}-\mathrm{N} 10$ at $176.94(7)^{\circ}$. The triazole ligands coordinated via N4 and N10 are tilted relative to the mean plane through RuN4N10Cl1Cl3, the corresponding angles being at 48.7 and 14.5°, while the triazole ligand ligated via N 16 nearly bisects the angle $\mathrm{Cl} 1-\mathrm{Ru}-\mathrm{N} 4$, the torsion angle $\Theta_{\mathrm{C} 11 \mathrm{RuN16C15}}$ being at $37.87(19)^{\circ}$.

Complex B5. The 4-methylpyrazole ligands linked to the Ru atom via N 1 and N 7 are nearly coplanar to the mean planes through $\mathrm{RuCl1Cl2Cl3N1}$ and $\mathrm{RuCl2N1N} 7 \mathrm{~N} 13$, correspondingly. The torsion angles
$\Theta_{\mathrm{N} 1 \mathrm{RuN7C11}}$ and $\Theta_{\mathrm{Cl} 3 \mathrm{RuNIN} 2}$ are at $-4.25(18)$ and $2.31(15)^{\circ}$, respectively. The third azole ring ligated to Ru atom via N 13 is tilted to the RuCl2N7N1N13 mean plane by $\sim 26^{\circ}$.

Complex B6. $\mathrm{H}_{2} \mathrm{O}$. The triazole ligand ligated via N 2 bisects the angle $\mathrm{Cl} 1-\mathrm{Ru}-\mathrm{N} 3$, the torsion angle $\Theta_{\mathrm{Cl1RuN2C3}}$ being at $-45.44(15)^{\circ}$. The other two torsion angles $\Theta_{\mathrm{Cl3RuN7N} 6}$ and $\Theta_{\mathrm{Cl3RuN12C13}}$ indicating the position of triazole ligands coordinated via N 7 and N 12 are at $48.38(12)$ and $-48.52(15)^{\circ}$, respectively.

Complex B7. The pyrazole ligands trans to each other are almost coplanar in both cases, the corresponding dihedral angle being at $1.7(\mathbf{B 7 a})$ and $3.8^{\circ}(\mathbf{B 7 b})$. Their position in respect to the Ru1N6N11C11Cl3 and Ru2N21N26C14Cl6 can be defined by torsion angles $\Theta_{\mathrm{N} 12 \mathrm{~N} 11 \mathrm{Ru} 1 \mathrm{Cl} 3}$ at -29.1 (2) and $\Theta_{\mathrm{N} 7 \mathrm{~N} 6 \mathrm{Ru} 1 \mathrm{Cl} 3}$ at $30.14(18)^{\circ}$ in molecule B7a and $\Theta_{\mathrm{Cl6Ru2N} 21 \mathrm{C} 25}$ at $156.2(2)$ and $\Theta_{\mathrm{Cl6Ru2N} 26 \mathrm{C} 30}$ at $154.6(2)^{\circ}$ in $\mathbf{B 7 b}$. The positions of the pyrazole rings bonded to ruthenium through N1 and N16 in respect to $\mathrm{Ru} 1 \mathrm{Cl1Cl2Cl3N} 1$ and Ru 2 C 4 Cl 5 Cl 6 N 16 are defined by the torsion angles $\Theta_{\mathrm{N} 2 \mathrm{~N} 1 \mathrm{Ru} 1 \mathrm{Cl} 3}$ at $18.63(18)^{\circ}$ and $\Theta_{\mathrm{N} 17 \mathrm{~N} 16 \mathrm{Ru} 2 \mathrm{Cl} 6}$ at $40.75(18)^{\circ}$.

Complex C2. The orientation of the imidazole rings with respect to the $\mathrm{Ru}-\mathrm{Cl} 1$ vector is almost staggered, the $\Theta_{\mathrm{C} 3 \mathrm{~N} 1 \mathrm{RuCl1}}$ and $\Theta_{\mathrm{C} 6 \mathrm{~N} 3 \mathrm{RuCl} 1}$ torsion angles being at $45.63(11)$ and $50.48(11)^{\circ}$.

