ESI-MS Studies on the Mechanism of Pd(0)-Catalyzed Three-Component Tandem Double Addition-Cyclization Reaction

Hao Guo, a Rong Qian, Yuanxi Liao, Shengming Ma, a* and Yinlong Guo*

^a State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, P. R. China

Fax: (+86)21-64167510, E-mail: masm@mail.sioc.ac.cn

^b Shanghai Mass Spectrometry Center, Shanghai Institute of Organic Chemistry Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, P. R. China Fax: (+86)21-64166128, E-mail: ylguo@mail.sioc.ac.cn

Figure S1. ESI(+)-MS carried out with a CapExit voltage of 52.6 V for the sample taken from the reaction mixture of iodobenzene **2** (0.06 mmol) and Pd(PPh₃)₄ (0.0025 mmol) in THF (6 mL) stirred at rt in a nitrogen atmosphere at the reaction time of 30 min and diluted by the mixed CH₃CN and CH₃OH (v/v=1:1).

Figure S2. ESI(+)-MS carried out with a CapExit voltage of 52.6 V for the sample taken from the reaction mixture of iodobenzene **2** (0.06 mmol) and Pd(PPh₃)₄ (0.0025 mmol) in THF (6 mL) stirred at 85°C in a nitrogen atmosphere at the reaction time of 30 min and diluted by the mixed CH₃CN and CH₃OH (v/v=1:1).

Figure S3. ESI(+)-MS carried out with the standard procedure for MS detection for the sample taken from the reaction mixture of 2-(2, 3-allenyl)malonate **1** (0.05 mmol), iodobenzene **2** (0.06 mmol) and Pd(PPh₃)₄ (0.0025 mmol) in THF (6 mL) stirred at 85°C in a nitrogen atmosphere at the reaction time of 30 min.

Figure S4. ESI(+)-MS carried out with the standard procedure for MS detection for the sample taken from the reaction mixture of 2-(2, 3-allenyl)malonate **1** (0.05 mmol), iodobenzene **2** (0.06 mmol), imine **3** (0.06 mmol), and Pd(PPh₃)₄ (0.0025 mmol) in THF (6 mL) stirred at 85°C in a nitrogen atmosphere at the reaction time of 1 h. (The MS results for the samples taken at the reaction time between 30 min to 2 h were similar to this spectra.)

Figure S5. ESI(+)-MS carried out with the standard procedure for MS detection for the sample taken from the reaction mixture of 2-(2, 3-allenyl)malonate **1** (0.05 mmol), iodobenzene **2** (0.06 mmol), imine **3** (0.06 mmol), Pd(PPh₃)₄ (0.0025 mmol), and K_2CO_3 (0.05 mmol) in THF (6 mL) stirred at 85°C in a nitrogen atmosphere at the reaction time of a) 5 h, b) 15 h, c) 24 h, and d) 36 h.

Figure S6. ESI(+)-MS carried out with a CapExit voltage of 52.6 V for a) 2-(2,

3-allenyl)malonate ${\bf 1}$ and b) imine ${\bf 3}$, diluted by a solution of CH_3CN saturated with K_2CO_3 .

Experimental and theoretical isotopic distribution of the palladium intermediate ions.

a) Experimental isotopic distributions of intermediate 5.

Theoretical isotopic distributions of intermediate 5.

Table 1. Experimental and theoretical isotopic distribution of intermediate 5.

m/z	Experimental mass	Theoretical mass	Relative error (ppm)
705.1	705.1241	705.1249	-1.1
706.1	706.1264	706.1264	0
707.1	707.1263	707.1259	0.6
708.1	708.1292	708.1286	0.8
709.1	709.1261	709.1255	0.8
710.1	710.1287	710.1284	0.4
711.1	711.1278	711.1271	1.0
712.1	712.1299	712.1298	0.1

b) Experimental isotopic distributions of intermediate **6**.

Theoretical isotopic distributions of intermediate 6.

Table 2. Experimental and theoretical isotopic distribution of intermediate 6.

m/z	Experimental mass	Theoretical mass	Relative error (ppm)
746.2	746.1513	746.1515	-0.3
747.2	747.1529	747.1529	0
748.2	748.1527	748.1525	0.3
749.2	749.1550	749.1551	-0.1
750.2	750.1517	750.1521	-0.5
751.2	751.1549	751.1549	0
752.2	752.1542	752.1537	0.7
753.2	753.1570	753.1563	0.9

c) Experimental isotopic distributions of intermediate 7.

Theoretical isotopic distributions of intermediate 7.

Table 3. Experimental and theoretical isotopic distribution of intermediate 7.

m/z	Experimental mass	Theoretical mass	Relative error (ppm)
889.2	889.1984	889.1986	-0.2
890.2	890.2006	890.2000	0.7
891.2	891.1999	891.1997	0.2
892.2	892.2024	892.2023	0.1
893.2	893.1992	893.1994	-0.2
894.2	894.2016	894.2021	-0.6
895.2	895.2005	895.2011	-0.7
896.2	896.2029	896.2036	-0.8

d) Experimental isotopic distributions of intermediate 8.

Theoretical isotopic distributions of intermediate 8.

Table 4. Experimental and theoretical isotopic distribution of intermediate 8.

m/z	Experimental mass	Theoretical mass	Relative error (ppm)
1148.3	1148.2659	1148.2653	0.5
1149.3	1149.2668	1149.2667	0.1
1150.3	1150.2657	1150.2666	-0.8
1151.3	1151.2680	1151.2688	-0.7
1152.3	1152.2660	1152.2665	-0.4
1153.3	1153.2683	1153.2688	-0.4
1154.3	1154.2684	1154.2680	0.3
1155.3	1155.2706	1155.2701	0.4