Complex C3 $\cdot \mathrm{CH}_{3} \mathrm{OH} \cdot\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}$. The orientation of benzimidazole ligands in respect to $\mathrm{Ru}-\mathrm{Cl} 1$ and $\mathrm{Ru}-\mathrm{Cl} 2$ vectors is very similar, tending to minimize steric crowding between them and is determined by torsion angles $\Theta_{\mathrm{C} 1 \mathrm{~N} 1 \mathrm{RuCl1}}$ at $-41.35(13), \Theta_{\mathrm{C} 8 \mathrm{~N} 3 \mathrm{RuCl1}}$ at $-44.66(12), \Theta_{\mathrm{C} 21 \mathrm{NSRuCl2}}$ at $-45.79(14)$ and $\Theta_{\mathrm{C} 28 \mathrm{~N} 7 \mathrm{RuCl2}}$ at $-45.41(14)^{\circ}$.

Complex C6a $2 \mathrm{H}_{2} \mathrm{O}$. The orientation of the Htrz planes with respect to the $\mathrm{Ru}-\mathrm{Cl}$ vector is almost staggered, the $\Theta_{\mathrm{C} 3 \mathrm{~N} 2 \mathrm{RuCl}}$ and $\Theta_{\mathrm{N} 6 \mathrm{~N} 7 \mathrm{RuCl}}$ torsion angles being at $31.8(3)$ and $30.3(3)^{\circ}$, respectively.

Complex C7. The trans-coordinated pyrazole ligands are parallel to each other. The dihedral angle between them is small and does not exceed 1°. The $\mathrm{N}-\mathrm{N}$ bonds in trans-coordinated ligands are also trans to each other. The orientation of pyrazole ligands in respect to $\mathrm{Ru}-\mathrm{Cl} 1$ and $\mathrm{Ru}-\mathrm{Cl} 2$ vectors is described by the torsion angles $\Theta_{\mathrm{C} 5 \mathrm{~N} 1 \mathrm{Ru} 1 \mathrm{Cl1}}$ at $-17.61(16), \Theta_{\mathrm{N} 7 \mathrm{~N} 6 \mathrm{Ru} 1 \mathrm{Cl1}}$ at $24.20(13), \Theta_{\mathrm{N} 12 \mathrm{~N} 11 \mathrm{Ru} 2 \mathrm{Cl} 2}$ at $33.33(14)$ and $\Theta_{\mathrm{N} 17-\mathrm{N} 16-\mathrm{Ru} 2-\mathrm{Cl} 2}$ at $21.67(14)^{\circ}$. Both the coordinated chloro ligands and the chloride counter anions are involved in hydrogen bonding interactions.

Table S1. Selected Bond Distances (\AA) and Angles $\left({ }^{\circ}\right)$ in Two Independent Molecules of B1

Atom1-Atom2	B1a	Atom1-Atom2	B1b
Ru1-N1	$2.0623(15)$	Ru2-N28	$2.0670(15)$
Ru1-N10	$2.0768(14)$	Ru2-N37	$2.0763(15)$
Ru1-N19	$2.0886(14)$	Ru2-N46	$2.0744(15)$
Ru1-Cl1	$2.3602(6)$	Ru2-Cl4	$2.3597(6)$
Ru1-Cl2	$2.3696(6)$	Ru2-Cl5	$2.3800(6)$
Ru1-Cl3	$2.3603(6)$	Ru2-Cl6	$2.3522(6)$
Atom1-Atom2-Atom3		Atom1-Atom2-Atom3	
N10-Ru1-N19	$176.88(6)$	N37-Ru2-N46	$178.02(6)$
N1-Ru1-Cl2	$178.55(4)$	N28-Ru2-Cl5	$177.94(4)$
Cl1-Ru1-Cl3	$178.343(15)$	Cl4-Ru2-Cl6	$178.389(16)$

Table S2. Selected Interatomic Bond Distances ((\AA) and Angles $\left({ }^{\circ}\right)$ in B4

Atom1-Atom2	\AA	Atom1-Atom2	\AA
Ru1-N4	$2.0691(18)$	Ru1-Cl1	$2.3627(7)$
Ru1-N10	$2.0864(18)$	Ru1-Cl2	$2.3541(8)$
Ru1-N16	$2.0748(19)$	Ru1-Cl3	$2.3395(6)$
Atom1-Atom2-Atom3	deg	Atom1-Atom2-Atom3	deg
N4-Ru1-N10	$176.94(7)$	N16-Ru1-Cl2	$177.30(5)$
Cl1-Ru1-Cl3	$177.37(2)$		

Table S3. Selected Bond Distances (\AA) and Angles $\left({ }^{\circ}\right)$ in $\mathbf{B 5}$

Atom1-Atom2	\AA	Atom1-Atom2	\AA
Ru1-N1	$2.0793(17)$	Ru1-Cl1	$2.3468(6)$
Ru1-N7	$2.0576(16)$	Ru1-Cl2	$2.3912(6)$
Ru1-N13	$2.0504(16)$	Ru1-Cl3	$2.3413(6)$
Atom1-Atom2-Atom3	deg	Atom1-Atom2-Atom3	deg
N7-Ru1-N13	$178.50(7)$	N1-Ru1-Cl2	$178.66(5)$
Cl1-Ru1-Cl3	$178.654(19)$		

Table S4. Selected Bond Distances (\AA) and Angles $\left({ }^{\circ}\right)$ in $\mathbf{B 6} \cdot \mathrm{H}_{2} \mathrm{O}$

Atom1-Atom2	\AA	Atom1-Atom2	\AA
Ru1-N2	$2.0764(15)$	Ru1-Cl1	$2.3434(7)$
Ru1-N7	$2.0734(16)$	Ru1-Cl2	$2.3469(6)$
Ru1-N12	$2.0667(16)$	Ru1-Cl3	$2.3427(8)$
Atom1-Atom2-Atom3	deg	Atom1-Atom2-Atom3	deg
N7-Ru1-N12	$178.66(6)$	N2-Ru1-Cl2	$179.51(4)$
Cl1-Ru1-Cl3	$178.539(16)$		

Table S5. Selected Bond Distances (\AA) and Angles $\left({ }^{\circ}\right)$ in Two Independent Molecules in B7

Atom1-Atom2	B7a	Atom1-Atom2	B7b
Ru1-N1	$2.073(2)$	Ru2-N16	$2.0630(19)$
Ru1-N6	$2.0527(19)$	Ru2-N21	$2.0665(19)$
Ru1-N11	$2.0600(19)$	Ru2-N26	$2.0641(19)$
Ru1-Cl1	$2.3584(8)$	Ru2-Cl4	$2.3536(8)$
Ru1-Cl2	$2.3552(9)$	Ru2-Cl5	$2.3539(8)$
Ru1-Cl3	$2.3777(8)$	Ru2-Cl6	$2.3820(8)$
Atom1-Atom2-Atom3		Atom1-Atom2-Atom3	
N6-Ru1-N11	$177.54(8)$	N21-Ru2-N26	$179.28(7)$
N1-Ru1-Cl2	$178.37(5)$	$\mathrm{N} 16-\mathrm{Ru} 2-\mathrm{Cl} 5$	$179.06(5)$
Cl1-Ru1-Cl3	$179.41(2)$	$\mathrm{Cl} 4-\mathrm{Ru} 2-\mathrm{Cl} 6$	$177.61(2)$

Table S6. Selected Bond Distances (\AA) and Angles $\left({ }^{\circ}\right)$ in C2

Atom1-Atom2	\AA	Atom1-Atom2	\AA
Ru1-N1	$2.0687(12)$	Ru1-N3	$2.0682(12)$
Ru1-Cl1	$2.3379(6)$	Ru1-Cl2	$2.3458(6)$
Atom1-Atom2-Atom3	deg	Atom1-Atom2-Atom3	deg
N3-Ru1-N1	$90.19(5)$	$\mathrm{N} 3-\mathrm{Ru} 1-\mathrm{Cl} 1$	$90.43(3)$
$\mathrm{N} 1-\mathrm{Ru} 1-\mathrm{Cl} 1$	$90.34(3)$	$\mathrm{N} 3-\mathrm{Ru} 1-\mathrm{Cl} 2$	$89.57(3)$
$\mathrm{N} 1-\mathrm{Ru} 1-\mathrm{Cl} 2$	$89.66(3)$	$\mathrm{Cl1}-\mathrm{Ru} 1-\mathrm{Cl} 2$	180.0

Table S7. Selected Bond Distances (\AA) and Angles $\left({ }^{\circ}\right)$ in C3•CH $\mathrm{CH}_{3} \mathrm{OH} \cdot\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}$

Atom1-Atom2	\AA	Atom1-Atom2	\AA
Ru1-N1	$2.0862(15)$	Ru1-N7	$2.0792(14)$
Ru1-N3	$2.0697(14)$	Ru1-Cl1	$2.3570(8)$
Ru1-N5	$2.0732(15)$	Ru1-Cl2	$2.3232(8)$
Atom1-Atom2-Atom3	deg	Atom1-Atom2-Atom3	deg
N1-Ru1-N5	$177.14(5)$	N3-Ru1-N7	$178.09(5)$
Cl1-Ru1-Cl2	$178.601(15)$		

Table S8. Selected Bond Distances ((\AA) and Angles $\left({ }^{\circ}\right)$ in C6 $\cdot 2 \mathrm{H}_{2} \mathrm{O}$

Atom1-Atom2	\AA	Atom1-Atom2	\AA
Ru1-N2	$2.073(3)$	Ru1-N7	$2.074(3)$
Ru1-Cl1	$2.3289(10)$		
Atom1-Atom2-Atom3	deg	Atom1-Atom2-Atom3	deg
N2-Ru1-N7	$86.84(12)$	$\mathrm{N} 2-\mathrm{Ru} 1-\mathrm{Cl} 1$	$89.58(9)$
N7-Ru1-Cl1	$91.07(9)$		

Table S9. Selected Bond Distances (\AA) and Angles $\left({ }^{\circ}\right)$ in C7

Atom1-Atom2	\AA	Atom1-Atom2	\AA
Ru1-N1	$2.0557(15)$	Ru2-N11	$2.0624(15)$
Ru1-N6	$2.0571(15)$	Ru2-N16	$2.0659(18)$
Ru1-Cl1	$2.3767(9)$	Ru2-Cl2	$2.3565(7)$
Atom1-Atom2-Atom3	deg	Atom1-Atom2-Atom3	deg
N1-Ru1-N6	$89.14(6)$	$\mathrm{N} 11-\mathrm{Ru} 2-\mathrm{N} 16$	$93.03(6)$
N1-Ru1-Cl1	$90.86(5)$	$\mathrm{N} 11-\mathrm{Ru} 2-\mathrm{Cl} 2$	$91.09(5)$
N6-Ru1-Cl1	$89.13(5)$	$\mathrm{N} 16-\mathrm{Ru} 2-\mathrm{Cl} 2$	$89.34(5)$

Table S10. UV-vis Absorption Bands [Wavelength and Molar Absorptivity (in Brackets)] for Complexes \mathbf{B} and \mathbf{C} in Methanol at 298 K used for the establishment of equations (3) and (4). The metal-centered $\mathrm{Ru}^{\text {III }} / \mathrm{Ru}^{\text {II }}$ redox potential increases with the increase of the absorption wavelengths λ (Fig. S7)

Complex	$\lambda_{\text {max }}(\mathrm{nm}) /$ $\varepsilon\left(\mathrm{mM}^{-1} \mathrm{~cm}^{-1}\right)$	Complex	$\lambda_{\text {max }}(\mathrm{nm}) /$ $\left(\mathrm{mM}^{-1} \mathrm{~cm}^{-1}\right)$
B1	347	$\mathbf{C 2}$	346
	(3.29)		(2.71)
B3	358	C3	363
	(3.12)		(2.67)
B4	371	C6	400
	(3.55)		(2.77)
B5	369	C7	401
B6•H2O	$3.08)$		$(3.71)^{\mathrm{a}}$
	(3.35)		452
B7	376		(2.69)
	(3.18)		
B8	381		
	(3.71)		

[^0]

Fig. S1. ORTEP view of the second independent molecule of $\left[\mathrm{Ru}^{\mathrm{III}} \mathrm{Cl}_{3}(\text { buim })_{3}\right]$ (B1b), showing the atom-numbering scheme. Thermal displacement ellipsoids are drawn at the 50% probability level.

Fig. S2. ORTEP view of the second independent molecule of $\left[\mathrm{Ru}^{\mathrm{III}} \mathrm{Cl}_{3}(\mathrm{Hpz})_{3}\right](\mathbf{B 7 b})$, showing the atomnumbering scheme. Thermal displacement ellipsoids are drawn at the 50% probability level.
A)

B)

Fig. S3. Infinite chains in B7 formed by the two independent molecules B7a (A) and B7b (B), which are stabilized by stacking $\pi-\pi$ interactions between trans-coordinated pyrazole ligands of adjacent molecules and intermolecular hydrogen bonding.

Fig. S4. $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonding interactions of $\left[\mathrm{Ru}^{\mathrm{III}} \mathrm{Cl}_{2}(\mathrm{Him})_{4}\right] \mathrm{Cl}(\mathbf{C 2})$ parallel to ac cell planes.

Fig. S5. A part of the crystal structure of $\mathbf{C 3} \cdot \mathrm{CH}_{3} \mathrm{OH} \cdot\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}$ showing the formation of multiple hydrogen bonds between the complex cations, counter anion and solvent molecules.

Fig. S6. Parallel chains in the structure of $\mathbf{C 6} \cdot \mathbf{a} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, which are stabilized by strong intrachain hydrogen bonding interactions between $\left[\mathrm{Ru}^{\mathrm{III}} \mathrm{Cl}_{2}(\mathrm{Htrz})_{4}\right]^{+}$.

Fig. S7. Plot of the UV-vis absorption bands against $\mathrm{E}_{1 / 2}\left(\mathrm{Ru}^{\mathrm{III}} / \mathrm{Ru}^{\mathrm{II}}\right)$ for complexes $\mathbf{B}(\bullet)$ and $\mathbf{C}(\bullet)$. The electrochemical data is shown in Table 3 and the optical data in Table $\mathrm{S} 10: \lambda(\mathrm{nm})=55.9 \mathrm{E}_{1 / 2}(\mathrm{~V})+$ $378.6(\mathrm{r}=0.97)(\mathbf{B})$ and $\lambda(\mathrm{nm})=136.1 \mathrm{E}_{1 / 2}(\mathrm{~V})+365.2(\mathrm{r}=0.99)(\mathbf{C})$.

Fig. S8. The electronic absorption spectra of $\mathbf{C} 2$ [measured directly after dissolution (upper line) and after 24 h (lower line)] and C6 [measured directly after dissolution (upper line) and after 3 h (lower line)] in 0.2 M phosphate buffer at pH 7.0 at room temperature.

[^0]: ${ }^{\text {a }}$ overlapped band

